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What is Compressed Sensing?

We study the following problem:

Problem

The sensing problem consists on trying to recover a signal x0 ∈
Rd from m linear measurements encoded in a vector y0 := Ax0,
where A is a given m × d matrix with m < d .

Rd A // Rm ∆ // Rd

x0
� // y0

� // x0

Since we are collapsing many dimensions, we cannot expect this to
work for all signals. However, it should work for a suitable subset.
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What operators work for CS?

Such problems can be solved efficiently if the original x0 is
sufficiently sparse; this result was first shown in the seminal work by
Candes, Romberg and Tao [CRT06]. They proposed

For compressing

Let m < d the number of measurements and A ∈ Rm×d a
random matrix with iid entries N(0, 1).

For recovery

Given the vector y0 = Ax0 we may attempt to recover the original
signal by solving the linear program

∆(y0) = argmin(‖x‖1 : Ax = y0). (P)
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How good are they?

We say that the method is successful for A and x0 if the program
(P) has a unique solution and this solution is x0.

Definition (Support)

The support of a vector x ∈ Rd is given by

supp(x) = {i : xi 6= 0}.

Definition

A vector x ∈ Rd is s-sparse if # supp(x) ≤ s.

The proposed method is very accurate for sparse signals.
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How good are they?

Figure: Recovery frequency, taken from [ALMT14]
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The main questions of our research

We consider an extension of the original problem:

Problem

Consider the sensing problem with the additional hypothesis that
x0 ∈ Rd is drawn from a known distribution F . Is it possible to
take advantage of this new information? How to do so?

This appears to be a natural extension of the original problems. In
real applications we can have an estimation of the distribution F .
A good example are Head MRI.
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Prelims
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Natural questions

Recall
∆(y0) = argmin(‖x‖1 : Ax = y0). (P)

Q1 For a given s, what is the probability of obtaining an A for
which (P) successfully recovers all s-sparse vectors?

Q2 Can we formalize the phase transition of the probability of
success?
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A characterization for a successful problem

Definition (Descent Cone)

For a point x0 ∈ Rd and f : Rd → R a convex function let
D(f , x) be the descent cone of the function f at x0, given by
D(f , x0) := Cone{x − x0 : f (x) ≤ f (x0)}.

x0

D(‖ · ‖1, x0)

0

Figure: The figure on the left is the `1-ball and the one on the right is
the descent cone generated by the `1-norm and e1.
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A characterization for a successful problem

Theorem ([CRPW12])

The compressed sensing method (P) is successful for A and x0 if
and only if D(‖ · ‖1, x0) ∩ ker(A) = {0}.

D(‖ · ‖1, x0)

0
ker(A)

Therefore, the probability of success is equivalent to the probability
of a random subspace not intersecting a cone.
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Probability of success

Wait, random vector subspaces? Is there a way to measure them?

Yes, it turns out that if A ∈ Rm×d is a random matrix with iid
entries N(0, 1) then ker(A) is uniformly distributed over the
Grassmannian Gr(d −m,Rd). It follows that if K is a fixed
subspace of dimension d −m and Q ∈ O(d) , chosen with the Haar
measure on O(d), then,

PA{(P) is successful for x0 and A} = PQ {D(‖ · ‖1, x0) ∩QK = {0}} .

But, is there a formula to this probability?
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Intrinsic volumes

A recent paper, [ALMT14], gives answers to this questions relating
them with the intrinsic volumes of the descent cone D(‖ · ‖1, x0).

Definition (Projection πC (x))

Let C ⊆ Rd be any closed convex set, define πC (x) =
argmin(‖x − y‖2 : y ∈ C ).

Definition (Intrinsic Volumes)
Let C a polyhedral cone in Rd . For each 0 ≤ k ≤ d , define the
kth intrinsic volume νk(C ) is given by

νk(C ) := P(πC (g) lies in the interior of a k-dimensional face of C ),

where g is a standard normal vector in Rd .
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Intrinsic Volumes

Example

Consider a convex cone C ⊆ R2. The standard normal distribu-
tion is symmetric with respect to 0. Therefore,

ν2(C ) = θ/2π, ν1(C ) = 1/2, ν0(C ) = (π − θ)/2π.

C

C ◦

θ
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Tail functionals

Definition

Let C ⊂ Rd a closed convex cone. For each s ∈ {0, 1, . . . , d},
the sth tail functional is defined as

ts(C ) :=
d∑

j=s

νj(C ).

Similarly, the sth half-tail functional is defined as

hs(C ) :=
d∑

j=s
j−s even

νj(C ).
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Probability of success in terms of the intrinsic volumes

It appears that the intrinsic volumes encode a lot of statistical
information about the cone.

Theorem (Kinematic formula [SW08])

Let C ⊂ Rd a closed convex cone and L ⊂ Rd a linear subspace
with dimension d −m, then

PQ {C ∩QL = {0}} = 1− 2hm+1(C ).

Remark

For each closed convex cone C ∈ Rd which is not a linear sub-
space

2hs(C ) ≥ ts(C ) ≥ 2hs+1(C ) for s = 0, 1, 2, · · · , d − 1.

Thus, 1 − tm(D(‖ · ‖1, x0)) is very close to the probability of
perfect recovery.
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Statistical dimension

Definition (Statistical dimension)

Let C ⊆ Rd a polyhedral cone, define the statistical dimension
δ(C ) as

δ(C ) :=
d∑

k=0

kνk(C ).
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Phase transition and the Statistical Dimension

It appears that the statistical dimension perfectly describes the
inflection point of the phase transition.

Figure: Recovery frequency with the statistical dimension, taken from
[ALMT14]
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The problem

Remark

We do not know how to compute the intrinsic volumes for descent
cones :(
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Weighted Compressed Sensing
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Main idea

We may use a weighted `1 norm to deform the descent cone in a
suitable way.

Figure: The blue points are x′, the polytopes are the `1 and `w1 balls and
the green planes are the ker(A) + x′.
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Weighted CS

Definition

(`1w norm) For a given w = (w1, . . . ,wd) ∈ Rd
+ vector of

weights, the `1w norm of a vector x is given by

‖x‖w1 =
d∑

i=1

wi |xi |.

New Algorithm for Recovery

With this in mind, the new algorithm ∆w that we propose for
recovery X0 from AX0 = y0 is

∆w(y0) := argmin(‖x‖w1 : Ax = y0). (Pw)
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Analogous definitions

Definition (Expected intrinsic volumes)

For a fixed vector w ∈ Rd
>0 and X0 ∼ F a random vector, we

define the kth expected intrinsic volume as

ν̄k(w) = EX0 [νk(D (supp(X0),w))] ,

for k = 0 . . . d .

We define t̄k and h̄k as the tail and the half-tail of the expected
intrinsic volumes. It is easy to prove that the success probability is
given by

1− 2h̄m+1(w).
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Expected statistical dimension

With this in mind, we define

Definition

(Expected statistical dimension) For a fixed vector w ∈ Rd
>0

and a X0 ∼ F a random vector, the expected statistical dimension
is given by

δ(w) := EX0 [δ(D(supp(X0),w))] . (1)

We propose to choose the weights w so as to minimize the
expected statistical dimension.
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How to choose the weights?

Definition

For I ⊂ [d ] define qI := P(supp(X0) = I ) and for j ∈ [d ] let
βj :=

∑
I3j qI .

Theorem
For any w ∈ Rd

+ and any τ > 0 the following inequality holds

δ(w) ≤ EX0 | supp(X0)|+
∑d

j=1 βj(τwj)
2

+
∑d

j=1

(
(1− βj)

[√
2
π

∫∞
τwj

(u − τwj)
2e−

u2
2 du

])
.

(2)

Moreover, the right hand side is minimized if λi := τwi satisfies
the equation

λi
βi

(1− βi )
=

√
2
π

∫ ∞
λi

(u − λi )e−
u2
2 du.
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Estimating intrinsic volumes
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The question

We don’t know how to compute the intrinsic volumes... so let’s
estimate them with Monte Carlo simulations!

Question

Given a descent cone C and a point x, what is the dimension of
the face containing πC (x)?

The main problem here is that the number of possible cells grows
exponentially. Fortunately, there is a lot of symmetry in the cells.
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The result

Theorem (Intrinsic dimension)

Let z = (z0, z1, . . . , zd−k) ∈ Rd−k+1. Consider the permutation
i1, i2, . . . , id−k of the numbers 1, 2, . . . , d − k that satisfies
|zi1 |/wi1 ≥ |zi2 |/wi2 ≥ · · · ≥ |zid−k

|/wid−k
. For j = 0, 1, . . . , d −

k − 1 define

bj := wi1 |zi1 |+ · · ·+ wij |zij | −
a2 + w2

i1
+ · · ·+ w2

ij

wij+1

|zij+1 |,

and
bd−k := wi1 |zi1 |+ · · ·+ wid−k

|zid−k
|.

Then the numbers bj satisfy b0 ≤ b1 ≤ · · · ≤ bd−k , and the
projection of the point z onto the cone D(I ,w) lands in the
interior of a face of dimension l , where l is such that bl−1 <
az0 ≤ bl (where by convention b−1 = −∞ and bd−k+1 =∞).
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A numerical method to find the weights
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What to use?

Our objective is to use a gradient descent algorithm to minimize
the expected statistical dimension in terms of the weights.

How
does this works?

wk+1 = wk − τ∇δ̄(wk)

We have a big problem:

I how to compute ∇δ̄?

We were able to estimate
this quantity using Monte Carlo
simulations based on similar ideas.
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Experimental results
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Recovering Juan Valdez

We “trained” our algorithm using the rows of the following binary
image to obtain the empirical distribution and then we performed a
row-by-row reconstruction. Which means that we solved 244
optimization problems, one for each row.

Figure: Original image with dimensions 750× 244
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Recovering Juan Valdez

Figure: Recovery with 150 measures (20%)

Figure: Recovery with 225 measures (30%)

Figure: Recovery with 525 measures (70%)
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Vector of Bernoulli Variables

For this experiment we generated random vectors X0 ∈ R128. We
partioned the entries of X in 8 blocks, in every block the entries
were iid random variables with Bernoulli distribution, where the
distribution parameter was defined by the block.

︸ ︷︷ ︸︸ ︷︷ ︸ . . . ︸ ︷︷ ︸
B(1, 2−1) B(1, 2−2) B(1, 2−8)
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Vector of Bernoulli Variables
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Vector of Bernoulli Variables
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A non-sharp case

For the last experiment we didn’t obtain a positive result. In this
experiment we sampled a random vector X0 ∈ R128 with uniform
distribution over the following 4 supports.

Figure: The four possible signals of the distribution, each row represents
one of them. A blue point means 1 and white means 0.

Note that for this case, the number of possible outcomes for the
signal was significantly smaller compared with the other
experiments.

38/46



A non-sharp case
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A non-sharp case
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Brain MRI

We took 47 real Brain MRI from 5 patients. We performed a
leave-one-out cross-validation to measure the frequency of perfect
recovery for several m (number of measures). All the images had
size 215× 184.

In the experiment we calculated the weights separately for each row.
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Brain MRI
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Conclusions and future work
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Conclusions and future work

I We showed that it is possible to use statistical information,
about the signal we wish to sample, to reduce the number of
measures.

I Given a distribution of the signal, we proposed a method to do
this with weights. We describe two ways to find the weights

I Our results with the numerical weights suggest that our
analytic weights are a local optimum or at least close to one.

I In the future we would like to have a method to find weights
when minimize the statistical doesn’t work

I We would like to generalize these ideas for different settings,
e.g., matrix completion or matrix demixing.
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Thank you very much!
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