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Overview of the course
• Planar graphs and planar maps

• Geometric representations

+ applications & links to physical models

- structural aspects

- combinatorial aspects
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Structural aspects of planar graphs and maps



Graphs

Example:

E = {{1, 5}, {3, 6}, {1, 5}, {4, 5}, {2, 3}, {1, 4}}

V is the set of vertices, E is the set of edges (links, relations)

1
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A graph G = (V,E) is given by two sets V,E such that each e ∈ E is an
(unordered) pair of elements from V
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Graphs

Example:

E = {{a, b}, {b, b}, {b, c}, {c, e}, {b, c}, {a, d}, {d, c}}

Example:

E = {{1, 5}, {3, 6}, {1, 5}, {4, 5}, {2, 3}, {1, 4}}

Can also allow for loops and multiple edges

V is the set of vertices, E is the set of edges (links, relations)

1
V = {1, 2, 3, 4, 5, 6}

3

5

2

4 6

V = {a, b, c, d, e}
a

d

b

c
e

A graph G = (V,E) is given by two sets V,E such that each e ∈ E is an
(unordered) pair of elements from V

Def: A graph is called simple if it has no loop nor multiple edges
a graph is called connected if it is “in one piece”



The natural abstraction for networks

social network airline connections network

road network electronic network



Planar graphs

K4 is planar

K5 is not planar

crossing

A graph is called planar if it can be drawn crossing-free in the plane

(whatever drawing, there
is always a crossing)
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Planar graphs

K4 is planar

K5 is not planar

crossing

A graph is called planar if it can be drawn crossing-free in the plane

Rk: planar ↔ can be drawn crossing-free on the sphere
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(whatever drawing, there
is always a crossing)
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on the sphere
non-planar drawing planar drawing



Planar maps

=

Def. Planar map = connected graph embedded on the sphere
(up to continuous deformation)

6=

Rk: a planar graph can have several embeddings on the sphere



Planar maps

=

Def. Planar map = connected graph embedded on the sphere

A map is easier to draw in the plane (implicit choice of an outer face f0)

⇒

(up to continuous deformation)

6=

Rk: a planar graph can have several embeddings on the sphere

f0
f0
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A map is easier to draw in the plane (implicit choice of an outer face f0)

⇒
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Rk: a planar graph can have several embeddings on the sphere

f0
f0

a map has vertices, edges, and faces

5 faces (including outer one)



Planar maps

=

Def. Planar map = connected graph embedded on the sphere

A map is easier to draw in the plane (implicit choice of an outer face f0)

⇒

(up to continuous deformation)

6=

Rk: a planar graph can have several embeddings on the sphere

f0
f0

a map has vertices, edges, and faces

degree of a face
= length of walk around f

1
6

3

3

3
5 faces (including outer one)



Motivations for studying planar maps
• Planar networks usually come with an explicit planar embedding

• A natural model of discrete surface (formed from glued polygons)

• Nice combinatorial properties!

abstraction of
geographic maps

meshes random discrete surfaces
(2D quantum gravity)



Duality for planar maps
6 vertices, 9 edges, 5 faces

5 vertices, 9 edges, 6 faces

a planar map

the dual map

preserves #(edges), exchanges #(vertices) and #(faces)



The Euler relation
Let M = (V,E, F ) be a planar map. Then

|E| = |V |+ |F | − 2

|V | = 6, |E| = 9, |F | = 5



The Euler relation
Let M = (V,E, F ) be a planar map. Then

|E| = |V |+ |F | − 2

|E| = (|V | − 1) + (|F | − 1)

Proof using spanning trees

|V | = 6, |E| = 9, |F | = 5



Kuratowski’s theorem for planar graphs
The Euler relation implies (exercise!) that K5 and K3,3 are not planar

K5 K3,3
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Kuratowski’s theorem for planar graphs
The Euler relation implies (exercise!) that K5 and K3,3 are not planar

K5 K3,3

Hence any subdivision of K5 or K3,3 is not planar either

a subdivision of K5

Kuratowski: any non-planar graph contains a subdivision of K5 or K3,3

subdivision
of K5

contains



k-connectivity in graphs
For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices



k-connectivity in graphs

v ⇒

For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices

• not 2-connected ⇔ ∃ separating vertex



k-connectivity in graphs

v

⇒

⇒

For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices

• not 2-connected ⇔ ∃ separating vertex

• not 3-connected⇔ ∃ separating vertex-pair



k-connectivity in graphs

v

⇒

⇒

For k ≥ 2 a graph G is called k-connected if G is connected
and remains connected when deleting any (k − 1)-subset of vertices

• not 2-connected ⇔ ∃ separating vertex

• not 3-connected⇔ ∃ separating vertex-pair

Exercise: for triangulations (faces have degree 3)
2-connected ⇔ loopless
3-connected ⇔ simple



The structure of the set of embeddings
For G a connected planar graph, operations to change the embedding are:

mirror flip at separating vertex flip at separating pair

l l l



The structure of the set of embeddings
For G a connected planar graph, operations to change the embedding are:

mirror flip at separating vertex flip at separating pair

Theorem (Tutte, Whitney): any two embeddings of G are related by a

Hence 3-connected planar graphs have a unique embedding (up to mirror)

l l l

sequence of such operations



Relation with polytopes
A d-dimensional polytope is a bounded region P ⊂ Rd that can be
obtained as P = H1 ∩H2 ∩ · · · ∩Hk for some half-spaces H1, . . . ,Hk

a 2D-polytope

P
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Relation with polytopes
A d-dimensional polytope is a bounded region P ⊂ Rd that can be
obtained as P = H1 ∩H2 ∩ · · · ∩Hk for some half-spaces H1, . . . ,Hk

Rk: a polytope P induces a graph GP (vertices & edges)

a 2D-polytope

P

Balinsky’61: if P has dimension d, then GP is d-connected

Steinitz’16: a planar graph is
3-connected iff it can be obtained
as the graph of a 3D polytope



Combinatorial aspects of planar maps



Rooted maps
A map is rooted by marking and orienting an edge

a rooted map

Rooted maps are combinatorially easier than maps

(no symmetry issue, root gives starting point for recursive decomposition)

the face on the right

of the root is taken
as the outer face



Rooted maps
A map is rooted by marking and orienting an edge

a rooted map

Rooted maps are combinatorially easier than maps

(no symmetry issue, root gives starting point for recursive decomposition)

the face on the right

of the root is taken
as the outer face

The 2 rooted maps with one edge

The 9 rooted maps
with two edges



Duality for rooted maps

vertices and faces play a symmetric role in rooted maps

same as for maps (root the dual at the dual of the root-edge)



Counting rooted maps
Let an be the number of rooted maps with n edges
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1 2 3 4 5 6 7n
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(
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n
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Not an isolated case:

• Triangulations (2n faces)

• Quadrangulations (n faces)
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2n
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Bijection maps ↔ quadrangulations

face
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n edges
i vertices
j faces

n faces
i white vertices
j black vertices
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Bijection maps ↔ quadrangulations

face

edge

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Consequence:
#(rooted maps with n edges) = #(rooted quadrangulations with n faces)

It remains to see why this common number is
2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)



Counting rooted maps with one face
A rooted map with one face is
called a rooted plane tree
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Counting rooted maps with one face

Let cn be the number of rooted plane trees with n edges

Let C(z) =
∑

n≥0 cnz
n be the associated generating function

C(z) = 1 + z + 2z2 + 5z3 + 14z4 + · · ·

A rooted map with one face is
called a rooted plane tree

Decomposition at the root:

=

no edge

+

at least one edge

recurrence: c0 = 1 and cn =
n−1∑
k=0

ckcn−1−k for n ≥ 1

GF equation: C(z) = 1 + z · C(z)2 solved as C(z) = 1−
√
1−4z
2z

Taylor expansion: C(z) =
∑

n≥0
(2n)!

n!(n+1)! ⇒ cn = (2n)!
n!(n+1)!

Catalan
numbers



Adaptation to rooted maps
Let mn be the number of rooted maps with n edges

Let M(z) =
∑

n≥0mnz
n be the associated generating function

= 1 + 2z + 9z2 + 54z3 + 378z4 + 2916z5 + · · ·
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at least one edge
disconnecting non-disconnecting



Adaptation to rooted maps
Let mn be the number of rooted maps with n edges

Let M(z) =
∑

n≥0mnz
n be the associated generating function

= 1 + 2z + 9z2 + 54z3 + 378z4 + 2916z5 + · · ·

Decomposition by deleting the root:

=

no edge

+

at least one edge
disconnecting non-disconnecting

M(z) = 1 + M(z)2 + ?

?



Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

= 1 + z(u+ u2) + z2(2u+ 2u2 + 3u3 + 2u4) + · · ·



Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

= 1 + z(u+ u2) + z2(2u+ 2u2 + 3u3 + 2u4) + · · ·
n = 1 n = 2

k = 1

k = 2

k = 3

k = 4



Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑
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nuk be the associated generating function

= 1 + z(u+ u2) + z2(2u+ 2u2 + 3u3 + 2u4) + · · ·

Decomposition by deleting the root:

=

no edge

+

at least one edge
disconnecting non-disconnecting

M(z, u) = 1 + zu2 ·M(z, u)2 + A(z, u)

doable
using u
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Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

= 1 + z(u+ u2) + z2(2u+ 2u2 + 3u3 + 2u4) + · · ·

z7u3 z8u4 z8u3 z8u2 z8u1

More generally znuk → zn+1 · (u+ u2 + · · ·+ uk+1)

⇒ A(z, u) =
∑
n,k

mn,k z
n+1 ·

(
u+ · · ·+ uk+1

)
u · u

k+1−1
u−1

= zu
uM(z, u)−M(z, 1)

u− 1



Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

= 1 + z(u+ u2) + z2(2u+ 2u2 + 3u3 + 2u4) + · · ·

Decomposition by deleting the root:

=

no edge

+

at least one edge
disconnecting non-disconnecting

M(z, u) = 1 + zu2 ·M(z, u)2 +

doable
using u

zu
uM(z, u)−M(z, 1)

u− 1
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Let mn,k be the number of rooted maps with n edges and outer degree k

M(z, u) = 1 + zu2 ·M(z, u)2 + zu
uM(z, u)−M(z, 1)

u− 1

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

Functional equation obtained:

of the form P (M(z, u),M(z, 1), z, u) = 0



Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

M(z, u) = 1 + zu2 ·M(z, u)2 + zu
uM(z, u)−M(z, 1)

u− 1

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

Functional equation obtained:

One equation, two unknown: M(z, u) and M(z, 1)

But a unique solution (2 unknown are correlated)

Equation ⇒ M(z, u) = 1+z(u+u2) + z2(2u+ 2u2+ 3u3+2u4) + · · ·
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Adding a secondary variable
Let mn,k be the number of rooted maps with n edges and outer degree k

M(z, u) = 1 + zu2 ·M(z, u)2 + zu
uM(z, u)−M(z, 1)

u− 1

Let M(z, u) =
∑

n,k≥0mn,kz
nuk be the associated generating function

Functional equation obtained:

One equation, two unknown: M(z, u) and M(z, 1)

But a unique solution (2 unknown are correlated)

Equation ⇒ M(z, u) = 1+z(u+u2) + z2(2u+ 2u2+ 3u3+2u4) + · · ·

Guess/and/check or explicit solution methods:
[Brown, Tutte’65, Bousquet-Mélou-Jehanne’06, Eynard’10]

of the form P (M(z, u),M(z, 1), z, u) = 0

⇒M(z, 1) =
1

54z2
(−1 + 18z + (1− 12z)3/2) =

∑
n≥0

2 · 3n

(n+ 2)(n+ 1)

(2n
n

)
zn



Bijective proof: which formula to prove
Let qn = #(rooted quadrangulations with n faces)

We want to show (bijectively) that qn =
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Bijective proof: which formula to prove
Let qn = #(rooted quadrangulations with n faces)

Consider bn = #(quad. with n faces, a marked vertex and a marked edge)

We want to show (bijectively) that qn =
2 · 3n

(n+ 2)(n+ 1)

(2n
n

)
zn

Hence showing qn =
2 · 3n

(n+ 2)(n+ 1)

(2n
n

)
zn

amounts to showing bn = 3n
(2n)!

n!(n+ 1)!
= 3nCatn

Simple relation between bn and qn: (n+ 2) · qn = 2 · bn
#(vertices)



Pointed quadrangulations, geodesic labelling
Pointed quadrangulation = quadrangulation with a marked vertex v0

Geodesic labelling with respect to v0: `(v) = dist(v0, v)

Rk: two types of faces

0

1

1

2
3

2
1

2

1

i+2

i+1 i+1

i

i+1

ii

i+1

confluentstretched2

2

v0



Well-labelled trees
Well-labelled tree = plane tree where

- each vertex v has a label `(v) ∈ Z
- each edge e = {u, v} satisfies |`(u)− `(v)| ≤ 1

1

1

2

3

2
1

2

1

2

2

- the minimum label over all vertices is 1



2

The Schaeffer bijection

0
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1

2
2

1

2

1

0

1

1

2
2

1

2

1

1

1

2

3

2
1

2

1

Pointed quadrangulation ⇒ well-labelled tree with min-label=1
n faces n edges

i+2

i+1 i+1

i

i+1

ii

i+1

Local rule in each face:

2 2

[Schaeffer’99], also [Cori-Vauquelin’81]

2
3 3

2 2



The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]
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The Schaeffer bijection
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[Schaeffer’99], also [Cori-Vauquelin’81]

1

1

2

3

2
1

2

1

2

2

1) insert a “leg” at each corner



The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]

1

1

2

3

2
1

2

1

2

2

1) insert a “leg” at each corner
2) connect each leg of label i ≥ 2

to the next corner of label i−1
in ccw order around the tree



The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]

1

1

2

3

2
1

2

1

2

2

1) insert a “leg” at each corner
2) connect each leg of label i ≥ 2

to the next corner of label i−1
in ccw order around the tree

3) create a new vertex v0 outside
and connect legs of label 1 to it

0



The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]

1

1

2

3

2
1

2

1

2

2

1) insert a “leg” at each corner
2) connect each leg of label i ≥ 2

to the next corner of label i−1
in ccw order around the tree

3) create a new vertex v0 outside
and connect legs of label 1 to it

0 4) erase the tree-edges



The Schaeffer bijection
From a well-labelled tree to a pointed quadrangulation

[Schaeffer’99], also [Cori-Vauquelin’81]

1

1

2

3

2
1

2

1

2

2

1) insert a “leg” at each corner
2) connect each leg of label i ≥ 2

to the next corner of label i−1
in ccw order around the tree

3) create a new vertex v0 outside
and connect legs of label 1 to it

0 4) erase the tree-edges

recover the original pointed quadrangulation
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2
2
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2

1

2

2
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The effect of marking an edge
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2
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2
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2

1

1

1

2

3

2
1

2

1

i+2

i+1 i+1

i

i+1

ii

i+1

Local rule in each face:

2 2

marked edge marked half-edge

2
3 3
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Bijective proof of counting formula
Schaeffer’s bijection ⇒ bn = #(rooted well-labelled trees with n edges)
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Bijective proof of counting formula
Schaeffer’s bijection ⇒ bn = #(rooted well-labelled trees with n edges)

1

1

2

3

2
1

2

1

2

2

3

2

1

2

1

2 2 1

1

2

bn = 3nCatn = 3n
(2n)!

n!(n+ 1)!



Application to study distances in random maps

• Typical distance between (random) vertices in random maps

the order of magnitude is n1/4 (6= n1/2 in random trees)

- [Chassaing-Schaeffer’04] probabilistic
- [Bouttier Di Francesco Guitter’03] exact GF expressions

• How does a random map (rescaled by n1/4) “look like” ?

convergence to the “Brownian map”

[Le Gall’13, Miermont’13]

{random
quadrang.

Nicolas Curienc

as a (rescaled) discrete metric space
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⇒ ⇒

Local
rule

Conditions:
(i) ∃ vertex of label 1

(ii)
i

j

j ≤ i+1

i−1 i

2 3

3

3

4

4

[Bouttier, Di Francesco, Guitter’04]

labelled mobile

Extension to pointed bipartite maps
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Existence question
planar map (with outer face) = equivalence class of planar drawings of

graphs up to continuous deformation

=

Question: Does there always exist an equivalent planar drawing
such that all edges are drawn as segments ?

=

(such as drawing is called a (planar) straight-line drawing)

Remark: For such a drawing to exist, the map needs to be simple
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• Any simple planar map M can be completed to a simple triangulation T

(Exercise: can be done without creating new vertices, only edges)

• A straight-line drawing of T yields a straight-line drawing of M
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Existence proof (for triangulations)
First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

T\v has a straight-line drawing

v

T\v

⇓

⇒

induction

⇑



Straight-line drawing algorithms
We present two famous algorithms (each with its advantages)

• Tutte’s barycentric method

• Schnyder’s face-counting algorithm



Planarity criterion for straight-line drawings

planar non-planar



Planarity criterion for straight-line drawings

planar non-planar

Theorem: a straight-line drawing is planar iff every inner vertex is inside
the convex hull of its neighbours

(works for triangulations and more generally for 3-connected planar graphs)
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Proof idea
• For each corner c ∈ T let θ(c) be the angle of c in the drawing

• For each vertex v, let Θ(v) =
∑
c∈v

θ(c)

• Whatever the drawing we always have
∑

v Θ(v) = 2π|V |

• If convex hull condition holds, then Θ(v) ≥ 2π for each v

and since
∑

v Θ(v) = 2π|V |, must have Θ(v) = 2π for each v

Hence locally planar at each vertex

(no “folding” of triangles at a vertex)

⇒ the drawing is planar
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• Each inner vertex is at the barycenter of its neighbours

xi =
1

∆i

∑
j∼i

xj yi =
1

∆i

∑
j∼i

yj for i ≥ 4

⇔
∑

j∼i xi − xj = 0 and
∑

j∼i xi − xj = 0 for each i ≥ 4

• This drawing exists and is unique. It minimizes the energy

P =
∑

e `(e)
2 =

∑
{i,j}∈T (xi − xj)2 + (yi − yj)2

under the constraint of fixed x1, x2, x3, y1, y2, y3

• also called spring embedding (each edge is a spring of energy `(e)2)



Advantages/disadvantages
The good!
• displays the symmetries nicely
• easy to implement (solve a linear system)
• optimal for a certain energy criterion

The less good:
• a bit expensive computationally (solve linear system of size |V |)
• some very dense clusters (edges of length exponentially small in |V |)



Schnyder woods
Schnyder wood = each inner edge is given a direction and a color

(red, green, blue) so as to satisfy local rules at each vertex:

local rules:

[Schnyder’89]: each (simple) triangulation admits a Schnyder wood



Fundamental property of Schnyder woods
In each color the edges form a spanning tree (rooted at the 3 outer vertex)
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Face-counting drawing procedure
[Schnyder’90]

red area: 2 faces
green area: 5 faces
blue area: 2 faces

for v: draw v at the barycenter of {a, b, c}
with weights 2

9 , 5
9 , 2

9



Face-counting drawing procedure
[Schnyder’90]

draw the other vertices
according to the same rule



Face-counting drawing procedure
[Schnyder’90]

draw the edges as segments



Face-counting drawing procedure
[Schnyder’90]

For any triangulation T with n vertices, this procedure gives a planar
straight-line drawing on the regular (2n− 5)× (2n− 5) grid



Proof of planarity

at each inner vertex:

(hence inside the convex hull
of neighbours)



Contact representations of planar graphs



General formulation

Contact configuration = set of “shapes” that can not overlap
but can have contacts
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General formulation

Contact configuration = set of “shapes” that can not overlap
but can have contacts

yields a planar map (when no

Problem: given a set of allowed shapes, which planar maps can be

)

realized as a contact configuration? Is such a representation unique?
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admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius
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Circle packing
[Koebe’36, Andreev’70, Thurston’85]: every planar triangulation
admits a contact representation by disks

The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to
circles (considering lines as circle of radius +∞).

Hence one can lift to a circle packing on the sphere

There is a unique representation where the centre of
the sphere is the barycenter of the contact points
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• The rectangles form a tiling. The contact-map is the dual map

• This map is a triangulation of the 4-gon, where every 3-cycle is facial



Axis-aligned rectangles in a box

• The rectangles form a tiling. The contact-map is the dual map

• This map is a triangulation of the 4-gon, where every 3-cycle is facial

Is it possible to obtain a representation for any such triangulation?



Two partial dual Hasse diagrams
dual for vertical edges dual for horizontal edges

N

W E

S



Transversal structures

N

W E

S

For T a triangulation of the 4-gon, a transversal structure is a partition
of the inner edges into 2 transversal Hasse diagrams

characterized by local conditions:

inner vertex

T admits a transversal structure iff every 3-cycle is facial
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dual for vertical edges dual for horizontal edges

Face-labelling of the two Hasse diagrams

a horizontal segment in each face a vertical segment in each face

label the face by the
y-coordinate of segment

label the face by the
x-coordinate of segment

5

4
3

2
1

0

0

1

2

3

4

5

i

j

j>i

k `

`>k
i

j
vertex v ↔ rectangle R(v)

`k

bounding x, y-coordinates given by labels



Algorithm by reverse-engineering [Kant, He’92]

For T a triangulation of the 4-gon without separating 3-cycle

N

W E

S

5

4
3

2
1

0

0

1

2

3

4
5

i

j
`k

each vertex → box
i

j
`k

where



Square tilings
There is a unique tiling where every box is a square

[Schramm’93]

(needs no separating 4-cycle to be sure there is no degeneracy)


