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Problem Set 3 (Thursday)

The Large N Planar Limit
Considering the semiclassical limit (N →∞), only the planar diagrams contribute to the free energy. Let Fplanar(g)
be the generating functional for planar quadrangulations (using the quartic potential)

Fplanar(g) = lim
N→∞

N−2 log
[ˆ

dM exp(−N tr(M2/2− g/4M4))
]

(1)

Writing its derivative as a function of the resolvent,

(1) Deduce that -
F ′planar = d

dg
Fplanar(g) = 1/4

ˆ
dx x4 ρ(x) (2)

with ρ(x) as the density of eigenvalues.

(2) The explicit form for ρ has been found to be

ρ(x) = 1
2πg(b2 − a2)(a2 − x2)1/2

with
a2 = 2 (1−

√
1− 12g)

3g , b2 =
√

1− 12g + 2
3g

(3) Compute F ′planar and show that it has a singularity at g = gc of the form

F ′planar(g) = regular part + cst (gc − g)3/2(1 +O(gc − g))

You may use a formal calculational software to compute this (only if you spent too much time with pen
calculations).

(4) Alternatively, show that the third derivative of Fplanar diverges when g → gc = 1/12 as

F ′′′planar(g) ∝ (gc − g)−1/2(1 +O(gc − g))

by looking at the behaviour of the corresponding x integral near the endpoint x = a of the eigenvalue distribu-
tion.

(5) Deduce that Fplanar(g) has a singularity as
(gc − g)5/2

and that the number of (unmarked) quadrangulations with K squares, NK , scales as

NK ∝ 12KK−7/2

(Hint: Use the fact that you can write

NK = 1
2iπ

˛
dx Fplanar(g) g−K−1

with a small counter-clockwise contour around the origin, and deform the contour around the singularity at gc.

Playing with Planar Folding
Starting with a Heisenberg like discrete lattice model for bending (F = κ̃

∑
〈i,j〉 ni ·nj), the continuum limit of the

free energy (using the Monge gauge) in terms of the height field (h) becomes

Fcont =
ˆ

d2x
κ̃

2 |∇n|2 → κ̃

2

ˆ
d2x

[
H2 − 2KG

]
(3)
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where H = ∇2h is the mean curvature and KG = det(∂i∂jh) is the gaussian curvature. The Gauss-Bonnet theorem
states that the integrated gaussian curvature over a closed surface (with no boundary) is a constant, given by the
Euler characteristic of the surface (χ). ˆ

d2x
√
gKG = 2πχ (4)

allowing us to disregard its contribution to the energy as long as the topology of the manifold is fixed.

(1) In a Monge patch, show that KG can be written as a total derivative.

KG = −1
2εimεjn∂m∂n(∂ih∂jh) (5)

This directly implies that the gaussian curvature integrates to a boundary term and does not affect the Euler-
Lagrange equations obtained upon minimization of the free energy. So the only important contribution is the
Willmore energy.

Going back to the discrete case, considering an extreme simplification of the problem, take the plaquette normals
to be Ising spins. As discussed in the lecture, aligned spins would correspond to the sheet being flat, anti-aligned
to the flat folded phase.

(1) Take a regular square lattice, with the normal “spins” being defined on the square plaqettes. For an L×W lattice,
show that the number of all possible folding configurations is 2L+W−2. Generalize this to higher dimensional
embeddings, i.e. for a two dimensional square lattice embedded in Rd, show that the number of configurations
is (2(d− 1))L+W−2.

(2) Compute the thermodynamic entropy of folding (per face) as

q = lim
L,W→∞

1
LW

lnZ (6)

where Z is the partition function (in this case just the number of folding configurations). If Z ∼ zLW asymp-
totically, then q = ln z. For the square lattice, show that q = 0 (unlike the nontrivial result for the triangular
lattice).

(3) Now take a sheet of paper with a triangular lattice printed on it and verify that the local folding rules lead
to only 22 folded configurations for each hexagonal plaquette. This provides the equivalence of the planar
folding problem and the 11-vertex model. By colouring the edges, also verify that the total number of folded
configurations is the total number of 3-edge colourings of the lattice.

On Counting by Bijections
The Schaeffer bijection admits a natural extension (due to Bouttier, Di Francesco and Guitter) to vertex-pointed
bipartite maps on the sphere. Given such a map M (whose vertices are considered white), one endows M with
its geodesic labelling with respect to the marked vertex v0 (of label 0), that is, each vertex v receives a label `(v)
giving the length of a shortest path in M connecting v0 to v; each edge has labels differing by 1. Then one inserts
a black vertex in each face of M , and for each edge e = {u, v} of M (considered as a black edge), one draws a new
(blue) edge from the extremity of larger label to the black vertex in the face on the right of e (seeing e as traversed
from the extremity of smaller label to the extremity of larger label). Finally one deletes v0 and the original (black)
edges. Let G be the resulting embedded graph, see Figure 1 for an example.

(1) Show that G is a tree covering all the black and white vertices except for v0 (Hint: show that G covers all these
vertices, has one more vertex than the number of edges, and is acyclic).

(2) In addition show that -

• The degree of each black vertex is half the degree of the corresponding face of M ,
• The minimum label over the white vertices of G is 1 and
• For two white vertices u and v that are consecutive in clockwise order around a black vertex, the label of
v is at most the label of u plus 1.
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Figure 1: An example of the Bouttier - Di Francesco - Guitter bijection.

A tree (with labelled white vertices, unlabelled black vertices) satisfying these conditions is called a well-labelled
mobile.

(3) Using the bouncing path argument (as was used for the Schaeffer bijection), show that M is recovered from G
as follows: for each edge e = {b, w} of G (with b the black extremity and w the white extremity), insert a “leg”
at w just after e in clockwise order around w. Then each time `(w) ≥ 2, complete the leg into an edge reaching
the next corner of the label `(w)− 1 in a counterclockwise walk around G starting at e. Finally, create a new
vertex of label 0 outside of G, connect all the legs of label 1 to this vertex, and delete all the original edges of
G and all black vertices.

(4) Define a rooted well-labelled mobile as a well-labelled mobile with a marked edge. Let an be the number of rooted
well-labelled mobiles with n black vertices all of degree 3 (via the bijection, these correspond to hexangulations
with n faces, with a marked vertex and a marked edge). Let A(z) =

∑
n≥1 anz

n be the corresponding generating
function. Show that A(z) satisfies the following functional equation

A(z) = 10z(1 +A(z))3 (7)

(Hint: It could help to consider erasing the labels, and instead storing the δ-label `(v) − `(u), for each pair
of successive white neighbours u, v in clockwise order around a black vertex. The sum of the three δ-labels
around each black vertex is clearly 0, and each δ-label is at most 1 according to the condition stated in second
question).

(5) Find an explicit formula for an (using the Lagrange inversion formula given in problem set 2). Deduce from it
that the number of rooted hexangulations with n faces is equal to

(3n)!
n!(2n+ 2)!10n (8)

(6) Show more generally that, for any p ≥ 2, the number of rooted 2p-angulations with n faces is equal to

(pn)!
n!((p− 1)n+ 2)!

(
2p− 1
p− 1

)n

(9)


