Dirichlet boundary value problem for fractional monogenic functions

D. Armendariz, A. Di Teodoro, J. Ceballos

2018

Abstract

We solve the Dirichlet boundary value problem over distinguishing domains for Clifford fractional-monogenic functions in \mathbb{R}^{n} (RiemannLiouville sense).

Fractional calculus
$\left(D_{a^{+}}^{\alpha} f\right)(x)$ is the fractional Riemann-Liouville derivative of order $\alpha>0$
$\left(D_{a^{+}}^{\alpha} f\right)(x)=\left(\frac{d}{d x}\right)^{n} \frac{1}{\Gamma(n-\alpha)^{\rho_{a}}} \frac{f(t)}{(x-t)^{\alpha-n+1}} d t$ (1)
where $n=[\alpha]+1$. The Riemann-Liouville fractional integral of order $\alpha>0$ is given by (2)

$$
\begin{equation*}
\left(I_{a^{+}}^{\alpha} f\right)(x)=\frac{1}{\Gamma(\alpha)^{x}} \frac{f(t)}{(x-t)^{1-\alpha}} \tag{2}
\end{equation*}
$$

$I_{a^{+}}^{\alpha}\left(L_{1}\right)$ is the class of functions f represented by (2) of a summable function; $f=I_{a^{+}}^{\alpha} \varphi$ where $\varphi \in$ $L_{1}(a, b)$.

Fractional Clifford Analysis
$\left\{e_{1}, \ldots, e_{d}\right\}$ is the standard basis of Euclidean vector space in \mathbb{R}^{d}
$\mathbb{R}_{0, d}$ is the associated real Clifford algebra with the following multiplication rules:

$$
\left\{\begin{array}{l}
e_{0}:=1, \\
e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j}, \quad i, j=1, \ldots, d
\end{array}\right.
$$

Vector space $\mathbb{R}_{0, d}$ is given by the set $\left\{e_{A}: A \subseteq\right.$ $\{1, \ldots, d\}\}$ with $e_{A}=e_{\alpha_{1} \alpha_{2} \ldots \alpha_{r}}$ where $1 \leq \alpha_{1}<$ $<\alpha_{r} \leq d, 0 \leq r \leq d$. Consider $f: \Omega \subset$ $\mathbb{R}^{1+d} \rightarrow \mathbb{R}_{0, d}$ whose representation is given by

$$
f=\Sigma_{A} e_{A} f_{A}
$$

where f_{A} are real valued functions. Clifford fractional (Riemann-Liouville) Cauchy-Riemann operator is defined by (3)

$$
\begin{equation*}
D_{+}^{\alpha}=D_{+}^{\left(\alpha_{0}, \ldots, \alpha_{d}\right)}=\sum_{j=0}^{d} e_{j} D_{x_{j}^{T}}^{\frac{1+\alpha_{j}}{\tau}} \tag{3}
\end{equation*}
$$

This operator is known as the fractional Dirac operator.

Definition

A $\mathbb{R}_{0, d}$-valued function f is called left fractional monogenic if it satisfies $D_{+}^{\alpha} f=0$ on Ω.

Theorem 1
Consider the Clifford valued function f given by $f\left(x_{0}, \ldots, x_{d}\right)={ }^{2} A e_{A} f_{A}\left(x_{0}, \ldots, x_{d}\right)$ where $f \in$ $A C^{2}(\Omega)$ and

$$
\begin{aligned}
f_{A}\left(x_{0}, x_{1}, \ldots, x_{d}\right) & =f_{A}\left(x_{0}, x_{1}, \ldots, x_{d}\right) \\
=\cdots & =f_{A}\left(x_{0}, x_{1}, \ldots, x_{d}\right)
\end{aligned}
$$

(The red on each component means the respective direction of the derivative). Then these statements are true:

$$
\begin{aligned}
& \text { - } D_{x_{j}^{+}}^{\stackrel{1+\alpha_{j}}{j}}\left(D_{x_{j}^{+1+\alpha_{j}}}^{+} f_{A}\right)=D_{x_{j}^{+}}^{1+\alpha_{j}} f_{A}, \forall j=0,1, \ldots, d
\end{aligned}
$$

$$
\begin{aligned}
& \forall i \neq j \in\{0,1, \ldots, d\}
\end{aligned}
$$

By Theorem 1 and the multiplication rules, we obtain the fractional Laplace operator:

$$
D_{+}^{\alpha}\left(D_{+}^{\alpha} f\right)=\Delta_{+}^{\alpha}={ }_{i=0}^{d} D_{x_{i}^{*}}^{1+\alpha_{i}}
$$

From this factorization we have that if $f={ }^{2} A e_{A} f_{A}$ is a fractional monogenic function, then $\Delta_{+}^{\alpha}=0$ and so f_{A} is a fractional monogenic function.
Dirichlet boundary value problem
in \mathbb{R}^{n+1} for fractional monogenic functions

Key idea: Let $\Omega \in \mathbb{R}^{n+1}$ be a domain that can be decomposed into fibres with small parts, which carry certain properties. Consider the Euclidean space \mathbb{R}^{n+1} and choose $1 \leq \mu \leq n+1$ and choose μ indices k_{1}, \ldots, k_{μ}.
The Fibre: the μ-dimensional fibres in the k_{1}, \ldots, k_{μ}-directions in a given bounded domain Ω are the intersections of Ω and the μ - dimensional planes.

$$
\Pi=\left\{x=\left(x_{0}, \ldots, x_{n}\right): x_{k_{1}}=c_{1}, \ldots, x_{k_{\mu}}=c_{\mu}\right\}
$$

Distinguishing part: Ω can be decomposed into μ-dimensional fibres in the k_{1}, \ldots, k_{μ}-directions if there exists a $(1+n-\mu)$-dimensional part $S_{k_{1} \ldots k_{\mu}}$ of $\partial \Omega$ with certain properties.

The subset $S_{k_{1} \ldots k_{\mu}}$ is called the distinguishing part for the corresponding decomposition of Ω.

Theorem 2

-Consider $\mathbb{R}_{0, n}$-fractional monogenic functions u. - Under conditions given by Theorem 1, the following Dirichlet boundary value problem is solved:
" Let $S_{k_{1} \ldots k_{\mu}}$ be the distinguishing part of the certain decomposition of $\Omega(1 \leq \mu \leq n+1)$.

- Knowing the boundary values of 2^{n-1} components u_{A} on the whole boundary, the rest of the 2^{n-1} can be recovered from:
- their values on the n-dimensional distinguishing part S_{0} of the boundary, for instance, the ($n-1$)-dimensional distinguishing part S_{B}, where B represents the $n-1$ complementary directions of the fibre.
Following a reduction process, the final reduction of the distinguishing part until we get the component u_{0} is completely determined by its value at the point $S_{0123 \cdots n}$ of the boundary.

Example

Decomposition of $\Omega \subset \mathbb{R}^{3}$ in distinguishing parts: A particular case is the cylindrical domain $\Omega \subset \mathbb{R}^{3}$. It can be decomposed in:

- The lower covering surface, a distinguishing part in the x_{0}-direction representing the 1 -dimensional fibre S_{0}.
- S_{01}, the distinguishing part in the
x_{0}, x_{1}-directions (the 2 -dimensional fibre).
- S_{012}, the distinguishin part x_{0}, x_{1}, x_{2}-directions (the 3-dimensional fibre).

This is the Cauchy-Riemann system written in matrix form and it is integrable by the Theorem 2. Consider $p_{0}=D_{x_{1}^{T}}^{\frac{1+a_{1}}{4}} u_{1}+D_{x_{2}^{2}}^{1+\alpha_{2}^{2}} u_{2}, p_{1}=-D_{x_{0}^{4}}^{\frac{1+a_{0}}{4}} u_{1}-$
 is compatible:

Case I
If $u_{1}=\left(x-x_{2}\right)^{\alpha_{2}-1}$ and $u_{2}=\left(x-x_{1}\right)^{\alpha_{1}}$ with $\alpha_{0}=$ $3, \alpha_{1}=5, \alpha_{2}=4, x_{0}=1.5, x_{1}=3$ and $x_{2}=2$, Figure 1 shows u_{1}, u_{2} and u_{12}.

Figure 1: Explicit solutions, case I

Case II
If now $u_{1}=\left(x-x_{2}\right)^{2 \alpha_{2}-1}, u_{2}=\left(x-x_{1}\right)^{2 \alpha_{1}-1}$ with the same values for $\alpha_{0}, \alpha_{1}, \alpha_{2}, x_{0}, x_{1}$ and x_{2}, then Figure 2 shows u_{1}, u_{2} and u_{12}.

Figure 2: Explicit solutions, case II

