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Abstract
In this poster, we explain the main theorem of [1] which describes the spectrum of

pencils in terms of the zeros of certain functions. After that, we will explain a general
example where the classical variational principles may fail and this one works.

Introduction

The idea of variational principles is to show that isolated eigenvalues are solutions
to certain maximization or minimization problems. Roughly speaking, if T is a self-
adjoint linear operator which is bounded from below, then the classical variational
principle gives the following formula for the eigenvalues of T below its essential
spectrum:

λn = min
L⊂D(T )
dimL=n

max
x∈L
‖x‖=1

〈Tx, x〉 .

Even if this procedure does not immediately lead to an expression that can be evalu-
ated easily numerically, it can be used to obtain at least bounds for the eigenvalues.

Pencils and the Classical Variational Principle

We will show a generalized variational principle that applies to certain operator val-
ued functions. A pencil is a function T : Ω ⊂ R → C(H); here, Ω is a subset of C
and C(H) is the set of closed operators on a Hilbert space H . Probably the easiest
non-trivial example is the following. Fix a closed linear operator T ∈ C(H) and
define

T (λ) := T − λ. (1)

Note that in this case

λ ∈ σp(T ) ⇐⇒ 0 ∈ σp(T (λ)).

So a somewhat natural definition of the spectrum of a pencil is to say that λ ∈ Ω
belongs to the spectrum of a pencil if and only if 0 is in the spectrum of T (λ).
Moreover, for x ∈ D(T ) with x 6= 0, let us define p(x) as the number λ where
〈T (λ)x, x〉 = 0. Then, if T is selfadjoint, it is easy to see that the classical varia-
tional principle of min-max (see [3]) in the case of the pencil (1) can be rewritten
as

λn = min
L⊂D

dimL=n

max
x∈L
x 6=0

p(x). (2)

So it seems natural to look for a variational principle for a general pencil in terms
of zeros of certain functionals.

Generalized Variational Principle

Before addressing the variational principle, we will need the following definitions
and notation.
Notation
•∆ ⊆ R will be an open, half-open or closed interval with end points α and β, such

that −∞ ≤ α < β ≤ ∞.

• From now on T is a pencil with domain ∆ ⊂ R and such that T (λ) is self-adjoint
for all λ in ∆.

•Let A(H → H) be a self-adjoint operator with spectral resolution Eλ and projec-
tion valued measure E(·). If B is a Borel set of R, we set LB(A) := Rg(E(B)).

• For all λ in ∆, we denote the dimension of L(−∞,0)(T (λ)) by k−(λ).

Definition
•Given a pencil T , we define t0(λ)[x, y] := 〈T (λ)x, y〉 and t0(λ)[x] := 〈T (λ)x, x〉,

where x, y belong toD(T (λ)) and λ belong to Ω. If t0(λ)[·, ·] is closable we denote
its closure by t(λ)[·, ·].
•The spectrum, essential spectrum and discrete spectrum of a pencil T is defined

respectively as

σ(T ) := {λ ∈ Ω : 0 ∈ σ(T (λ))},
σess(T ) := {λ ∈ Ω : 0 ∈ σess(T (λ))},
σd(T ) := {λ ∈ Ω : 0 ∈ σd(T (λ))}.

Hypotheses

Let T be a pencil. Now we will introduce the main hypotheses that will be needed
for the generalized variational principle.

(A1) Either D(T (λ)) ≡ D is independent of λ
or the form t0(λ)[·] is closable and there exists a dense subspace of H such that

D(T (λ)) ⊂ D ⊆ D(t(λ)), ∀λ ∈ ∆.

(A2) The pencil T is continuous in the norm resolvent topology. Moreover, if the first
case of (A1) happens, then the function λ 7→ t0(λ)[x], is continuous in ∆, for every
x ∈ D fixed. If the second one occurs, the same would be true for the function
λ 7→ t(λ)[x].

(A3) For all x ∈ D with x 6= 0, the function t0(·)[x], or t(·)[x] if the second case of (A1)
occurs, is decreasing at value zero in ∆, i.e., if t(λ0)[x] = 0 for some λ0 ∈ ∆, this
implies

t0(λ)[x] > 0 for λ < λ0,

t0(λ)[x] < 0 for λ > λ0.

(A4) There exists γ ∈ ∆ such that dimL(−∞,0)(T (γ)) <∞.

Main Theorem

Theorem. Assume that T satisfies the assumptions (A1)-(A4) and that ∆′ is not
empty. If ∆ is closed at the left end point, set k := k−(α). Otherwise there ex-
ists an α′ ∈ ∆′ such that (α, α′) ⊂ ρ(T ) and we set k := k−(α′). In both cases, k is
a finite number.
Then σ(T ) ∩ ∆′ consists only of a finite or infinite sequence of isolated eigenvalues
λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN , N ∈ N0 ∪ {∞}, counted with their multiplicity, and for
n = 1, . . . , N :

λn = µk+n = min
L⊂D

dimL=k+n

max
x∈L
x 6=0

p(x), (3)

λn = µ′k+n = max
L⊂H

dimL=k+n−1

inf
x∈D,x 6=0
x⊥L

p(x). (4)

Moreover

N =

{
k−(β)− k + dim ker T (β) if β ∈ ∆ and σess(T ) = ∅,
k−(λe)− k otherwise.

(5)

(i) If N =∞, then lim
n→∞

λn = λe.

(ii) If N <∞ and σess(T ) = ∅, then µn =∞ for n > k + N .

Schur Decomposition

Consider the block operator

M =

(
A B
B∗ D

)
.

in H ⊕ H , with H a Hilbert space. We denote D(A) and D(T ) as the domains of
A and T respectively. Assume that both A and T are densely defined. Also assume
that

(D1) Both A and D are self-adjoint.

(D2) The operator B is bounded.

now notice that M is self-adjoint, since both A and D are so. Moreover, according
to [1] we have the following,

M − λ =

(
Id B(D − λ)−1

0 Id

)(
S(λ) 0

0 D − λ

)(
Id 0

(D − λ)−1B∗ Id

)
,

where λ ∈ ρ(D) and S(λ) = A − λ − (T − λ)−1, one of the Schur complements
of the matrix M . Due to the previous decomposition, for all λ ∈ ρ(D) we have that
λ ∈ σ(M) if and only if λ ∈ σ(S). Therefore, to claculate the eigenvalues of M
in ρ(D) we just need to find the eigenvalues of the pencil S(·) using the generalized
variational principle.
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