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Why Braided Fusion Categories?

Mathematics:

@ Complete invariants of finite depth subfactors.

@ Define (2+1)-TQFT (knots and 3-manifolds invariants).

@ Representations of quantum groups and Hopf algebras,
Vertex operator algebras.

@ Unitary modular categories (i.e., non-degenerated unitary
braided fusion categories) are algebraic models of
anyons in two dimensional topological phases of matter
where simple objects model anyons.

@ In topological quantum computation, anyons give rise to
quantum computational models.
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What is a modular category?

Short answer (Mathematics): The category of unitary

representations of a finite quantum group

Fusion categories are monoidal categories with many of the
properties of the monoidal category of finite-dimensional
complex representations of a finite group.
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What is a modular category?

Short answer (Mathematics): The category of unitary

representations of a finite quantum group

Fusion categories are monoidal categories with many of the
properties of the monoidal category of finite-dimensional
complex representations of a finite group.

Short answer (Physics): Anyons

Unitary modular categories (UMCs) are algebraic models of
anyons in topological phases of matter.

César Galindo



Modular categories

A category C is a modular category if:

César Galindo



Modular categories

A category C is a modular category if: :
@ is an abelian C-linear category: Hom¢ (X, Y) € Vecc.

César Galindo



Modular categories

A category C is a modular category if: :
@ is an abelian C-linear category: Hom¢ (X, Y) € Vecc.
@ is a monoidal category: (C,®,a,1,l,r).

César Galindo



Modular categories

A category C is a modular category if: :
@ is an abelian C-linear category: Hom¢ (X, Y) € Vecc.
@ is a monoidal category: (C,®,a,1,l,r).
@ is rigid: for all X € C there exist left and right duals.

César Galindo



Modular categories

A category C is a modular category if: :
@ is an abelian C-linear category: Hom¢ (X, Y) € Vecc.
@ is a monoidal category: (C,®,a,1,l,r).
@ is rigid: for all X € C there exist left and right duals.
@ is semisimple: objects are finite direct sums of simple obj.

César Galindo



Modular categories

A category C is a modular category if: :
@ is an abelian C-linear category: Hom¢ (X, Y) € Vecc.
@ is a monoidal category: (C,®,a,1,l,r).
@ is rigid: for all X € C there exist left and right duals.
@ is semisimple: objects are finite direct sums of simple obj.
@ C has finitely many isomorphism classes of simple objects.

César Galindo



Modular categories

A category C is a modular category if: :

is an abelian C-linear category: Home¢ (X, Y) € Vecc.
is @ monoidal category: (C,®,a,1,1,r).

is rigid: for all X € C there exist left and right duals.

is semisimple: objects are finite direct sums of simple obj.
C has finitely many isomorphism classes of simple objects.

the spaces of morphisms are finite dimensional.

César Galindo



Modular categories

A category C is a modular category if: :

is an abelian C-linear category: Home¢ (X, Y) € Vecc.
is @ monoidal category: (C,®,a,1,1,r).

is rigid: for all X € C there exist left and right duals.

is semisimple: objects are finite direct sums of simple obj.
C has finitely many isomorphism classes of simple objects.
the spaces of morphisms are finite dimensional.

1 is a simple object of C.

César Galindo



Modular categories

A category C is a modular category if: :
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Modular categories

A category C is a modular category if: :

is an abelian C-linear category: Home¢ (X, Y) € Vecc.

is @ monoidal category: (C,®,a,1,1,r).

is rigid: for all X € C there exist left and right duals.

is semisimple: objects are finite direct sums of simple obj.

C has finitely many isomorphism classes of simple objects.

the spaces of morphisms are finite dimensional.

1 is a simple object of C.
@ Cisbraided: oxy: X® Y = Y ® X natural.

@ Cisribbon: 6x : X = X natural and
Oxey = (0x @ Oy)Cy xCx,y.
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Modular categories

A category C is a modular category if: :

is an abelian C-linear category: Home¢ (X, Y) € Vecc.

is @ monoidal category: (C,®,a,1,1,r).

is rigid: for all X € C there exist left and right duals.

is semisimple: objects are finite direct sums of simple obj.
C has finitely many isomorphism classes of simple objects.
the spaces of morphisms are finite dimensional.

1 is a simple object of C.

Cis braided: oxy : X® Y = Y ® X natural.

C is ribbon: Ay : X = X natural and

Oxey = (0x @ Oy)Cy xCx,y.

C is non-degenerated: det(Sx y) # 0, where

Sx,v = Tre(ox,y+oy+ x).-
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Modular categories

Summarizing:

Definition

A modular category (MC) is a non-degenerate braided fusion
category over C, with a ribbon structure.
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A dictionary of terminologies between anyon theory

and UMC theory

Modular categories Anyonic system

simple object anyon

label anyon type or anyonic charge
tensor product a ® b fusion

fusion rules a x b fusion rules

triangular space Vacb := Hom(a ® b, ¢) fusion/splitting space |axb — ¢)
dual antiparticle

coevaluation /evaluation creation/annihilation

mapping class group representations generalized anyon statistics
nonzero vector in V(Y) ground state vector

unitary F-matrices recoupling rules

twist 0y = 627 5% topological spin

morphism physical process or operator
colored braided framed trivalent graphs anyon trajectories

quantum invariants topological amplitudes
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Representation of the Drinfeld double of a finite group.

RepH for H a finite dimensional Hopf C*-algebra
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Examples

Rep(D(G))
Representation of the Drinfeld double of a finite group.

RepH for H a finite dimensional Hopf C*-algebra

The category of H-modules of a finite dimensional factorizable
Hopf C*-algebra is a modular category.

C(g9,9,/),

The category of tilting modules of the quantum groups Uy(g)
(g2 a Ith root of unity) module negligible morphisms. For
example:

@ SU(N)x = C(sIn, N + k),
o SO(N)k,
@ PSU(N)x c SU(N)y, for gcd(k, N) = 1.
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Definition of fusion category in coordinates

Fusion rules

Let L={X; =1,X,..., Xy} be a set of representatives of
isomorphism classes of simple objects.
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Definition of fusion category in coordinates

Fusion rules

Let L={X; =1,X,..., Xy} be a set of representatives of
isomorphism classes of simple objects.

@ There is an involution * : L — L such that 1* = 1.

o X;® Xj = Py N,j.‘Xk, so we have a colection of
non-negative integres N,f forevery i,j,k € {1,...,n} and
satisfy

NP, = 5. = NE,

a pum—y
1
Nab = (Sa*b

u e NU u e
abc - — Z NabNec - Z Nae’ bc
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F-matrices (6j-symbols)

Without loss of generality we can suppose that
(aeb)wc=aw (bec)foralla b, c,d e L.

F-matrices
Define

Fd.:Home(a® b c,d) — Home(a® b c,d)
f'_) fO aa’b’c

The set of matrices
{Fadbc € U(Ngbc)|av b’ c, d € L}

is called the F-matrices and they satisfy the pentagonal
identity (pentagon axiom).
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Examples

Pointed fusion categories, C(G, w)
@ L = G (afinite group)
@ fusion rules are the product in G
° Fg’b,c = w(a, b, €)dapc.a, SO is a function w : G*3 — U(1)
@ Pentagon equation is exactly 3-cocycle condition of group
cohomology:

w(a, b, c)w(b, c, d)w(a, bc,d) = w(ab, ¢, d)w(a, b, cd)
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Fibonnaci theory
o L={1x}
o fusion rules x2 =1+ x (N}, = NX, = 1)

¢—1 ¢—1/2
° F))((xx = ( ¢71/2 ¢71
Not every fusion rules admit a set of F-matrices
As an example the fusion rules:
(*] Lk = {1 ] X}

@ x2=1+kx (N}, = NS =k), ke z>°
define a fusion category if and only if k = 1 (Victor Ostrik).
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Ising theory
o L={1,0,¢}

o fusion rules: 0® =1 4+, ¢? = 1,90 = 0tp = 0.

1 1
o _ 1 o 0
ome_\/é(1 _1> FS,y=Fl, = 1.

@ The ising fusion rules has two possible realization (Isinig or
Mayorama fermion) F2 = ‘1< (. >

cor = 2\ 1 —1

@ Ising categories are particular cases of a more general
familily called Tambara-Yamagami categories.
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Braided fusion category in coordinates

If (C, c) is a braided fusion, without loss of generality we can
suppose thata® b=a® bforall a,b € L.
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Braided fusion category in coordinates

If (C, c) is a braided fusion, without loss of generality we can
suppose thata® b=a® bforall a,b € L.

R-matrices
Define

R, : Home(a® b, ¢) — Home(b ® a, ¢)
f'_> fO Ca7b

The set of matrices
{Rap € U(N;p)la b, ce L}

is called the R-matrices and they satisfy the hexagonal
identities (hexagon axioms).
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Example

Pointed braided fusion category

César Galindo



Example

Pointed braided fusion category

@ If C(G,w) has a braid structure then G is abelian

@ Ry, = c(x,¥)dxy,z sois afunctionc: Gx G— U(1)

@ Hexagonal equation is exacly the abelian 3-cocycle
condition

w(y, z,x)c(x, yz2)w(x,y,z) = c(x, 2)w(y, X, Z2)c(X, y)
w(z,x,y) Te(xy, 2)w(x, v, 2)™" = c(x, 2)w(x, z,¥) " c(y, 2).
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R-matrices for Fibonacci theory
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R-matrices for Fibonacci theory

1 _ ,—47i/5 pr _ 387i/5
R! = e 45 RT_— &¥/3,

R-matrices for Ising theory

Rl = —1,R3%, =i, Rl, = e ™8 RY, — &3"i/8

The Ising category admist tree (non-equivalent) R-matrices.
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More examples: the Drinfeld center

Let C be a (strict) tensor category and let X € C.

Definition

A half braiding c_ x : . ® X = X ® . for X is a natural
isomorphism such that cygz x = (¢cy x ® idz)(idy ® ¢z x), for
ally,ZecC.
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The Drinfeld center Z(C) of C is the following braided fusion
category
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More examples: the Drinfeld center

The Drinfeld center Z(C) of C is the following braided fusion
category
@ objects: pairs (X, c_ x), where X € C and c_ x is a half
braiding for X,

@ morphisms: Homz (X, c_x),(Y,c_y)) =
{f € Home(X, Y) : (idw @ f)ew x = cw,y(idw @ f),YW € C},
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More examples: the Drinfeld center

The Drinfeld center Z(C) of C is the following braided fusion
category
@ objects: pairs (X, c_ x), where X € C and c_ x is a half
braiding for X,
@ morphisms: Homz)((X,c_ x),(Y,c_y)) =
{f S Homc(X, Y) : (idW ® f)CW7X = CW7y(idW ® f),VW S C},
@ tensor product: (X,c_ x)® (Y,c_y) = (X®Y,c_ xgv), where
c_ xgy = (idx ® c_ y)(c_ x ®idy),
@ braiding: O(X,c_ x),(Y,c_y) = CX,Y-

Theorem (Muger)

The Drinfeld center Z(C) is modular if C is a spherical fusion
category over C.

César Galindo



Frobenius-Perron dimensions

Set C be a fusion category.
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Frobenius-Perron dimensions

Set C be a fusion category.
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@ Fusionrules: X @ Y =~ @ zcyc) NgyZ (XY elr(C)).
@ The Frobenius-Perron dimension FPdim X € RT of X € C
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Frobenius-Perron dimensions

Set C be a fusion category.
@ Letlrr(C)={Xo =1, Xi,..., Xn} denote the set of
isomorphism classes of simple objects in C.
@ The rank of C is the cardinality of the set Irr(C).
@ Fusionrules: X @ Y =~ @ zcyc) NgyZ (XY elr(C)).
@ The Frobenius-Perron dimension FPdim X € RT of X € C

is the largest nonnegative eigenvalue of the matrix
(N% v)v.zelm(c)(matrix of left multiplication by X w.r.t ).

@ The Frobenius-Perron dimension of C is
FPdimC = ZXeIrr(C)(FPdim X)2.
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More definitions

@ A fusion category C is pointed if all the simple objects are
invertible & FPdim X = 1.
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More definitions
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More definitions

@ A fusion category C is pointed if all the simple objects are
invertible & FPdim X = 1.

@ A fusion category C is called integral if FPdim X € Z*,
VX € C (& C ~ Rep H, H semisimple quasi-Hopf [ENO]).
@ A fusion category C is weakly integral if FPdimC € Z.
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Example: Tambara-Yamagami categories

Data:
@ an abelian finite group G,
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Data:
@ an abelian finite group G,
@ a non-degenerate symmetric bicharacter x : G x G — k*,
@ anelement 7 € C s.t. |G|72 = 1.

Tambara-Yamagami category 7Y(G, x, 7): is the semisimple
category with
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Example: Tambara-Yamagami categories

Data:
@ an abelian finite group G,
@ a non-degenerate symmetric bicharacter x : G x G — k*,
@ anelement 7 € C s.t. |G|72 = 1.

Tambara-Yamagami category 7Y(G, x, 7): is the semisimple
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Example: Tambara-Yamagami categories

Data:
@ an abelian finite group G,
@ a non-degenerate symmetric bicharacter x : G x G — k*,
@ anelement 7 € C s.t. |G|72 = 1.

Tambara-Yamagami category 7Y(G, x, 7): is the semisimple
category with

@ Irr(TY(G,x, 7)) = GU{X}, X ¢ G.
@ Fusionrulesa@b=ab, X X=> ,za ax X=X
@ Duality & = a ' and X* = X.
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Example: Tambara-Yamagami categories

@ FPdim X = /|G| and FPdim TY(G, x,7) = 2|G| ~
weakly integral but not necessarily integral.
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Example: Tambara-Yamagami categories

@ FPdim X = /|G| and FPdim TY(G, x,7) = 2|G| ~
weakly integral but not necessarily integral.

@ TY(G, x,T) admits a braiding < G is an elementary
abelian 2-group.

Ising categories 7 are Tambara-Yamagami categories with
G=<a>~"7Z.
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Example: Tambara-Yamagami categories

@ FPdim X = /|G| and FPdim TY(G, x,7) = 2|G| ~
weakly integral but not necessarily integral.

@ TY(G, x,T) admits a braiding < G is an elementary
abelian 2-group.

Ising categories 7 are Tambara-Yamagami categories with
G =< a >~ Zo. Inthis case, X®2 =1 a.
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Example: Tambara-Yamagami categories

@ FPdim X = /|G| and FPdim TY(G, x,7) = 2|G| ~
weakly integral but not necessarily integral.

@ TY(G, x,T) admits a braiding < G is an elementary
abelian 2-group.

| \

Example

Ising categories 7 are Tambara-Yamagami categories with
G =< a >~ Z». In this case, X®2 =1 @ a. Then,

FPdim X = v/2 and FPdim 7Y = 4.
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Example: Tambara-Yamagami categories

@ FPdim X = /|G| and FPdim TY(G, x,7) = 2|G| ~
weakly integral but not necessarily integral.

@ TY(G, x,T) admits a braiding < G is an elementary
abelian 2-group.

| \

Example

Ising categories 7 are Tambara-Yamagami categories with
G =< a >~ Z». In this case, X®2 =1 @ a. Then,

FPdim X = /2 and FPdim 7Y = 4. Moreover, T is modular.
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Frame problem

Recall that the frame problem is:
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Frame problem

Recall that the frame problem is:

Problem
Classify modular categories.

Hard problem! Different approaches, for example:

@ low rank MC,
@ weakly integral MC,
@ MC of a given FPdim.
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Rank finiteness for braided fusion categories

Theorem
(Bruillard, Ng, Rowell, Wang) 2013 There are finitely many
modular categories of a given rank r.

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang) 2015

There are finitely many braided fusion categories of a given
rank r.

César Galindo



Known results: RankC <5

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang
gave the classification of MC of rank at most 5.
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Known results: RankC <5

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang
gave the classification of MC of rank at most 5.
Theorem

IfC is a modular category with2 < RankC <5 itis
Grothendieck equivalent to one of the following:

@ PSU(2)3 (Fibonacci), SU(2)4 (pointed),
@ PSU(2)s, SU(2), (Ising), SU(3)1 (pointed),
@ PSU(2)7, SU(2)3, SU(4)1, products,
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Known results: RankC <5

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang
gave the classification of MC of rank at most 5.
Theorem

If C is a modular category with2 < RankC < 5 itis
Grothendieck equivalent to one of the following:

@ PSU(2)3 (Fibonacci), SU(2)4 (pointed),

@ PSU(2)s, SU(2), (Ising), SU(3)1 (pointed),
@ PSU(2)7, SU(2)3, SU(4)1, products,

@ PSU(2)g, SU(2)4, SU(5)1, PSU(3)4.
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Known results: FPdim C fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina,
Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to
advance in the classification program.
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Known results: FPdim C fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina,
Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to
advance in the classification program.

@ C MC, FPdimC € {p", pq, par, pq?, pq°, pa*, pg°}~~
group-theoretical.

@ Classification of non-group-theoretical modular C with
FPdimC = 4q°.
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Main theorem: FPdimC = 4m

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is
an odd square-free integer.
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Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is

an odd square-free integer. Then C is equivalent to a (Deligne)
product of the following:
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Main theorem: FPdimC = 4m

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is
an odd square-free integer. Then C is equivalent to a (Deligne)
product of the following: pointed categories, Ising categories
and metaplectic categories.
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Main theorem: FPdimC = 4m

Recall that:

@ A MC is pointed if all its simple objects are invertible. A
cyclic P, of rank nis a pointed MC with the same fusion
rules as Rep(Zp).
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Main theorem: FPdimC = 4m

Recall that:

@ A MC is pointed if all its simple objects are invertible. A
cyclic P, of rank nis a pointed MC with the same fusion
rules as Rep(Zp).

@ An Ising MC 7 is a Tambara-Yamagami category with
G~ Zo.

@ A metaplectic m.c. My is any MC with the same fusion
rules as the MC SO(N), for N odd. The rank of My is
NX7 | the dimension is 4N and it has two 1-dimensional
objects and two simple objects of dimension v/N, while the
remaining simple objects have dimension 2. For example,
TY(Zn, x,v)?2, for N odd, is a metaplectic MC.
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Main theorem: FPdimC = 4m

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m,
where m is an odd square-free integer.
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Main theorem: FPdimC = 4m

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m,
where m is an odd square-free integer. Then either

@ C contains an object of dimension v/2 and C = 7 X P,

@ C is non-integral with no objects of dimension /2 and C =
My B Py i, With My = TY(Zy, x,v)*2, or
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Main theorem: FPdimC = 4m

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m,
where m is an odd square-free integer. Then either

@ C contains an object of dimension v/2 and C = 7 X P,

@ C is non-integral with no objects of dimension /2 and C =
My B Py, With Mk = TY(Zg, x, v)"2, or
@ C is pointed.
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Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category C is equivalent to
one of the following:
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Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category C is equivalent to
one of the following:

@ ITX P>,
o Ty(257X7 V)sz or
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Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category C is equivalent to
one of the following:

@ ITX P>,
o Ty(Z57 X V)sz or
@ Pg, a cyclic MC of rank 6.
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Application: Rank 7 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

The only strictly weakly integral rank 7 modular categories are
metaplectic categories.

César Galindo



Application: Rank 7 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

The only strictly weakly integral rank 7 modular categories are
metaplectic categories.

IfC is an integral modular category of rank 7, then C is pointed.
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Main results
Main theorem: rank 8

Theorem (Bruillard, G., Hughes, Plavnik, Rowell, Sun)
There are no rank 8 strictly weakly integral modular categories.
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