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Abstract

We solve the Dirichlet boundary value prob-

lem over distinguishing domains for Clifford
fractional-monogenic functions in R" (Riemann-

Liouville sense).

Fractional calculus

(D% f)(x) is the fractional Riemann-Liouville
derivative of order av > 0
d|" 1 f(t)
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where n = [a|+1. The Riemann-Liouville fractional
integral of order a > 0 is given by (2)
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Fractional Cliflord Analysis

{eq, ..., eq} is the standard basis of Euclidean vector
space in RY.

Ro 4 1s the associated real Clifford algebra with the
following multiplication rules:

€y . — 1,

CiCj + €€, = _252'9'7 1,7=1,....d

Vector space R4 is given by the set {eq : A
{1,...,d}} with eq4 = eqa.00 Where 1 <
< a < d, 0 < r <d Consider f : )

AN

R+ — Ry ¢ whose representation is given by

J =xeafa
where f4 are real valued functions. Clifford frac-
tional (Riemann-Liouville) Cauchy-Riemann opera-

tor is defined by (3)

14 ;

Ds = Dt = £ ep 2 (3)

This operator is known as the fractional Dirac oper-
ator.
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Definition

A Ry g-valued function f is called left fractional
monogenic if it satisfies D} f =0 on ().

Theorem 1

Consider the Clifford valued function f given by

F@0 o) = caeafal@o, .z where [ €
AC?(Q) and

falxo, 1, .oy q) = falmo, 21, ..., Tq)
= - = falxo, 21, ..., )
(The red on each component means the respective

direction of the derivative). Then these statements

are true:
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By Theorem 1 and the multiplication rules, we
obtain the fractional Laplace operator:

Ry d I+«
From this factorization we have that if f ==-4e4f4

is a fractional monogenic function, then AY = 0 and
so f4 is a fractional monogenic function.

Dirichlet boundary value problem
in R""! for fractional monogenic
functions

Key idea: Let Q € R™! be a domain that can
be decomposed into fibres with small parts, which

carry certain properties. Consider the Euclidean
space R™"™ and choose 1 < 1 < n+ 1 and choose u
indices ky, ..., k.

The Fibre: the pu—dimensional fibres in the
ki, ..., k,—directions in a given bounded domain ()
are the intersections of {) and the yu— dimensional
planes.

I ={z = (20, ..., Tn) : Tk, = C1, .., Th, = Cpf
Distinguishing part: () can be decomposed into
p—dimensional fibres in the ky, ..., k,—directions if

there exists a (1 +n — p)—dimensional part Sy, 1,
of 0f) with certain properties.

The subset Skl---k,u is called the distinguishing
part for the corresponding decomposition of 2.

Theorem 2

—Consider Ry ,—Iractional monogenic functions u.

—Under conditions given by Theorem 1, the
following Dirichlet boundary value problem is
solved:

« Let Skl---k,u be the distinguishing part of the
certain decomposition of 2 (1 < pu <n+1).

- Knowing the boundary values of 2"~! components
u4 on the whole boundary, the rest of the 271
can be recovered from:

= their values on the n—dimensional distinguishing
part Sy of the boundary, for instance, the
(n — 1)—dimensional distinguishing part Sp,
where B represents the n — 1 complementary
directions of the fibre.

Following a reduction process, the final re-
duction of the distinguishing part until we
get the component v, is completely deter-
mined by its value at the point Sy»3...,, of
the boundary.

Example

Decomposition of () C R’ in distinguishing
parts: A particular case is the cylindrical domain
() C R’. It can be decomposed in:

« The lower covering surface, a distinguishing part in
the xy—direction representing the 1—dimensional

fibre S().

« So1, the distinguishing part in the
r(, r1—directions (the 2—dimensional fibre).

= So12, the distinguishin part x(, 1, xo—directions
(the 3—dimensional fibre).
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This is the Cauchy-Riemann system written in ma-
trix form and it is integrable by the Theorem 2.
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Case 1

I[f u; = (2 — x9)® 1 and uy = (v — 21)™ with ap =
3,1 =D, ap = 4, vy = 1.5, &1 = 3 and 9 = 2,
Figure 1 shows w1, ug and uqo.
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Figure 1: Explicit solutions, case |

Case 11

If now w1 = (x — 29)°® 1 uy = (x — 1)@~ ! with
the same values for ag, aq, a9, xy, 1 and xs, then
Figure 2 shows u1, ug and uqo.
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Figure 2: Explicit solutions, case |l



