Abstract

We solve the Dirichlet boundary value problem over distinguishing domains for Clifford fractional-monogenic functions in \mathbb{R}^n (Riemann-Liouville sense).

Fractional calculus

 $(D_{a^+}^{\alpha}f)(x)$ is the fractional Riemann-Liouville derivative of order $\alpha > 0$

 $(D_{a^{+}}^{\alpha}f)(x) = \left(\frac{d}{dx}\right)^{n} \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{f(t)}{(x-t)^{\alpha-n+1}} dt \quad (1)$ where $n = [\alpha] + 1$. The Riemann-Liouville fractional integral of order $\alpha > 0$ is given by (2)

$$(I_{a^+}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_a^x \frac{f(t)}{(x-t)^{1-\alpha}}$$
(2)

 $I_{a^+}^{\alpha}(L_1)$ is the class of functions f represented by (2) of a summable function; $f = I_{a^+}^{\alpha} \varphi$ where $\varphi \in$ $L_1(a, b).$

Fractional Clifford Analysis

 $\{e_1, \dots, e_d\}$ is the standard basis of Euclidean vector space in \mathbb{R}^d .

 $\mathbb{R}_{0,d}$ is the associated real Clifford algebra with the following multiplication rules:

$$\begin{cases} e_0 := 1, \\ e_i e_j + e_j e_i = -2\delta_{ij}, & i, j = 1, ..., d \end{cases}$$

Vector space $\mathbb{R}_{0,d}$ is given by the set $\{e_A : A \subseteq$ $\{1, ..., d\}\}$ with $e_A = e_{\alpha_1 \alpha_2 ... \alpha_r}$ where $1 \leq \alpha_1 <$ $\cdots < \alpha_r \leq d, \ 0 \leq r \leq d$. Consider $f : \Omega \subset$ $\mathbb{R}^{1+d} \to \mathbb{R}_{0,d}$ whose representation is given by

$$f = \mathop{\scriptscriptstyle \Sigma}_A e_A f_A$$

where f_A are real valued functions. Clifford fractional (Riemann-Liouville) Cauchy-Riemann operator is defined by (3)

$$D_{+}^{\alpha} = D_{+}^{(\alpha_{0},...,\alpha_{d})} = \mathop{\scriptstyle \sum}_{j=0}^{d} e_{j} D_{x_{j}^{+}}^{\frac{1+\alpha_{j}}{2}}$$
(3)

This operator is known as the fractional Dirac operator.

D. Armendariz, A. Di Teodoro, J. Ceballos

2018

Definition

A $\mathbb{R}_{0,d}$ -valued function f is called **left fractional** monogenic if it satisfies $D^{\alpha}_{+}f = 0$ on Ω .

Theorem 1

Consider the Clifford valued function f given by $f(x_0, ..., x_d) = \Sigma_A e_A f_A(x_0, ..., x_d)$ where $f \in$ $AC^2(\Omega)$ and $f_A(\mathbf{x_0}, x_1, ..., x_d) = f_A(x_0, \mathbf{x_1}, ..., x_d)$ $=\cdots=f_A(x_0,x_1,\ldots,x_d)$

(The red on each component means the respective direction of the derivative). Then these statements are true:

•
$$D_{x_{j}^{+}}^{\frac{1+\alpha_{j}}{2}} \left(D_{x_{j}^{+}}^{\frac{1+\alpha_{j}}{2}} f_{A} \right) = D_{x_{j}^{+}}^{1+\alpha_{j}} f_{A}, \forall j = 0, 1, ..., d$$

• $D_{x_{j}^{+}}^{\frac{1+\alpha_{j}}{2}} \left(D_{x_{j}^{+}}^{\frac{1+\alpha_{i}}{2}} f_{A} \right) = D_{x_{i}^{+}}^{\frac{1+\alpha_{i}}{2}} \left(D_{x_{j}^{+}}^{\frac{1+\alpha_{j}}{2}} f_{A} \right),$
 $\forall i \neq j \in \{0, 1, ..., d\}$

By Theorem 1 and the multiplication rules, we obtain the fractional Laplace operator:

$$D^{\alpha}_{+}(\overline{D^{\alpha}_{+}}f) = \Delta^{\alpha}_{+} = \mathop{\scriptstyle\sum}_{i=0}^{\Delta} D^{1+\alpha_{i}}_{x^{+}_{i}}$$

From this factorization we have that if $f = \Sigma_A e_A f_A$ is a fractional monogenic function, then $\Delta^{\alpha}_{+} = 0$ and so f_A is a fractional monogenic function.

Dirichlet boundary value problem in \mathbb{R}^{n+1} for fractional monogenic functions

Key idea: Let $\Omega \in \mathbb{R}^{n+1}$ be a domain that can be decomposed into fibres with small parts, which carry certain properties. Consider the Euclidean space \mathbb{R}^{n+1} and choose $1 \leq \mu \leq n+1$ and choose μ indices k_1, \ldots, k_{μ} .

The Fibre: the μ -dimensional fibres in the k_1, \ldots, k_μ -directions in a given bounded domain Ω are the intersections of Ω and the μ -dimensional planes.

 $\Pi = \{ x = (x_0, ..., x_n) : x_{k_1} = c_1, ..., x_{k_\mu} = c_\mu \}$

Distinguishing part: Ω can be decomposed into μ -dimensional fibres in the $k_1, ..., k_{\mu}$ -directions if there exists a $(1 + n - \mu)$ -dimensional part $S_{k_1...k_n}$ of $\partial \Omega$ with certain properties.

Dirichlet boundary value problem for fractional monogenic functions

The subset $S_{k_1...k_{\mu}}$ is called the **distinguishing part** for the corresponding decomposition of Ω .

Theorem 2

-Consider $\mathbb{R}_{0,n}$ -fractional monogenic functions u. -Under conditions given by Theorem 1, the following Dirichlet boundary value problem is solved:

• Let $S_{k_1...k_n}$ be the distinguishing part of the certain decomposition of Ω $(1 \le \mu \le n+1)$. • Knowing the boundary values of 2^{n-1} components u_A on the whole boundary, the rest of the 2^{n-1} can be recovered from:

• their values on the n-dimensional distinguishing part S_0 of the boundary, for instance, the (n-1)-dimensional distinguishing part S_B , where B represents the n-1 complementary directions of the fibre.

Following a reduction process, the final reduction of the distinguishing part until we get the component u_0 is completely determined by its value at the point $S_{0123\dots n}$ of the boundary.

Example

Decomposition of $\Omega \subset \mathbb{R}^3$ in distinguishing **parts:** A particular case is the cylindrical domain $\Omega \subset \mathbb{R}^3$. It can be decomposed in:

• The lower covering surface, a distinguishing part in the x_0 -direction representing the 1-dimensional fibre S_0 .

• S_{01} , the distinguishing part in the

 x_0, x_1 -directions (the 2-dimensional fibre).

• S_{012} , the distinguishin part x_0, x_1, x_2 -directions (the 3-dimensional fibre).

This is the Cauchy-Riemann system written in matrix form and it is integrable by the Theorem 2. Consider $p_0 = D_{x_1^+}^{\frac{1+\alpha_1}{2}} u_1 + D_{x_2^+}^{\frac{1+\alpha_2}{2}} u_2, p_1 = -D_{x_0^+}^{\frac{1+\alpha_0}{2}} u_1 - D_{x_2^+}^{\frac{1+\alpha_2}{2}} u_{12}$ and $p_2 = D_{x_0^+}^{\frac{1+\alpha_0}{2}} u_2 + D_{x_1^+}^{\frac{1+\alpha_1}{2}} u_{12}$. This system is compatible:

 $D_{x_{1}^{+}}^{\frac{1+\alpha_{1}}{2}}p_{0} - D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}}p_{1} = D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}}D_{x_{2}^{+}}^{\frac{1+\alpha_{2}}{2}}u_{12} + D_{x_{0}^{+}}^{1+\alpha_{0}}u_{1} + D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}}u_{1} + D_{x_{0}^{+}}^{\frac{1+\alpha_{1}}{2}}D_{x_{2}^{+}}^{\frac{1+\alpha_{0}}{2}}u_{2} + D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}}D_{x_{2}^{+}}^{\frac{1+\alpha_{0}}{2}}u_{12} + D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}}u_{12} + D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}}u$ $= -D_{x_{2}^{+}}^{\frac{1+\alpha_{2}}{2}} \left[D_{x_{2}^{+}}^{\frac{1+\alpha_{2}}{2}} u_{1} - D_{x_{1}^{+}}^{\frac{1+\alpha_{1}}{2}} u_{2} - D_{x_{0}^{+}}^{\frac{1+\alpha_{0}}{2}} u_{12} \right] = 0$

Figure 1: Explicit solutions, case I

Case II

If now $u_1 = (x - x_2)^{2\alpha_2 - 1}$, $u_2 = (x - x_1)^{2\alpha_1 - 1}$ with the same values for α_0 , α_1 , α_2 , x_0 , x_1 and x_2 , then Figure 2 shows u_1 , u_2 and u_{12} .

Figure 2: Explicit solutions, case II