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Overview of the course
e Planar graphs and planar maps

- structural aspects

- combinatorial aspects

straight-liné drawings contact representations

+ applications & links to physical models



Structural aspects of planar graphs and maps



Graphs

A graph G = (V, FE) is given by two sets V, F such that each e € F is an
(unordered) pair of elements from V

V' is the set of vertices, F is the set of edges (links, relations)

Example:

vV =1{1,2,3,4,5,6} 3)
E = {{1,5},{3,6},{1,5},{4,5},{2,3},{1,4}} ‘
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Can also allow for loops and multiple edges
Example:

V ={a,b,c,d, e}
E = {{a,b},{b,b},{b,c},{c,e},{b.c},{a,d},{d, c}}




Graphs

A graph G = (V, FE) is given by two sets V, F such that each e € F is an
(unordered) pair of elements from V

V' is the set of vertices, F is the set of edges (links, relations)

Example:

V ={1,2,3,4,5,6} L 2 3)

E = {{1,5},13,6},{1,5},{4,5},12,3},11,4}} ‘
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Can also allow for loops and multiple edges
Example:

V ={a,b,c,d, e}
E = {{a,b},{b,b},{b,c},{c,e},{b.c},{a,d},{d, c}}

Def: A graph is called simple if it has no loop nor multiple edges
a graph is called connected if it is “in one piece”



The natural abstraction for networks
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Planar graphs

A graph is called planar if it can be drawn crossing-free in the plane

(3,
K, is planar
2

non-planar drawing  planar drawing

K5 i1s not planar

(whatever drawing, there

crossing —s is always a crossing)



Planar graphs

A graph is called planar if it can be drawn crossing-free in the plane

. : on the sphere
non-planar drawing  planar drawing

K5 Is not planar

(whatever drawing, there

crossing —s is always a crossing)

Rk: planar <+ can be drawn crossing-free on the sphere



Planar maps

Def. Planar map = connected graph embedded on the sphere
(up to continuous deformation)
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Rk: a planar graph can have several embeddings on the sphere
a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face fj)

/ 5 faces (including outer one)
m— 0




Planar maps

Def. Planar map = connected graph embedded on the sphere
(up to continuous deformation)

b o

Rk: a planar graph can have several embeddings on the sphere
a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face fj)

5 faces (including outer one)

degree of a face
= length of walk around f




Motivations for studying planar maps
e Planar networks usually come with an explicit planar embedding
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abstra tlon of random discrete surfaces
geographic maps (2D quantum gravity)

e Nice combinatorial properties!



Duality for planar maps
6 vertices, 9 edges, 5 faces

the dual map

a planar map

5 vertices, 9 edges, 6 faces

preserves #(edges), exchanges #(vertices) and #(faces)



The Euler relation
Let M = (V, E, F) be a planar map. Then

Bl =|V]+|F| -2

VI =6,|E]=9,|F|=5



The Euler relation
Let M = (V, E, F) be a planar map. Then

E|=|V|+|F|] -2 Proof using spanning trees
El=(V]=1)+(F]-1)

VI =6,|E]=9,|F|=5
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Kuratowski’'s theorem for planar graphs
The Euler relation implies (exercise!) that K5 and K33 are not planar

Hence any subdivision of K5 or K3 3 is not planar either

@ a subdivision of K5

Kuratowski: any non-planar graph contains a subdivision of K5 or K3 3

contains
subdivision
of K5
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and remains connected when deleting any (k — 1)-subset of vertices
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k-connectivity in graphs
For £ > 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k — 1)-subset of vertices

e not 2-connected < d separating vertex

P - <

e not 3-connected < d separating vertex-pair

Sk

Exercise: for triangulations (faces have degree 3)
2-connected < loopless
3-connected < simple




The structure of the set of embeddings
For G a connected planar graph, operations to change the embedding are:

mirror

flip at separating vertex

o
o]

flip at separating pair




The structure of the set of embeddings
For G a connected planar graph, operations to change the embedding are:

mirror flip at separating vertex flip at separating pair

o
o]

Theorem (Tutte, Whitney): any two embeddings of GG are related by a
sequence of such operations

Hence 3-connected planar graphs have a unique embedding (up to mirror)
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Relation with polytopes
A d-dimensional polytope”is a bounded region P C R? that can be

obtained as P = Hy N Hy N --- N Hy, for some half-spaces Hq, ..., H;

&

a 2D-polytope

Rk: a polytope P induces a graph Gp (vertices & edges)
Balinsky’61: if P has dimension d, then Gp is d-connected

Steinitz’16: a planar graph is
3-connected iff it can be obtained
as the graph of a 3D polytope
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Combinatorial aspects of planar maps



Rooted maps

A map is rooted by marking and orienting an edge

the face on the right

a rooted map of the root is taken

as the outer face

Rooted maps are combinatorially easier than maps
(no symmetry issue, root gives starting point for recursive decomposition)



Rooted maps

A map is rooted by marking and orienting an edge

the face on the right

a rooted map of the root is taken

as the outer face

Rooted maps are combinatorially easier than maps
(no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge CO O—a-O

The 9 rooted maps QG @ C@ O
with two edges



Duality for rooted maps

same as for maps (root the dual at the dual of the root-edge)

vertices and faces play a symmetric role in rooted maps



Counting rooted maps
Let a,, be the number of rooted maps with n edges
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Counting rooted maps
Let a,, be the number of rooted maps with n edges

n|{l|2| 3| 4 5 0 Y4
an 219154 | 3782916 | 24057 | 208494

Theorem: (Tutte'63) Chl <2n>
m+1)(n+2)\ n

Not an isolated case:

e Triangulations (2n faces)

AL 3N 1 An — 2
L less: Simple:
oopless (n—l—l)(2n+1)<n) imple n(2n—1)(n—1>

e Quadrangulations (n faces)

General: n +21.)?:+2) (2:) Simple: ° ( o )




Counting rooted maps
Let a,, be the number of rooted maps with n edges

ni|l(2|3]| 4

5

6

-

2916

24057

208494

Theorem: (Tutte'63)

Not an isolated case:

e Triangulations (2n faces)

27?,

Loopless:

(Sn
(n+1)(2n+1) \n
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Bijection maps < quadrangulations

n edges

. . — n faces
1 vertices . . .

. faces D 1 white vertices
J c 7 black vertices




Bijection maps < quadrangulations

n edges
v 08 o n faces
1 vertices : : :
. @ 1 white vertices
7 faces ! . .
c 7 black vertices
edge e :
Oo—O
Consequence:

#(rooted maps with n edges) = #(rooted quadrangulations with n faces)



Bijection maps < quadrangulations

n edges
v 08 n faces
1 vertices : : :
: 1 white vertices
7 faces . .
7 black vertices
edge
Oo—O
Consequence:

#(rooted maps with n edges) = #(rooted quadrangulations with n faces)

. . _ 2-3" 2n
It remains to see why this common number is
(n+1)(n+2)
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Counting rooted maps with one face

A rooted map with one face is
called a rooted plane tree

Let ¢,, be the number of rooted plane trees with n edge-s"—

Let C'(2) = > -~ cn?" be the associated generating function
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Decomposition at the root:

no edge at least one edge
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recurrence: c¢g =1 and ¢, = Z CiCn—1—k form >1
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Counting rooted maps with one face

A rooted map with one face is
called a rooted plane tree

Let ¢,, be the number of rooted plane trees with n edg\e-s"/
Let C'(2) = > -~ cn?" be the associated generating function
C(2) =1+2+22%+52%+ 142* + - -

Decomposition at the root:

no edge at least one edge
A\ ° KA
recurrence: c¢g =1 and ¢, = Z CiCn—1—k form >1

n—1
k=0
_ 1—+/1—4z
GF equation: C(2) =1+ 2-C(2)* solved as C(z) = \éz—




Counting rooted maps with one face

A rooted map with one face is
called a rooted plane tree

Let ¢,, be the number of rooted plane trees with n edgésu—

Let C'(2) = > -~ cn?" be the associated generating function
C(2) =1+2+22%+52%+ 142* + - -

Decomposition at the root:

no edge at least one edge
Ao kA

n—1

recurrence: c¢g =1 and ¢, = Z CiCn—1—k form >1
k=0

GF equation: C(2) =1+4+2-C(2)* solved as C(z) = 1_V21Z_4Z

- _ (2n)! _ _(2n)! Catalan
Taylor expansion: C'(2) =}, <, At = | = Rt DT | numbers




Adaptation to rooted maps
Let m,, be the number of rooted maps with n edges

Let M(z) =) ~,mnz" be the associated generating function
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Adaptation to rooted maps
Let m,, be the number of rooted maps with n edges

Let M(z) =) ~,mnz" be the associated generating function
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Adaptation to rooted maps
Let m,, be the number of rooted maps with n edges

Let M(z) =) ~,mnz" be the associated generating function
=1+ 2z + 922 + 5425 + 3782* + 29162° + - - -

Decomposition by deleting the root:

at least one edge
no edge disconnecting non-disconnecting

@ - ee @

|
®e @

M(z) = 1 + M (z)?



Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M (z,u) =5 - muz"u" be the associated generating function

=1+ 2(u+u?) + 2% (2u + 2u® + 3u’ + 2u*) + - - -



Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M (z,u) =5 - muz"u" be the associated generating function

=1+ 2(u+u?) + 2% (2u + 2u® + 3u’ + 2u*) + - - -

n=1 n =2

S DD
OO S OO f =2

0"'@0—@0—4—(:@ k=3




Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M(2,u) =), 1>0 m,,. 2" u" be the associated generating function
=1+ z(u+u?) + 2°(2u + 2u? + 3u’ + 2u?) + - -

Decomposition by deleting the root:
at least one edge

no edge disconnecting non-disconnecting
doable
using u

oo @:

M(z,u) = 1 +  zu* - M(z,u)? A(z,u)
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Let M(2,u) =), 150 ™Mn, kz’”’uk be the associated generating function
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Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M(2,u) =), 150 ™Mn, kz’”’uk be the associated generating function

=1+ z(u 2u—|—2u + 3u’ —I—2u
ZU ZU

More generally z"u* — z”“ . (u 4+l uk“)

M _
_ Zmn’k (bt = Y (z,u) 1.M(z, 1)
N u —

w1
u—1

u .



Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M (z,u) =5 - muz"u" be the associated generating function

=1+ 2(u+u?) + 2% (2u + 2u® + 3u’ + 2u*) + - - -

Decomposition by deleting the root:
at least one edge

no edge disconnecting non-disconnecting
doable
usmgu
M(z,u) = 1 + zu® M(z,u)* + Zu- u—l




Adding a secondary variable
Let 1, be the number of rooted maps with n edges and outer degree £

Let M (2, u) = m,, 21" be the associated generating function
?’L,kZO ’ g g

Functional equation obtained:

uM(z,u) — M(z,1)
u—1

M(z,u) = 1+ z2u®-M(z,u)® + *u

of the form P(M (z,u), M(z,1),z,u) =0



Adding a secondary variable
Let m,, ,, be the number of rooted maps with n edges and outer degree &

Let M (2, u) = m,, 21" be the associated generating function
?’L,kZO ’ g g

Functional equation obtained:

uM(z,u) — M(z,1)
u—1

M(z,u) = 1+ z2u®-M(z,u)® + *u

of the form P(M (z,u), M(z,1),z,u) =0

One equation, two unknown: M (z,u) and M(z,1)
But a unique solution (2 unknown are correlated)

Equation = M(z,u) = 1+z(u+u?) + 22(2u + 2u?+ 3u’+2u*) + - -



Adding a secondary variable
Let m,, ,, be the number of rooted maps with n edges and outer degree &

Let M (z,u) =5 - muz"u" be the associated generating function

Functional equation obtained:

uM(z,u) — M(z,1)
u—1

M(z,u) = 1+ z2u®-M(z,u)® + *u

of the form P(M (z,u), M(z,1),z,u) =0

One equation, two unknown: M (z,u) and M(z,1)
But a unique solution (2 unknown are correlated)
Equation = M (z,u) = 1+z(u+u?) + 2%(2u + 2u+ 3u’+2u*) + - - -

Guess/and/check or explicit solution methods:
[Brown, Tutte'65, Bousquet-Mélou-Jehanne’06, Eynard’10]

(=14 18z + (1 — 122)3/2) = 25" 21
nzZ:O (n+2)(n+1) <n)

= M(z,1) = 12



Bijective proof: which formula to prove
Let g, = #(rooted quadrangulations with n faces)
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Bijective proof: which formula to prove
Let g, = #(rooted quadrangulations with n faces)

We want to show (bijectively) that ¢, =

23" 2n\
(n—|—2)(n—|—1)<n>z

Consider b, = #(quad. with n faces, a marked vertex and a marked edge)

A

Simple relation between b,, and ¢,,: (n+2)-q, =2-b,

! o 23" <2n) .
— y4
ence showing dn (n+2)n+1) \n

(2n)!

amounts to showing | b, = 3" — 3" Catp,




Pointed quadrangulations, geodesic labelling
Pointed quadrangulation = quadrangulation with a marked vertex v

Geodesic labelling with respect to vg: £(v) = dist(vg, v)

Rk: two types of faces

stretched confluent




Well-labelled trees

Well-labelled tree = plane tree where
- each vertex v has a label {(v) € Z
- each edge e = {u, v} satisfies |{(u) —l(v)]| < 1
- the minimum label over all vertices is 1

2
(3)



The SChaeffer bijection [Schaeffer’99], also [Cori-Vauquelin’81]

Pointed quadrangulation = well-labelled tree with min-label=1
n faces n edges
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In ccw order around the tree

3) create a new vertex vy outside
and connect legs of label 1 to it




The Schaeffer bijection [Schaeffer99], aiso [Cori-Vauquelin'81]
From a well-labelled tree to a pointed quadrangulation

-
- - o

1) insert a “leg” at each corner

2) connect each leg of label ¢ > 2
to the next corner of label 1 —1

In ccw order around the tree

3) create a new vertex vy outside
and connect legs of label 1 to it

4) erase the tree-edges



The Schaeffer bijection [Schaeffer99], aiso [Cori-Vauquelin'81]
From a well-labelled tree to a pointed quadrangulation

-
- - o

/@:::' 1) insert a “leg” at each corner
@ )?\ 2) connect each leg of label ¢ > 2
\@\ '\ to the next corner of label 1 —1
/®\®_ @ In ccw order around the tree
3) create a new vertex vy outside
_____________ _GY- and connect legs of label 1 to it

@ ?5 4) erase the tree-edges




The effect of marking an edge




Bijective proof of counting formula
Schaeffer’s bijection = b,, = #(rooted well-labelled trees with n edges)




Bijective proof of counting formula
Schaeffer’s bijection = b,, = #(rooted well-labelled trees with n edges)

2n)!

nl(n + 1)!



Application to study distances in random maps

e Typical distance between (random) vertices in random maps
the order of magnitude is n'/* (# n'/? in random trees)

random - [Chassaing-Schaeffer'04] probabilistic
quadrang. 7 . |[Bouttier Di Francesco Guitter’'03] exact GF expressions

e How does a random map (rescaled by n'/4) “look like" ?

as a (rescaled) discrete metric space
convergence to the “Brownian map”

[Le Gall'1l3, Miermont'13]

© Nicolas Curien



Extension to pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]

labelled mobile

A

Conditions:
(i) 3 vertex of label 1

(i) 0 j<i+1
4‘ ©




Geometric representations of planar maps:
|. Straight-line drawings
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Existence question

planar map (with outer face) = equivalence class of planar drawings of
graphs up to continuous deformation

S8

Question: Does there always exist an equivalent planar drawing
such that all edges are drawn as segments 7

(such as drawing is called a (planar) straight-line drawing)

Remark: For such a drawing to exist, the map needs to be simple

O



Existence proof (reduction to triangulations)

e Any simple planar map M can be completed to a simple triangulation T’
(Exercise: can be done without creating new vertices, only edges)




Existence proof (reduction to triangulations)

e Any simple planar map M can be completed to a simple triangulation T’
(Exercise: can be done without creating new vertices, only edges)

e A straight-line drawing of T’ yields a straight-line drawing of M

@ -
Ae
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First proof: induction on the number of vertices

Let 1" be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree <5

4 i
) @ :> Cé %
induction
T\v has a straight-line drawing



Straight-line drawing algorithms

We present two famous algorithms (each with its advantages)

e [utte's barycentric method

SR

e Schnyder's face-counting algorithm
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planar non-planar



Planarity criterion for straight-line drawings

planar non-planar

Theorem: a straight-line drawing is planar iff every inner vertex is inside
the convex hull of its neighbours

(works for triangulations and more generally for 3-connected planar graphs)
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Proof idea
e For each corner ¢ € T let 6(c) be the angle of ¢ in the drawing

e For each vertex v, let O(v) = Ze(c)

ccv

e Whatever the drawing we always have|)_ ©(v) = 27|V

e If convex hull condition holds, then ©(v) > 27 for each v
and since > | ©(v) = 27|V, must have ©(v) = 27 for each v

Hence locally planar at each vertex o " &

(no “folding” of triangles at a vertex)

= the drawing is planar




Tutte’s barycentric method
e QOuter vertices v1,v2,v3 are fixed at fixed positions (nailed)

e Each inner vertex is at the barycenter of its neighbours
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e Each inner vertex is at the barycenter of its neighbours

xi:%Zazj in%Zyj for1 > 4

& D uri—x;=0 and > . ,x;—x; =0 foreachi>4

e This drawing exists and is unique. |t minimizes the energy
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e also called spring embedding (each edge is a spring of energy #(e)?)



Advantages/disadvantages

The good!
e displays the symmetries nicely
e casy to implement (solve a linear system)
e optimal for a certain energy criterion

The less good:

e a bit expensive computationally (solve linear system of size |V|)
e some very dense clusters (edges of length exponentially small in [V])




Schnyder woods

Schnyder wood = each inner edge is given a direction and a color
(red, green, blue) so as to satisfy local rules at each vertex:

local rules:

g
A

[Schnyder’89]: each (simple) triangulation admits a Schnyder wood



Fundamental property of Schnyder woods
In each color the edges form a spanning tree (rooted at the 3 outer vertex)




Shelling procedure to compute Schnyder woods




Shelling procedure to compute Schnyder woods

at each step:

-
o




Shelling procedure to compute Schnyder woods

at each step:

-
o




Shelling procedure to compute Schnyder woods

at each step:




Shelling procedure to compute Schnyder woods

at each step:




Shelling procedure to compute Schnyder woods

at each step:

-
o




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

-
o




Shelling procedure to compute Schnyder woods

at each step:

-
o




Shelling procedure to compute Schnyder woods

at each step:

-
o




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Shelling procedure to compute Schnyder woods

at each step:

4 A




Face-counting drawing procedure
[Schnyder’90]




Face-counting drawing procedure
[Schnyder’90]




Face-counting drawing procedure
[Schnyder’90]

O inner faces | 9%x9x9grid



Face-counting drawing procedure
[Schnyder’90]

-
’ Y P &

O inner faces 9 x9x9grid
or v: red area: 2 faces
green area: b faces
blue area: 2 faces



Face-counting drawing procedure
[Schnyder’90]

PN TRVATAY

for v: red area: 2 faces draw v at the barycenter of {a,b, ¢}

bloe aress 2 faces with weights 3, §, 3

W

9" 9



Face-counting drawing procedure
[Schnyder’90]

for v: red area: 2 faces draw v at the barycenter of {a, b, c}
reen area: b faces - - 2 5 2
S with weights 7, 5, 5

blue area: 2 faces



Face-counting drawing procedure
[Schnyder’90]

draw the other vertices
according to the same rule



Face-counting drawing procedure
[Schnyder’90]

draw the edges as segments



Face-counting drawing procedure
[Schnyder’90]

C

For any triangulation 1" with n vertices, this procedure gives a planar
straight-line drawing on the regular (2n — 5) x (2n — 5) grid



Proof of planarity

at each inner vertex:

(hence inside the convex hull
of neighbours)




Contact representations of planar graphs



General formulation

Contact configuration = set of “shapes” that can not overlap
but can have contacts
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General formulation

Contact configuration = set of “shapes” that can not overlap
but can have contacts

R

yields a planar map (when no % )

Problem: given a set of allowed shapes, which planar maps can be
realized as a contact configuration? Is such a representation unique?



Circle packing
[Koebe’36, Andreev’70, Thurston’85]: every planar triangulation
admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius
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Circle packing
[Koebe’36, Andreev’70, Thurston’85]: every planar triangulation
admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to
circles (considering lines as circle of radius +00).

Hence one can lift to a circle packing on the sphere

There is a unique representation where the centre of
the sphere is the barycenter of the contact points




Axis-aligned rectangles in a box
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e The rectangles form a tiling. The contact-map is the dual map

e This map is a triangulation of the 4-gon, where every 3-cycle is facial



Axis-aligned rectangles in a box

o
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®
o
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®

e The rectangles form a tiling. The contact-map is the dual map

e This map is a triangulation of the 4-gon, where every 3-cycle is facial

Is it possible to obtain a representation for any such triangulation?



Two partial dual Hasse diagrams

dual for vertical edges dual for horizontal edges

®
N\ / N /




Transversal structures
For T' a triangulation of the 4-gon, a transversal structure is a partition
of the inner edges into 2 transversal Hasse diagrams

N

characterized by local conditions:

E e

Inner vertex

S

' admits a transversal structure iff every 3-cycle is facial



Face-labelling of the two Hasse diagrams

dual for vertical edges dual for horizontal edges
o
N / N /
[ [
/ N / AN

a horizontal segment in each face a vertical segment in each face



Face-labelling of the two Hasse diagrams

dual for vertical edges dual for horizontal edges
@

5

“ f
0
o
a horizontal segment in each face a vertical segment in each face
label the face by the IJ label the face by the
y-coordinate of segment| r-coordinate of segment k} ¢

9>1 (> k



Face-labelling of the two Hasse diagrams

dual for vertical edges dual for horizontal edges

” f
0
o
a horizontal segment in each face a vertical segment in each face
J
label the face by the ; label the face by the Y
y-coordinate of segment ; xr-coordinate of segment
9>1 . >k

%z

vertex v < rectangle R(v) bounding 2. y-coordinates given by labels



Algorithm by reverse-engineering [Kant, He'92]
For T' a triangulation of the 4-gon without separating 3-cycle

0
N

b

; ¢ 0 5
each vertex — box K y

>
where %*




Square tilings [Schramm’93]
There Is a unique tiling where every box is a square
(needs no separating 4-cycle to be sure there is no degeneracy)




