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1. INTRODUCTION

In 1998 Eloy Ayón-Beato and Alberto Garcı́a proposed a
regular black hole solution that has generated a lot of dis-
cussion until the present day. It was obtained in the scope
of general relativity coupled to nonlinear electrodynamics.
This work analyses such solution. In particular, it is shown
that the metric has a de Sitter asymptotic when the radial
coordinate r approaches zero, and a Reissner-Nordstrøm
one when r tends to infinity; this is consistent with the be-
haviour of the electric field E(r) which presents one maxi-
mum value. All this can be understood from a global per-
spective in terms of topology change.

2. BASIC EQUATIONS

Consider the action of general relativity coupled to nonlin-
ear electrodynamics

S =

∫
d4x
√
−g
(

1

16π
R− 1

4π
L(F )

)
, (1)

where R is the scalar curvature of spacetime and L(F ) is
the Lagrangian for nonlinear electrodynamics, which de-
pends on the Lorentz invariant

F = −1

4
FµνF

µν =
1

2
~E2 . (2)

Einstein’s equations come from varying the action with re-
spect to the inverse metric gµν

Gµν = Rµν −
1

2
Rgµν = 8πTµν , (3)

where the general energy momentum tensor for nonlinear
electrodynamics is

Tµν = − 1

4π

(
dL

dF
Fµ

βFνβ + L(F )gµν

)
. (4)

For a static, spherically symmetric geometry (given by the
metric ds2 = −f (r)dt2 + f (r)−1dr2 + r2dΩ2), the correspond-
ing electric field is

E(r) =
r2

4q

√
4RµνRµν −R2

=
r2

4q

√(
2− 2f (r) + r2f ′′(r)

)2

r4
,

(5)

where Rµν is the Ricci tensor. This relation is very useful,
since it allows one to directly calculate the electric field from
a given metric.

An alternative formulation of nonlinear electrodynamics is
the FP dual formalism, where an auxiliary field and its in-
variant are defined as

Pµν =
dL

dF
Fµν , P = −1

4
PµνP

µν =

(
dL

dF

)2

F ; (6)

then, a canonical description of the system can be obtained
by means of a Legendre transformation

H = 2F
dL

dF
− L(F ), (7)

where H = H(P ) is called the structural function. In terms
of this, the energy momentum tensor reads

Tµν = − 1

4π

[
dH

dP
Pµ

βPνβ +

(
2P

dH

dP
−H(P )

)
gµν

]
. (8)

Also, one obtains a simpler relation analogous to (5),
namely

M ′(r) = −r2H(P ), (9)

where M(r) is a function defined by

f (r) = 1− 2M(r)

r
, (10)

and r and P are connected by P = q2/2r4

3. THE AYÓN-BEATO–GARCÍA REGULAR BLACK
HOLE

A black hole is said to be regular if the invariants
RµνρσRµνρσ, RµνRµν and R are all finite everywhere in
spacetime.

The regular black hole proposed by Ayón-Beato and Garcı́a
[1] is described by the metric

ds2 = −

(
1− 2mr2

(r2 + q2)3/2
+

q2r2

(r2 + q2)2

)
dt2

+

(
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q2r2
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)−1

dr2 + r2dΩ2 , (11)

which is a suitable manipulation of the Reissner-Nordström
metric, where q acts as a regularizing parameter. Asymp-
totic expansions of f (r) yield

f (r) −−−−→
r→∞
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r
+
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r2
+ O

(
1

r4

)
,
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(
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q4

)
r2 + O

(
r4
)
.

(12)

At infinity one recovers the Reissner-Nordström metric, so
m and q are the mass and the electric charge of the system,
respectively. The asymptotic behavior around r = 0 is iden-
tified with a de Sitter spacetime, where the cosmological
constant is given by

Λ = 3

(
2m|q|
q4
− 1

q2

)
. (13)

This spacetime describes a black hole if g11 = −g00 = f (r)
vanishes for some r; this happens for the relative value

|q| ≤ 0.652m. (14)

The electric field acting as the source of this geometry is

E(r) = qr4

(
r2 − 5q2

(r2 + q2)4
+

15

2

m

(r2 + q2)7/2

)
, (15)

which has the following qualitative behavior

FIG I Ayón-Beato-Garcı́a electric field for q = 1 and m = 5,
these values satisfy the inequality of the black hole regime.

Finally, for weak fields the structural function of the system
behaves as

H(P ) = −P −
3
(
2q2
)1/4

P 5/4

s
+ 6

√
2q2P 3/2

+
15
(
2q2
)3/4

P 7/4

2s
− 30q2P 2 + O

(
P 9/4

)
(16)

where the first term corresponds to the Maxwell theory,
but the following terms indicate that H(P ) cannot be re-
garded as some weak field limit of the Euler-Heisenberg
Lagrangian, like the Born-Infeld theory does.

4. TOPOLOGY CHANGE IN SPHERICAL SYMMETRY

The above solution seems to contradict a no-go theorem
proved by K. A. Bronnikov long before [2], it reads

Theorem 1 The field system of equation (1) having a
Maxwell asymptotic (L → 0, dL/dF → −1 as F → 0), does
not admit a static spherically symmetric solution with a reg-
ular center and a nonzero electric charge.

As I. Dymnikova pointed out [3], if one considers the energy
density of the system

ρ = T 0
0 =

1

4π

[
dL

dF
E(r)2 − L(F )

]
(17)

and the fact that F → 0 near the center, then

ρ = T 0
0 =

1

4π
L(F ); (18)

therefore, it is not possible that L → 0 as F → 0, for the
energy density is maximal at the origin of coordinates. To
see this, calculate

−r
2

dT 0
0

dr
= T 0

0 − T
2
2 =

1

4π

dL

dF
E(r)2 (19)

and express the WEC in terms of the components of the
energy-momentum tensor

T 0
0 ≥ 0, T 0

0 − T
k
k ≥ 0, k = 1, 2, 3 (20)

the above leads to T 0
0 ≥ 0 and dT 0

0 /dr ≤ 0 for all r.

I. Dymnikova also showed [3] that for the system in (1) with
a static, spherical symmetry the WEC always implies a de

Sitter asymptotic at approaching a regular center. To prove
this, consider (19) near the center

T 0
0 − T

2
2 =

1

4π

dL

dF
E(r)2 −→ 0 =⇒ T 0

0 = T 2
2 (21)

which means that T 0
0 = T 1

1 = T 2
2 = T 3

3 around r = 0. Such
energy momentum tensor is a characteristic feature of a de
Sitter spacetime.

Note that the topology of de Sitter spacetime is R × S3,
whereas the topology for Reissner-Nordström is R×R×S2.
Therefore, the topology of the spacelike slices changes
from R × S2 (open) at infinity to S3 (closed) approaching
the origin of coordinates.

5. TOPOLOGY CHANGE IN GENERAL

We see that the Ayón-Beato and Garcı́a regular black hole
gives a particular example of topology change, a way to
avoid singularities in spacetime. This is explained by A.
Borde [4] in the following

Theorem 2 Suppose that there is a spacetimeM that
A. contains an eventually future-trapped surface τ
B. Obeys the null convergence condition
C. is null geodesically complete
D. Is future causally simple
Then there is a compact slice to the causal future of τ

Roughly speaking, the theorem states that for regular black
holes satisfying the WEC and a causality condition there is
always a topology change from open (at spatial infinity) to
closed. Singularities are avoided becouse of this compact
slice, since it violates one of the hypotheses of the Penrose
singularity theorem [5].

The global structure of a portion of a regular black hole such
as the Ayón-Beato–Garcı́a one is pictured in the following
diagram

FIG II Part of the maximally extended spacetime of a
regular black hole such as the Ayón-Beato–Garcı́a one [4].

6. CONCLUSIONS

We derived the basic equations relating general relativity
and nonlinear electrodynamics; those were applied to the
Ayón-Beato–Garcı́a regular black hole. The behavior of
the electric field and the structural function shows that the
electrodynamics is Born-Infeld-Like, and no more physical
interpretation can be given to it.

We also showed that the avoidance of singularities in this
black hole can be understood as the spherically symmet-
ric case of topology change. The fulfillment of the WEC
condition is crucial and is what makes this solution special
among the others presented by the authors.
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