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Introduction

Three of the four fundamental forces of nature. Namely, electromagnetism,
weak and strong interactions can be described by quantum gauge theories with
a great success, theoretical and experimentally.

In QCD for instance, thanks to the property of asymptotic freedom, in the high
energy regime it is possible to observe in LHC and RHIC, after controlled heavy
ion collisions, the short-live exotic state of quark–gluon plasma, where these
particles are identified as fundamental particles.

On the contrary, i .e, in the low energy regime, quarks and gluons can’t be
considered as asymptotic states of the S–matrix anymore, being dynamically
removed from the physical spectrum, giving rise to the confinement regime.

Looking at the QCD beta function, we can see the behaviour of the coupling
constant in terms of the scale energy

g2(µ) =
1

11N
16π2 ln µ2

Λ2
QCD

(1)
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The Faddeev–Popov action

SYM =
1

4

∫
d4xF a

µνF a
µν , (2)

Where Fµν = ∂µAa
ν – ∂νAa

µ + f abc Ab
µAc

ν .
This action is invariant under gauge transformations

Ãµ = U†AµU + U†∂µU (3)

Where U is an element of SU(N)
In order to quantize the theory in a covariant way, within the path integral approach,
we use the Landau gauge condition (∂µAa

µ = 0),

Z = N
∫

DAµδ(∂A) det(Mab)eSYM (A), (4)

Mab = ∂µ(∂µδab + f abc Ac
µ) is the Faddeev–Popov operator.

To localize the action, we introduce FP ghosts.

Z =

∫
DADcDc̄DbeSFP
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BRST Symmetry

SFP =

∫
d4x

(
1

4
F a
µνF a

µν + c̄a∂µDab
µ cb + ba∂µAa

µ

)
(5)

ca , c̄a are the FP ghosts and ba is the Nakanishi Laudrup field which enforce the
gauge condition in the action.
Clearly, the Faddeev–Popov action is not gauge invariant. However, one finds a new
symmetry which encodes the information of the gauge symmetry at quantum level,
the so called BRST symmetry:

sAa
µ = −Dab

µ cb ≡ −∂µ(δabcb + gf acbAc
µcb),

sca =
1

2
gf abc c̄b c̄c ,

sc̄a = ba, sba = 0.

The BRST operator s is nilpotent

s2 = 0 com sSFP = 0

The operator s define trivial and non-trivial cohomology classes. The non-trivial
BRST cohomology ckass characterize the observable content of the theory.
Moreover, BRST symmetry define unitarity and ensures la renormalizability of
the theory.



Introduction Gribov quantization of Yang–Mills field Higgs mechanism and the Gribov horizon CSYM theory in presence of Gribov horizon

Gribov copies

The Gribov ambiguity is a strong remark on the Faddeev–Popov gauge fixing method.
The condition for the existence of copies of the gauge field is

Ãµ = U†AµU + U†∂µU (6)

∂µAµ = ∂µÃµ = 0. (7)

Taking these eqs. and making an infinitesimal transformation U = 1 + ω, we get

∂µ (∂µω + [Aµ, ω]) = 0 (8)

Thus, this condition is equivalent to the existence of zero modes in the
Faddeev–Popov operator. In order to get rid of these zero modes, Gribov restrict the
functional space to the region

Ω ≡ Ω0 =
{

Aa
µ ; ∂µAa

µ = 0,Mab > 0
}

As we shall see, this result has deep consequences in the infrared regime of the
theory, instead, the Faddeev–Popov action gives a correct description on only in
the UV perturbative regime.
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Restriction to the functional space

In order to eliminate the zero modes of the FP operator, we parametrize the
two-point ghost form factor in the Fourier space Gab=(M)ab as

G(k; A) =
1

k2

1

1− σ(k,A)
, (9)

where σ(k,A) is the ghost form factor

Taking k −→ 0 we impose the no–pole condition σ(0,A) < 0, where

σ(0; A) =
Ng2

N2 − 1

1

4

∫
d4p

(2π)3

Aa
µ(p)Aa

µ(−p)

p2
(10)

This implies modifications in the Faddeev–Popov measure

dµFP = DAδ(∂A) det
(
Mab

)
e−SYM

−→ DAδ(∂A) det
(
Mab

)
θ(1− σ(0,A))e−SYM ,

The presence of the function θ(1− σ(0,A)) implements the restriction in the path
integral

Z =

∫
DA

dβ

2πiβ
δ(∂A) det

(
Mab

)
e−SYM eβ(1−σ(0,A)). (11)
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Modified propagators

The quadratic part of the action is

Pab
µν = δab

(
k2δµν +

(
1−

1

α

)
kµkν +

γ4

k2

)
(12)

With γ4 = g2N
2(N2−1)

β∗

Inverting the above expression we obtain the gluon propagador

〈
Aa
µ(q)Ab

ν(−q)
〉

=
q2

q4 + γ4

(
δµν −

qµqν

q2

)
δab (13)

The propagator displays complex poles, removing the gluon of the physical
spectrum.

Let us note that in the limit γ → 0 we recover the usual UV behaviour.
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gap equation

The parameter γ is not free, being determined in a self–consistent way by a suitable
gap equation. Consider the quadratic part of the action in the path integral

Zquad =

∫
dβ

2πiβ
e−f (β) , (14)

where after integrating out the fields, f (β) is given by

f (β) =
1

2
Tr ln Pab

µν + lnβ − β (15)

Zquad ' e−f (β∗) , (16)

where β∗ corresponds to the stationary point of f (β)

∂f (β)

∂β

∣∣∣
β=β∗

= 0 , (17)

Finally we get

3Ng2

4

∫
d4q

(2π)3

1

q4 + γ4
= 1 . (18)
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2opart: Examples in 3D

3D is simpler in terms of renormalizability, but still non-trivial since it has
degrees of freedom.

There is examples of confining models such as gauge-Higgs systems

Naturally, in 3D arises the topological contribution to the action encoded in the
Chern–Simons term.

Because of the presence of the parameters of the systems involved , for instance de
VEV of the Higgs field ν and the Chern–Simons mass M and also the Yang–Mills
coupling constant g we shall find this behaviour of the correlation functions of the
gauge field

〈Aa
µ(q)Ab

ν(−q)〉 ≡ Gab
µν(q) (19)

= Gab
µν(q)phys + Gab

µν(q)unphys (20)

Where Gab
µν(q)phys represents the existence of physical poles.
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Adjoint representation of the Higgs field: The
Georgi-Glashow model

S =

∫
d3x

(
1

4
F a
µνF a

µν +
1

2
Dab
µ ϕ

bDac
µ ϕ

c +
λ

2

(
ϕaϕa − ν2

)2
+ ba∂µAa

µ + c̄a∂µDab
µ cb

)
(21)

The covariant derivative is real, defined by

(Dµϕ)a = ∂µϕ
a + gεabc Ab

µϕ
c (22)

The vacuum configuration for the potential of the spontaneous symmetry breaking

ϕaϕa = ν2 (23)

We choose the vacuum expectation value for the scalar field in the third direction of
the internal space

〈ϕa〉0 = νδa3 (24)

Defining shift fields

Φa = ϕa + 〈ϕa〉0 (25)

ϕa = Φa − νδa3
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Making use of the decomposition for the quadratic part of the action

Squad =

∫
d3x

(
1

4

(
∂µAa

ν − ∂νAa
µ

)
+ ba∂µAa

µ +
g2ν2

2

(
A1
µA1

µ + A2
µA2

µ

))
(26)

From this, one should argue that the non-diagonal gauge fields Aαβµ with β = 1, 2
acquires a mass m2

H = g2ν2

〈
Aαµ(p)Aβν (−p)

〉
=

δαβ

p2 + m2
H

(
δµν −

pµpν

p2

)
(27)

while the third component Aa
µ naively should be massless

〈
A3
µ(p)A3

ν(−p)
〉

=
1

p2

(
δµν −

pµpν

p2

)
(28)

However, the famous result of Polyakov (Nucl. Phys. B120 (1977) 429-458) establish
that in the weak coupling regime (g2 << ν2) the component A3

µ remains confined due
to monopole contributions, which condensation give rise to an area law for the Wilson
loop.
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The effect of the Gribov horizon

Because of the split of the color matrix it is necessary two ghost form factors to
implement the restriction to the Gribov horizon.

σoff (0; A) ≤ 1 (29)

σdiag (0; A) ≤ 1. (30)

Condition implemented by a step function

Z =

∫
[DAµ]δ(∂A)(detM)θ(1− σdiag )θ(1− σoff )e−SYM . (31)

Expression that in the momentum space is

Zquad =

∫
dβeβ

2πiβ

dωeω

2πiω
DAαµDA3

µe
− 1

2

∫ d3q

(2π)3 Aα
µ (q)Pαβ

µν Aβ
ν (−q)− 1

2

∫ d3q

(2π)3 A3
µ(q)QµνA3

ν (−q)
,

(32)
with

Pαβµν = δαβ
(
δµν

(
q2 + ν2g2

)
+

(
1

ξ
− 1

)
qµqν + 2

g2

3

(
β +

ω

2

) 1

q2
δµν

)
(33)

Qµν = δµν

(
q2 − 2

ωg2

3

1

q2

)
+

(
1

ξ
− 1

)
qµqν (34)
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Inverting this we find the propagators

〈
A3
µ(q)A3

ν(−q)
〉

=
q2

q4 + 2ωg2

3

(
δµν −

qµqν

q2

)
(35)

〈
Aαµ(q)Aβν (−q)

〉
= δαβ

q2

q2 (q2 + g2v2) + g2
(

2β
3

+ ω
3

) (δµν − qµqν

q2

)
(36)

The non–perturbative parameters β and ω must be fixed in terms of the coupling
constant g and the Higgs VEV ν through the corresponding Gap equations.

Zquad =

∫
dβ

2πiβ

dω

2πiω
eβeω (detQµν)−

1
2

(
detPαβµν

)− 1
2

(37)

(detQµν)−
1
2 = exp

[
−
∫

d3q

(2π)3
ln

(
q2 +

2ωg2

3

1

q2

)]
(38)

(
detPαβµν

)− 1
2

= exp

[
−2

∫
d3q

(2π)3
ln

(
(q2 + g2v2) + g2

(
2β

3
+
ω

3

)
1

q2

)]
(39)
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Solving the Gap equations: Confinement and Higgs phases

The gap equation are

(
g2

2

)∫
d3q

(2π)3

(
1

q4 + ω∗ 2g2

3

)
= 1 (40)

(
g2

2

)
2

∫
d3q

(2π)3

(
1

q2(q2 + g2v2) + (β∗ 2g2

3
+ ω∗ g2

3
)

)
= 1 (41)

Solving directly

ω∗ =
3g6

211π4
(42)

β∗
2g2

3
+ ω∗

g2

3
=

[
1

2
g2ν2 −

g4

32π2

]2

(43)
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Phases from propagators

Let us analyse the analytic structure of the propagators

The diagonal component of the propagator
〈
A3
µ(q)A3

ν(−q)
〉

is independent of
the Higgs VEV ν and of the Gribov type. This imples that this field is always
confined forall values of g and ν. This result is in agreement with the Polyakov
result confinement of the electric charge by the condensation of monopoles.

Concerning to the non–diagonal gauge fields

〈
Aαµ(q)Aβν (−q)

〉
= δαβ

q2

q2 (q2 + g2v2) + g2
(

2β
3

+ ω
3

) (δµν − qµqν

q2

)
(44)

= δαβ

(
R+

q2 + m2
+

−
R−

q2 + m2
−

)(
δµν −

qµqν

q2

)
(45)

with m2
+ =

−g2v2+
√

g4v4−4τ
2

, m2
− =

−g2v2−
√

g4v4−4τ
2

and R+ =
m2

+

m2
+−m2

−
, R−=

m2
+

m2
+−m2

−

Observamos que cuando τ < g2ν2

4
ambas masas m2

+, m2
− son reales, positivas y

diferentes, Aśı como también las cantidades R+ and R−
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confined and Higgs regimes

when g2 < 32π2ν2, the off diagonal propagator has a physical mode with real
positive mass m2

+. Due to the fact that the diagonal field is confined, this phase
is called the U(1) symmetric phase. It is also worth observing that, for the
particular value g2 = 16π2ν2, the unphysical mode dissapears , as R−=0 =m2

−.
Thus, for that particular value of the gauge coupling, the off-diagonal
propagator reduces to a single physical Yukawa mode

〈
Aαµ(q)Aβν (−q)

〉
= δαβ

(
1

q2 + 16π2v4

)(
δµν −

qµqν

q2

)
(46)

when g2 > 32π2ν2, corresponding to τ > g2ν2

4
, all masses become complex and

the off diagonal propagator becomes of the Gribov type with two complex poles.
This region corresponds to a phase in which all gauge modes are confined.
Which is referred in the Lattice literature as the SU(2) confined phase

It is interesnting to mention that, apparently, the transition between the totally
confined phase and the partially deconfined phase is performed in a continous
way. The existence of the Yukawa ghost seems to be necessary, however it is an
open point.
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Topologically massive Yang–Mills theory

In this case, the starting action is

SM = SCS + SFP (47)

SM = −iM

∫
d3x εµρν

(
1

2
Aµa∂ρAa

ν +
1

3!
gf abc Aa

µAb
ρAc

ν

)
(48)

+
1

4

∫
d3x F a

µνF a
µν +

∫
d3x

(
ba∂µAa

µ + c̄a∂µDab
µ cb

)
(49)

M is the Chern–Simons mass, ba a Lagrange multipler that enforce the Landau gauge
condition, ∂µAa

µ = 0, y (c̄a, ca) are the usual FP ghosts

A remarkable feature of this model is that the topological contribution has the
effect of generates a deconfined massive mode, as the gauge field propagator
shows 〈

Aa
µ(q)Ab

ν(−q)
〉

=
δab

(q2 + M2)

(
δµν −

qµqν

q2
+ Mεµρν

qρ

q2

)
(50)

Thus, the question that naturally arises is if this physical excitation will survives the
confining effect of the Gribov horizon.
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Infrared Propagator

Zquad =

∫
dβ

2πiβ
[DA] eβ e

− 1
2

∫ d3q

(2π)3 Aa
µ(q)Qab

µνAb
ν (−q)

, (51)

with

Qab
µν = δab

(
q2δµν +

(
1

α
− 1

)
qµqν +

γ4

q2
δµν −Mεµρνqρ

)
, (52)

The parameter γ stands for the Gribov mass parameter

γ4 =
2

3

Ng2

N2 − 1
β . (53)

Inverting Qab
µν , we get the gauge field propagator

〈
Aa
µ(q)Ab

ν(−q)
〉

= δab q2
(
q4 + γ4

)
(q4 + γ4)2 + M2q6

(
δµν −

qµqν

q2
+

q2

q4 + γ4
Mεµλνqλ

)
.

(54)
It is worth to note that removing the horizon i.e. setting γ = 0 we recover the original
massive propagator of the Yang–Mills–Chern–Simons theory. Analogously, when
M = 0, the el Gribov propagator for Yang–Mills is obtained
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Gap equation of the parameter γ

Zquad =

∫
dβ

2πiβ
e−f (β) , (55)

Due to the topological nature of the Chern–Simons term, it doesn’t couples to the
spacetime metric, so it doesn’t contribute to the vaccum energy. It turns out that the
Gap equation is independent of M.

γ = λ1/4g2 , λ1/4 =

√
2N

12π
. (56)

So, the gauge field propagator takes the form

〈
Aa
µ(q)Ab

ν(−q)
〉

= δab q2
(
q4 + λg8

)
(q4 + λg8)2 + M2q6

(
δµν −

qµqν

q2
+

q2

q4 + λg8
Mεµλνqλ

)
(57)
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Let us start by splitting the propagator (57) in two parts, a parity conserved, and a
parity violating one, namely〈

Aa
µ(q)Ab

ν(−q)
〉

= Gab
µν(q)

∣∣∣
par

+ Gab
µν (q)

∣∣∣
par−viol

(58)

with

Gab
µν(q)

∣∣∣
par

= δab q2(q4+λg8)
(q4+λg8)2+M2q6

(
δµν −

qµqν
q2

)
, (59)

Gab
µν (q)

∣∣∣
par−viol

= δab q4

(q4+λg8)2+M2q6
Mεµλνqλ . (60)

Using partial fraction decomposition,

Gab
µν (q)

∣∣∣
non−par

= δab

(
R1

q2 + m2
1

+
R2

q2 + m2
2

+
R3

q2 + m2
3

+
R4

q2 + m2
4

)
Mεµλνqλ

(61)

Gab
µν(q)

∣∣∣
par

= δab

(
F1

q2 + m2
1

+
F2

q2 + m2
2

+
F3

q2 + m2
3

+
F4

q2 + m2
4

)(
δµν −

qµqν

q2

)
(62)
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where the residues are given by

R1 =
m4

1

(m2
2−m2

1)(m2
3−m2

1)(m2
4−m2

1)
, (63)

R2 = − m4
2

(m2
2−m2

1)(m2
3−m2

2)(m2
4−m2

2)
, (64)

R3 =
m4

3

(m2
1−m2

3)(m2
2−m2

3)(m2
4−m2

3)
, (65)

R4 = − m4
4

(m2
4−m2

1)(m2
4−m2

3)(m2
4−m2

2)
(66)

and

F1 =
m2

1(G+m4
1)

(m2
2−m2

1)(m2
3−m2

1)(m2
4−m2

1)
, (67)

F2 = − m2
2(G+m4

2)
(m2

2−m2
1)(m2

3−m2
2)(m2

4−m2
2)
, (68)

F3 =
m4

3(G+m4
3)

(m2
1−m2

3)(m2
2−m2

3)(m2
4−m2

3)
, (69)

F4 = − m2
4(G+m4

4)
(m2

1−m2
4)(m2

3−m2
4)(m2

4−m2
2)
. (70)
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Confined and deconfined regimes

To study properly que regimes of the theory, we look at the discriminant of the roots’s
polynomia

∆ = 256M4G 5 − 27M8G 4 (71)

From the latter expression it is possible to distinguish two regimes:

For (∆ > 0 or G > (3M/4)4) the four masses are complex, and physical
propagating modes doesn‘t exist.

When (∆ < 0 or G < (3M/4)4) two masses turns out to be real and positive
and two remains as complex conjugate. Thus, the system shows physical
excitations.

This result is interpreted as following, for small values of the CS mass M and
large values of the coupling constant g all the excitations are confined, while for
large values of the CS mass and weak coupling real poles appears and the theory
enters in a deconfined regime.
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Summary

In both models it is possible identify real poles in the non–perturbative
propagators associated. In this way it is possible distinguish confined and
observable regions in the parameter space of each theory
In the Georgi Glashow mode the gauge field A3

µ remains always confined cause
the analytic structure of the correlation function shows to non–physical complex
masses, in agreement with Polyakov result,
This analysis is also aplicable to the fundamental representation case, where, in
contrast with present case, the Higgs mechanism breaks all the generators of the
group, this case turns out to be more simple, due to the absence of a massless
gauge field. Thus, also we can find two phases, a confined and a Higgs phase.
The present analysis can be quite relevant in the study of QCD at high
temperatures since, in this case, the theory can be described with an effective
three-dimensional theory in which the Chern-Simons term appear upon
integrating out the fermions.
The coupling constant of this kind of induced Chern-Simons term is proportional
to the number of fermions flavours Nf . Hence, the present results imply that
when the Yang-Mills coupling is very small compared with the flavours number
then the theory is not in the confining phase while the Yang-Mills coupling is
very large compared with Nf then the theory is in the confining phase. These
conclusions are very satisfactory from the intuitive point of view since it is well
known that adding fermions flavours to Yang-Mills action ”decreases” the
confining character of the theory
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