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Abstract

We solve the Dirichlet boundary value prob-
lem over distinguishing domains for Clifford
fractional-monogenic functions in Rn (Riemann-
Liouville sense).

Fractional calculus

(Dα
a+f )(x) is the fractional Riemann-Liouville

derivative of order α > 0

(Dα
a+f )(x) =


d

dx



n 1
Γ(n− α)

∫ x
a

f (t)
(x− t)α−n+1dt (1)

where n = [α]+1. The Riemann-Liouville fractional
integral of order α > 0 is given by (2)

(Iαa+f )(x) = 1
Γ(α)

∫ x
a

f (t)
(x− t)1−α (2)

Iαa+(L1) is the class of functions f represented by
(2) of a summable function; f = Iαa+ϕ where ϕ ∈
L1(a, b).

Fractional Clifford Analysis

{e1, ..., ed} is the standard basis of Euclidean vector
space in Rd.
R0,d is the associated real Clifford algebra with the
following multiplication rules:



e0 := 1,
eiej + ejei = −2δij, i, j = 1, ..., d

Vector space R0,d is given by the set {eA : A ⊆
{1, ..., d}} with eA = eα1α2...αr where 1 ≤ α1 <
· · · < αr ≤ d, 0 ≤ r ≤ d. Consider f : Ω ⊂
R1+d→ R0,d whose representation is given by

f = ∑
A
eAfA

where fA are real valued functions. Clifford frac-
tional (Riemann-Liouville) Cauchy-Riemann opera-
tor is defined by (3)

Dα
+ = D(α0,...,αd)

+ = d∑
j=0

ejD
1+αj

2
x+
j

(3)
This operator is known as the fractional Dirac oper-
ator.

Definition

A R0,d-valued function f is called left fractional
monogenic if it satisfies Dα

+f = 0 on Ω.

Theorem 1

Consider the Clifford valued function f given by
f (x0, ..., xd) = ∑

A eAfA(x0, ..., xd) where f ∈
AC2(Ω) and

fA(x0, x1, ..., xd) = fA(x0, x1, ..., xd)
= · · · = fA(x0, x1, ..., xd)

(The red on each component means the respective
direction of the derivative). Then these statements
are true:

•D
1+αj

2
x+
j

D
1+αj

2
x+
j
fA

 = D
1+αj
x+
j
fA, ∀ j = 0, 1, ..., d

•D
1+αj

2
x+
j

D
1+αi

2
x+
j
fA

 = D
1+αi

2
x+
i

D
1+αj

2
x+
j
fA

,
∀i 6= j ∈ {0, 1, ..., d}

By Theorem 1 and the multiplication rules, we
obtain the fractional Laplace operator:

Dα
+(Dα

+f ) = ∆α
+ = d∑

i=0
D1+αi
x+
i

From this factorization we have that if f = ∑
A eAfA

is a fractional monogenic function, then ∆α
+ = 0 and

so fA is a fractional monogenic function.
Dirichlet boundary value problem
in Rn+1 for fractional monogenic

functions

Key idea: Let Ω ∈ Rn+1 be a domain that can
be decomposed into fibres with small parts, which
carry certain properties. Consider the Euclidean
space Rn+1 and choose 1 ≤ µ ≤ n+ 1 and choose µ
indices k1, ..., kµ.
The Fibre: the µ−dimensional fibres in the
k1, ..., kµ−directions in a given bounded domain Ω
are the intersections of Ω and the µ− dimensional
planes.

Π = {x = (x0, ..., xn) : xk1 = c1, ..., xkµ = cµ}
Distinguishing part: Ω can be decomposed into
µ−dimensional fibres in the k1, ..., kµ−directions if
there exists a (1 + n− µ)−dimensional part Sk1...kµ

of ∂Ω with certain properties.

The subset Sk1...kµ is called the distinguishing
part for the corresponding decomposition of Ω.

Theorem 2

–Consider R0,n−fractional monogenic functions u.
–Under conditions given by Theorem 1, the
following Dirichlet boundary value problem is
solved:

•Let Sk1...kµ be the distinguishing part of the
certain decomposition of Ω (1 ≤ µ ≤ n + 1).

•Knowing the boundary values of 2n−1 components
uA on the whole boundary, the rest of the 2n−1

can be recovered from:
• their values on the n−dimensional distinguishing
part S0 of the boundary, for instance, the
(n− 1)−dimensional distinguishing part SB,
where B represents the n− 1 complementary
directions of the fibre.

Following a reduction process, the final re-
duction of the distinguishing part until we
get the component u0 is completely deter-
mined by its value at the point S0123···n of
the boundary.

Example
Decomposition of Ω ⊂ R3 in distinguishing
parts: A particular case is the cylindrical domain
Ω ⊂ R3. It can be decomposed in:
•The lower covering surface, a distinguishing part in
the x0−direction representing the 1−dimensional
fibre S0.

•S01, the distinguishing part in the
x0, x1−directions (the 2−dimensional fibre).

•S012, the distinguishin part x0, x1, x2−directions
(the 3−dimensional fibre).
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This is the Cauchy-Riemann system written in ma-
trix form and it is integrable by the Theorem 2.
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is compatible:
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Case I

If u1 = (x− x2)α2−1 and u2 = (x− x1)α1 with α0 =
3, α1 = 5, α2 = 4, x0 = 1.5, x1 = 3 and x2 = 2,
Figure 1 shows u1, u2 and u12.

Figure 1: Explicit solutions, case I

Case II

If now u1 = (x − x2)2α2−1, u2 = (x − x1)2α1−1 with
the same values for α0, α1, α2, x0, x1 and x2, then
Figure 2 shows u1, u2 and u12.

Figure 2: Explicit solutions, case II


