Geometric representations of planar graphs and maps

Éric Fusy (CNRS/LIX)

Summer school on random geometry, Bogota, may 2016

Overview of the course

- Planar graphs and planar maps
- structural aspects
- combinatorial aspects

- Geometric representations

straight-line drawings

contact representations
+ applications \& links to physical models

Structural aspects of planar graphs and maps

Graphs

A graph $G=(V, E)$ is given by two sets V, E such that each $e \in E$ is an (unordered) pair of elements from V
V is the set of vertices, E is the set of edges (links, relations)

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,5\},\{3,6\},\{1,5\},\{4,5\},\{2,3\},\{1,4\}\}
\end{aligned}
$$

Graphs

A graph $G=(V, E)$ is given by two sets V, E such that each $e \in E$ is an (unordered) pair of elements from V
V is the set of vertices, E is the set of edges (links, relations)

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,5\},\{3,6\},\{1,5\},\{4,5\},\{2,3\},\{1,4\}\}
\end{aligned}
$$

Can also allow for loops and multiple edges

Example:

$$
\begin{aligned}
V & =\{a, b, c, d, e\} \\
E & =\{\{a, b\},\{b, b\},\{b, c\},\{c, e\},\{b, c\},\{a, d\},\{d, c\}\}
\end{aligned}
$$

Graphs

A graph $G=(V, E)$ is given by two sets V, E such that each $e \in E$ is an (unordered) pair of elements from V
V is the set of vertices, E is the set of edges (links, relations)

Example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,5\},\{3,6\},\{1,5\},\{4,5\},\{2,3\},\{1,4\}\}
\end{aligned}
$$

Can also allow for loops and multiple edges

Example:

$V=\{a, b, c, d, e\}$
$E=\{\{a, b\},\{b, b\},\{b, c\},\{c, e\},\{b, c\},\{a, d\},\{d, c\}\}$

Def: A graph is called simple if it has no loop nor multiple edges a graph is called connected if it is "in one piece"

The natural abstraction for networks

social network

airline connections network

Planar graphs

A graph is called planar if it can be drawn crossing-free in the plane
K_{4} is planar

non-planar drawing

planar drawing
K_{5} is not planar

(whatever drawing, there is always a crossing)

Planar graphs

A graph is called planar if it can be drawn crossing-free in the plane
K_{4} is planar

non-planar drawing

planar drawing

on the sphere
K_{5} is not planar

(whatever drawing, there is always a crossing)

Rk: planar \leftrightarrow can be drawn crossing-free on the sphere

Planar maps
Def. Planar map = connected graph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere

Planar maps
Def. Planar map $=$ connected graph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere

A map is easier to draw in the plane (implicit choice of an outer face f_{0})

Planar maps
Def. Planar map = connected graph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face f_{0})

5 faces (including outer one)

Planar maps
Def. Planar map $=$ connected graph embedded on the sphere (up to continuous deformation)

Rk: a planar graph can have several embeddings on the sphere a map has vertices, edges, and faces

A map is easier to draw in the plane (implicit choice of an outer face f_{0})

5 faces (including outer one)
degree of a face
$=$ length of walk around f

Motivations for studying planar maps

- Planar networks usually come with an explicit planar embedding

- A natural model of discrete surface (formed from glued polygons)

abstraction of geographic maps

meshes

random discrete surfaces
(2D quantum gravity)
- Nice combinatorial properties!

Duality for planar maps

6 vertices, 9 edges, 5 faces

a planar map

the dual map

5 vertices, 9 edges, 6 faces preserves \#(edges), exchanges \#(vertices) and \#(faces)

The Euler relation

Let $M=(V, E, F)$ be a planar map. Then

$$
|E|=|V|+|F|-2
$$

$$
|V|=6,|E|=9,|F|=5
$$

The Euler relation
Let $M=(V, E, F)$ be a planar map. Then

$$
|E|=|V|+|F|-2
$$

$$
|V|=6,|E|=9,|F|=5
$$

Proof using spanning trees

$$
|E|=(|V|-1)+(|F|-1)
$$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

Kuratowski's theorem for planar graphs
The Euler relation implies (exercise!) that K_{5} and $K_{3,3}$ are not planar

Hence any subdivision of K_{5} or $K_{3,3}$ is not planar either

a subdivision of K_{5}

Kuratowski: any non-planar graph contains a subdivision of K_{5} or $K_{3,3}$

contains
subdivision
of K_{5}

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

- not 2-connected $\Leftrightarrow \exists$ separating vertex

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

- not 2-connected $\Leftrightarrow \exists$ separating vertex

- not 3-connected $\Leftrightarrow \exists$ separating vertex-pair

k-connectivity in graphs

For $k \geq 2$ a graph G is called k-connected if G is connected and remains connected when deleting any $(k-1)$-subset of vertices

- not 2-connected $\Leftrightarrow \exists$ separating vertex

- not 3-connected $\Leftrightarrow \exists$ separating vertex-pair

Exercise: for triangulations (faces have degree 3) 2-connected \Leftrightarrow loopless 3-connected \Leftrightarrow simple

For G a connected planar graph, operations to change the embedding are:
mirror

flip at separating vertex

flip at separating pair

\uparrow

The structure of the set of embeddings
For G a connected planar graph, operations to change the embedding are:
mirror

flip at separating vertex

flip at separating pair

\downarrow

Theorem (Tutte, Whitney): any two embeddings of G are related by a sequence of such operations Hence 3-connected planar graphs have a unique embedding (up to mirror)

A d-dimensional polytope is a bounded region $P \subset \mathbb{R}^{d}$ that can be obtained as $P=H_{1} \cap H_{2} \cap \cdots \cap H_{k}$ for some half-spaces H_{1}, \ldots, H_{k}

a 2D-polytope

A d-dimensional polytope is a bounded region $P \subset \mathbb{R}^{d}$ that can be obtained as $P=H_{1} \cap H_{2} \cap \cdots \cap H_{k}$ for some half-spaces H_{1}, \ldots, H_{k}

a 2D-polytope
$\mathbf{R k}$: a polytope P induces a graph G_{P} (vertices \& edges)

A d-dimensional polytope is a bounded region $P \subset \mathbb{R}^{d}$ that can be obtained as $P=H_{1} \cap H_{2} \cap \cdots \cap H_{k}$ for some half-spaces H_{1}, \ldots, H_{k}

a 2D-polytope
Rk: a polytope P induces a graph G_{P} (vertices \& edges) Balinsky'61: if P has dimension d, then G_{P} is d-connected

A d-dimensional polytope is a bounded region $P \subset \mathbb{R}^{d}$ that can be obtained as $P=H_{1} \cap H_{2} \cap \cdots \cap H_{k}$ for some half-spaces H_{1}, \ldots, H_{k}

a 2D-polytope
Rk: a polytope P induces a graph G_{P} (vertices \& edges)
Balinsky'61: if P has dimension d, then G_{P} is d-connected
Steinitz'16: a planar graph is 3-connected iff it can be obtained as the graph of a 3D polytope

Combinatorial aspects of planar maps

Rooted maps

A map is rooted by marking and orienting an edge

the face on the right of the root is taken as the outer face

Rooted maps are combinatorially easier than maps (no symmetry issue, root gives starting point for recursive decomposition)

Rooted maps

A map is rooted by marking and orienting an edge

the face on the right of the root is taken as the outer face

Rooted maps are combinatorially easier than maps (no symmetry issue, root gives starting point for recursive decomposition)

The 2 rooted maps with one edge

The 9 rooted maps

 with two edges

$0-0-0$

Duality for rooted maps

same as for maps (root the dual at the dual of the root-edge)

vertices and faces play a symmetric role in rooted maps

Counting rooted maps
Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Counting rooted maps
Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63) $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$

Counting rooted maps

Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63)

$$
\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
$$

Not an isolated case:

- Triangulations ($2 n$ faces)

Simple: $\frac{1}{n(2 n-1)}\binom{4 n-2}{n-1}$

- Quadrangulations (n faces)

General: $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}$
Simple: $\frac{2}{n(n+1)}\binom{3 n}{n-1}$

Counting rooted maps

Let a_{n} be the number of rooted maps with n edges

n	1	2	3	4	5	6	7
a_{n}	2	9	54	378	2916	24057	208494

Theorem: (Tutte'63)

Not an isolated case:

- Triangulations ($2 n$ faces)

- Quadrangulations (n faces)

General: $\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n} \quad$ Simple: $\frac{2}{n(n+1)}\binom{3 n}{n-1}$

Bijection maps \leftrightarrow quadrangulations

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Bijection maps \leftrightarrow quadrangulations

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Consequence:

\#(rooted maps with n edges) $=$ \#(rooted quadrangulations with n faces)

Bijection maps \leftrightarrow quadrangulations

n edges
i vertices
j faces

n faces
i white vertices
j black vertices

Consequence:

\#(rooted maps with n edges) = \#(rooted quadrangulations with n faces)
It remains to see why this common number is

$$
\frac{2 \cdot 3^{n}}{(n+1)(n+2)}\binom{2 n}{n}
$$

Counting rooted maps with_one face
 A rooted map with one face is called a rooted plane tree

Counting rooted maps with_one face
 A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$

Counting rooted maps with_one face

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root:

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root:

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root: no edge at least one edge

$$
=
$$

recurrence: $\quad c_{0}=1 \quad$ and $\quad c_{n}=\sum_{k=0}^{n-1} c_{k} c_{n-1-k}$ for $n \geq 1$
GF equation: $C(z)=1+z \cdot C(z)^{2}$

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$
Decomposition at the root:

recurrence: $\quad c_{0}=1 \quad$ and $\quad c_{n}=\sum_{k=0}^{n-1} c_{k} c_{n-1-k}$ for $n \geq 1$
GF equation: $C(z)=1+z \cdot C(z)^{2}$ solved as $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

Counting rooted maps with_one face

A rooted map with one face is called a rooted plane tree

Let c_{n} be the number of rooted plane trees with n edges
Let $C(z)=\sum_{n>0} c_{n} z^{n}$ be the associated generating function $C(z)=1+z+2 z^{2}+5 z^{3}+14 z^{4}+\cdots$

Decomposition at the root:
no edge at least one edge

$$
=
$$

recurrence: $\quad c_{0}=1 \quad$ and $\quad c_{n}=\sum_{k=0}^{n-1} c_{k} c_{n-1-k}$ for $n \geq 1$ GF equation: $C(z)=1+z \cdot C(z)^{2}$ solved as $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$
Taylor expansion: $C(z)=\sum_{n \geq 0} \frac{(2 n)!}{n!(n+1)!} \Rightarrow c_{n}=\frac{(2 n)!}{n!(n+1)!} \quad \begin{aligned} & \text { Catalan } \\ & \text { numbers }\end{aligned}$

Adaptation to rooted maps
Let m_{n} be the number of rooted maps with n edges
Let $M(z)=\sum_{n \geq 0} m_{n} z^{n}$ be the associated generating function

$$
=1+2 z+9 z^{2}+54 z^{3}+378 z^{4}+2916 z^{5}+\cdots
$$

Adaptation to rooted maps

Let m_{n} be the number of rooted maps with n edges
Let $M(z)=\sum_{n \geq 0} m_{n} z^{n}$ be the associated generating function

$$
=1+2 z+9 z^{2}+54 z^{3}+378 z^{4}+2916 z^{5}+\cdots
$$

Decomposition by deleting the root:
at least one edge

Adaptation to rooted maps

Let m_{n} be the number of rooted maps with n edges
Let $M(z)=\sum_{n \geq 0} m_{n} z^{n}$ be the associated generating function

$$
=1+2 z+9 z^{2}+54 z^{3}+378 z^{4}+2916 z^{5}+\cdots
$$

Decomposition by deleting the root:
at least one edge
 non-disconnecting

?

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k>0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$n=1$
$0-\infty$
$n=2$
$k=1$
$k=2$

$0-0-0$
$0-0$
$k=4$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

Decomposition by deleting the root:
at least one edge
no edge
disconnecting

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+A(z, u)
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$z^{7} u^{3}$

$z^{8} u^{3}$

$z^{8} u^{2}$

More generally $z^{n} u^{k} \rightarrow z^{n+1} \cdot\left(u+u^{2}+\cdots+u^{k+1}\right)$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$z^{7} u^{3}$

$z^{8} u^{3}$

$z^{8} u^{2}$

More generally $z^{n} u^{k} \rightarrow z^{n+1} \cdot\left(u+u^{2}+\cdots+u^{k+1}\right)$
$\Rightarrow A(z, u)=\sum_{n, k} m_{n, k} z^{n+1} \cdot \underbrace{\left(u+\cdots+u^{k+1}\right)}$

$$
u \cdot \frac{u^{k+1}-1}{u-1}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

$z^{7} u^{3}$

$z^{8} u^{3}$

$z^{8} u^{2}$

More generally $\quad z^{n} u^{k} \rightarrow z^{n+1} \cdot\left(u+u^{2}+\cdots+u^{k+1}\right)$
$\Rightarrow A(z, u)=\sum_{n, k} m_{n, k} z^{n+1} \cdot \underbrace{\left(u+\cdots+u^{k+1}\right)}=z u \frac{u M(z, u)-M(z, 1)}{u-1}$

$$
u \cdot \frac{u^{k+1}-1}{u-1}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k>0} m_{n, k} z^{n} u^{k}$ be the associated generating function

$$
=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots
$$

Decomposition by deleting the root:
at least one edge
no edge disconnecting non-disconnecting

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function
Functional equation obtained:

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

of the form $P(M(z, u), M(z, 1), z, u)=0$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k
Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function
Functional equation obtained:

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

of the form $P(M(z, u), M(z, 1), z, u)=0$
One equation, two unknown: $M(z, u)$ and $M(z, 1)$
But a unique solution (2 unknown are correlated)
Equation $\Rightarrow M(z, u)=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots$

Adding a secondary variable

Let $m_{n, k}$ be the number of rooted maps with n edges and outer degree k Let $M(z, u)=\sum_{n, k \geq 0} m_{n, k} z^{n} u^{k}$ be the associated generating function

Functional equation obtained:

$$
M(z, u)=1+z u^{2} \cdot M(z, u)^{2}+z u \frac{u M(z, u)-M(z, 1)}{u-1}
$$

of the form $P(M(z, u), M(z, 1), z, u)=0$
One equation, two unknown: $M(z, u)$ and $M(z, 1)$
But a unique solution (2 unknown are correlated)
Equation $\Rightarrow M(z, u)=1+z\left(u+u^{2}\right)+z^{2}\left(2 u+2 u^{2}+3 u^{3}+2 u^{4}\right)+\cdots$
Guess/and/check or explicit solution methods:
[Brown, Tutte'65, Bousquet-Mélou-Jehanne'06, Eynard'10]
$\Rightarrow M(z, 1)=\frac{1}{54 z^{2}}\left(-1+18 z+(1-12 z)^{3 / 2}\right)=\sum_{n \geq 0} \frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$

Bijective proof: which formula to prove

Let $q_{n}=\#$ (rooted quadrangulations with n faces)
We want to show (bijectively) that $q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$

Let $q_{n}=\#$ (rooted quadrangulations with n faces)
We want to show (bijectively) that $q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$
Consider $b_{n}=\#$ (quad. with n faces, a marked vertex and a marked edge)

Let $q_{n}=\#$ (rooted quadrangulations with n faces)
We want to show (bijectively) that $q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$
Consider $b_{n}=\#$ (quad. with n faces, a marked vertex and a marked edge)

Bijective proof: which formula to prove

Let $q_{n}=\#$ (rooted quadrangulations with n faces)
We want to show (bijectively) that $q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$
Consider $b_{n}=\#$ (quad. with n faces, a marked vertex and a marked edge)

Simple relation between b_{n} and $q_{n}: \underbrace{(n+2)}_{\#(\text { vertices })} \cdot q_{n}=2 \cdot b_{n}$

Let $q_{n}=\#$ (rooted quadrangulations with n faces)
We want to show (bijectively) that $q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$
Consider $b_{n}=\#$ (quad. with n faces, a marked vertex and a marked edge)

Simple relation between b_{n} and $q_{n}: \underbrace{(n+2)}_{\#(\text { vertices })} \cdot q_{n}=2 \cdot b_{n}$
Hence showing $\quad q_{n}=\frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n} z^{n}$
amounts to showing

$$
b_{n}=3^{n} \frac{(2 n)!}{n!(n+1)!}=3^{n} \operatorname{Cat}_{n}
$$

Pointed quadrangulations, geodesic labelling Pointed quadrangulation $=$ quadrangulation with a marked vertex v_{0} Geodesic labelling with respect to $v_{0}: \ell(v)=\operatorname{dist}\left(v_{0}, v\right)$

Rk: two types of faces

confluent

Well-labelled trees
Well-labelled tree $=$ plane tree where

- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e=\{u, v\}$ satisfies $|\ell(u)-\ell(v)| \leq 1$
- the minimum label over all vertices is 1

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

Pointed quadrangulation \Rightarrow well-labelled tree with min-label $=1$ n faces n edges

Local rule in each face:

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree
3) create a new vertex v_{0} outside and connect legs of label 1 to it

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree
3) create a new vertex v_{0} outside and connect legs of label 1 to it
4) erase the tree-edges

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

From a well-labelled tree to a pointed quadrangulation

1) insert a "leg" at each corner
2) connect each leg of label $i \geq 2$ to the next corner of label $i-1$ in ccw order around the tree
3) create a new vertex v_{0} outside and connect legs of label 1 to it
4) erase the tree-edges
recover the original pointed quadrangulation

The effect of marking an edge

Local rule in each face:

Bijective proof of counting formula

Schaeffer's bijection $\Rightarrow b_{n}=\#$ (rooted well-labelled trees with n edges)

Bijective proof of counting formula

 Schaeffer's bijection $\Rightarrow b_{n}=\#$ (rooted well-labelled trees with n edges)

$$
b_{n}=3^{n} \operatorname{Cat}_{n}=3^{n} \frac{(2 n)!}{n!(n+1)!}
$$

Application to study distances in random maps

- Typical distance between (random) vertices in random maps the order of magnitude is $n^{1 / 4}\left(\neq n^{1 / 2}\right.$ in random trees)
random $\{-$ [Chassaing-Schaeffer'04] probabilistic
quadrang. $\left\{\begin{array}{l}\text { - [Bouttier Di Francesco Guitter'03] exact GF expressions }\end{array}\right.$
- How does a random map (rescaled by $n^{1 / 4}$) "look like" ?
as a (rescaled) discrete metric space convergence to the "Brownian map"
[Le Gall'13, Miermont'13]

Extension to pointed bipartite maps
[Bouttier, Di Francesco, Guitter'04]

Geometric representations of planar maps: I. Straight-line drawings

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?

Existence question

planar map (with outer face) $=$ equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?
(such as drawing is called a (planar) straight-line drawing)

Existence question

planar map (with outer face) = equivalence class of planar drawings of graphs up to continuous deformation

Question: Does there always exist an equivalent planar drawing such that all edges are drawn as segments ?
(such as drawing is called a (planar) straight-line drawing)
Remark: For such a drawing to exist, the map needs to be simple

Existence proof (reduction to triangulations)

- Any simple planar map M can be completed to a simple triangulation T
(Exercise: can be done without creating new vertices, only edges)

Existence proof (reduction to triangulations)

- Any simple planar map M can be completed to a simple triangulation T
(Exercise: can be done without creating new vertices, only edges)
- A straight-line drawing of T yields a straight-line drawing of M

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

$T \backslash v$ has a straight-line drawing

Existence proof (for triangulations)

First proof: induction on the number of vertices
Let T be a triangulation with n vertices
Exercise: T has at least one inner vertex v of degree ≤ 5

$T \backslash v$ has a straight-line drawing

Straight-line drawing algorithms

We present two famous algorithms (each with its advantages)

- Tutte's barycentric method

- Schnyder's face-counting algorithm

Planarity criterion for straight-line drawings

Planarity criterion for straight-line drawings

Theorem: a straight-line drawing is planar iff every inner vertex is inside the convex hull of its neighbours
(works for triangulations and more generally for 3-connected planar graphs)

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V|$

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V|$
- If convex hull condition holds, then $\Theta(v) \geq 2 \pi$ for each v

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V|$
- If convex hull condition holds, then $\Theta(v) \geq 2 \pi$ for each v
and since $\sum_{v} \Theta(v)=2 \pi|V|$, must have $\Theta(v)=2 \pi$ for each v

Proof idea

- For each corner $c \in T$ let $\theta(c)$ be the angle of c in the drawing

- For each vertex v, let $\Theta(v)=\sum_{c \in v} \theta(c)$
- Whatever the drawing we always have $\sum_{v} \Theta(v)=2 \pi|V|$
- If convex hull condition holds, then $\Theta(v) \geq 2 \pi$ for each v
and since $\sum_{v} \Theta(v)=2 \pi|V|$, must have $\Theta(v)=2 \pi$ for each v
Hence locally planar at each vertex (no "folding" of triangles at a vertex)
\Rightarrow the drawing is planar

Tutte's barycentric method

- Outer vertices v_{1}, v_{2}, v_{3} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4
$$

Tutte's barycentric method

- Outer vertices v_{1}, v_{2}, v_{3} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4
$$

$\Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ and $\quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ for each $i \geq 4$

Tutte’s barycentric method

- Outer vertices v_{1}, v_{2}, v_{3} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4
$$

$\Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ and $\quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ for each $i \geq 4$

- This drawing exists and is unique. It minimizes the energy

$$
\mathcal{P}=\sum_{e} \ell(e)^{2}=\sum_{\{i, j\} \in T}\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

under the constraint of fixed $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$

Tutte's barycentric method

- Outer vertices v_{1}, v_{2}, v_{3} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4
$$

$\Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ and $\quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ for each $i \geq 4$

- This drawing exists and is unique. It minimizes the energy

$$
\mathcal{P}=\sum_{e} \ell(e)^{2}=\sum_{\{i, j\} \in T}\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

under the constraint of fixed $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$

- also called spring embedding (each edge is a spring of energy $\left.\ell(e)^{2}\right)$

Tutte's barycentric method

- Outer vertices v_{1}, v_{2}, v_{3} are fixed at fixed positions (nailed)
- Each inner vertex is at the barycenter of its neighbours

$$
x_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} x_{j} \quad y_{i}=\frac{1}{\Delta_{i}} \sum_{j \sim i} y_{j} \quad \text { for } i \geq 4
$$

$\Leftrightarrow \quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ and $\quad \sum_{j \sim i} x_{i}-x_{j}=0 \quad$ for each $i \geq 4$

- This drawing exists and is unique. It minimizes the energy

$$
\mathcal{P}=\sum_{e} \ell(e)^{2}=\sum_{\{i, j\} \in T}\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

under the constraint of fixed $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$

- also called spring embedding (each edge is a spring of energy $\left.\ell(e)^{2}\right)$

Advantages/disadvantages

The good!

- displays the symmetries nicely
- easy to implement (solve a linear system)
- optimal for a certain energy criterion

The less good:

- a bit expensive computationally (solve linear system of size $|V|$)
- some very dense clusters (edges of length exponentially small in $|V|$)

Schnyder woods

Schnyder wood $=$ each inner edge is given a direction and a color (red, green, blue) so as to satisfy local rules at each vertex:

[Schnyder'89]: each (simple) triangulation admits a Schnyder wood

Fundamental property of Schnyder woods
In each color the edges form a spanning tree (rooted at the 3 outer vertex)

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Shelling procedure to compute Schnyder woods

at each step:

\downarrow

Face-counting drawing procedure [Schnyder'90]

Face-counting drawing procedure [Schnyder'90]

Face-counting drawing procedure

[Schnyder'90]

9 inner faces

Face-counting drawing procedure

[Schnyder'90]

9 inner faces
for v : red area: 2 faces
green area: 5 faces
blue area: 2 faces

$9 \times 9 \times 9$ grid

Face-counting drawing procedure

[Schnyder'90]

for v : red area: 2 faces green area: 5 faces blue area: 2 faces

draw v at the barycenter of $\{a, b, c\}$ with weights $\frac{2}{9}, \frac{5}{9}, \frac{2}{9}$

Face-counting drawing procedure

[Schnyder'90]

for v : red area: 2 faces green area: 5 faces blue area: 2 faces

draw v at the barycenter of $\{a, b, c\}$ with weights $\frac{2}{9}, \frac{5}{9}, \frac{2}{9}$

Face-counting drawing procedure

[Schnyder'00]

draw the other vertices according to the same rule

Face-counting drawing procedure

[Schnyder'90]

draw the edges as segments

Face-counting drawing procedure

[Schnyder'00]

For any triangulation T with n vertices, this procedure gives a planar straight-line drawing on the regular $(2 n-5) \times(2 n-5)$ grid

at each inner vertex:

(hence inside the convex hull of neighbours)

Contact representations of planar graphs

General formulation
Contact configuration $=$ set of "shapes" that can not overlap but can have contacts

General formulation

Contact configuration $=$ set of "shapes" that can not overlap but can have contacts

yields a planar map (when no

General formulation

Contact configuration $=$ set of "shapes" that can not overlap but can have contacts

yields a planar map (when no

Problem: given a set of allowed shapes, which planar maps can be realized as a contact configuration? Is such a representation unique?

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Hence one can lift to a circle packing on the sphere

Circle packing

[Koebe'36, Andreev'70, Thurston'85]: every planar triangulation admits a contact representation by disks
The representation is unique if the 3 outer disks have prescribed radius

Exercise: the stereographic projection maps circles to circles (considering lines as circle of radius $+\infty$).

Hence one can lift to a circle packing on the sphere
There is a unique representation where the centre of the sphere is the barycenter of the contact points

Axis-aligned rectangles in a box

Axis-aligned rectangles in a box

- The rectangles form a tiling. The contact-map is the dual map
- This map is a triangulation of the 4-gon, where every 3-cycle is facial

Axis-aligned rectangles in a box

- The rectangles form a tiling. The contact-map is the dual map
- This map is a triangulation of the 4-gon, where every 3-cycle is facial Is it possible to obtain a representation for any such triangulation?

Two partial dual Hasse diagrams

dual for vertical edges

dual for horizontal edges

Transversal structures

For T a triangulation of the 4-gon, a transversal structure is a partition of the inner edges into 2 transversal Hasse diagrams

characterized by local conditions:

T admits a transversal structure iff every 3-cycle is facial

Face-labelling of the two Hasse diagrams

dual for vertical edges

a horizontal segment in each face
dual for horizontal edges

a vertical segment in each face

Face-labelling of the two Hasse diagrams
dual for vertical edges

a horizontal segment in each face label the face by the y-coordinate of segment

$$
j>i
$$

dual for horizontal edges

a vertical segment in each face
$\left.\begin{array}{|c|}\hline \text { label the face by the } \\ x \text {-coordinate of segment }\end{array}\right\} \ell$

Face-labelling of the two Hesse diagrams

dual for vertical edges

a horizontal segment in each face label the face by the y-coordinate of segment

vertex $v \leftrightarrow$ rectangle $R(v)$
dual for horizontal edges

a vertical segment in each face

bounding x, y-coordinates given by labels

Algorithm by reverse-engineering
[Kant, He'92]
For T a triangulation of the 4 -gon without separating 3-cycle

each vertex \rightarrow box

Square tilings

[Schramm'93]
There is a unique tiling where every box is a square (needs no separating 4-cycle to be sure there is no degeneracy)

