Classification of Modular Categories

César Galindo

Universidad de los Andes

Séptima escuela de física matemática UniAndes, May 26

イロト イポト イヨト イヨト

3

César Galindo

Why Braided Fusion Categories?

Mathematics:

César Galindo

・ロト ・聞ト ・ヨト ・ヨト

= 990

Why Braided Fusion Categories?

Mathematics:

• Complete invariants of finite depth subfactors.

César Galindo

イロト イポト イヨト イヨト

= 990

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).

イロト イポト イヨト イヨト

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).
- Representations of quantum groups and Hopf algebras, Vertex operator algebras.

Physics:

くロト (過) (目) (日)

э

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).
- Representations of quantum groups and Hopf algebras, Vertex operator algebras.

Physics:

 Unitary modular categories (i.e., non-degenerated unitary braided fusion categories) are algebraic models of anyons in two dimensional topological phases of matter where simple objects model anyons.

イロト イポト イヨト イヨト

э

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).
- Representations of quantum groups and Hopf algebras, Vertex operator algebras.

Physics:

- Unitary modular categories (i.e., non-degenerated unitary braided fusion categories) are algebraic models of anyons in two dimensional topological phases of matter where simple objects model anyons.
- In topological quantum computation, anyons give rise to quantum computational models.

ヘロア ヘビア ヘビア・

ъ

What is a modular category?

Short answer (Mathematics): The category of unitary representations of a finite quantum group

Fusion categories are monoidal categories with many of the properties of the monoidal category of finite-dimensional complex representations of a finite group.

ヘロト ヘアト ヘヨト ヘ

What is a modular category?

Short answer (Mathematics): The category of unitary representations of a finite quantum group

Fusion categories are monoidal categories with many of the properties of the monoidal category of finite-dimensional complex representations of a finite group.

Short answer (Physics): Anyons

Unitary modular categories (UMCs) are algebraic models of anyons in topological phases of matter.

ヘロト ヘアト ヘヨト ヘ

A category C is a *modular category* if:

César Galindo

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

A category C is a *modular category* if: :

• is an abelian \mathbb{C} -linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.

Modular categories

A category C is a *modular category* if: :

- is an abelian \mathbb{C} -linear category: $Hom_{\mathcal{C}}(X, Y) \in Vec_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Modular categories

A category C is a *modular category* if: :

- is an abelian \mathbb{C} -linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.
- is rigid: for all $X \in C$ there exist left and right duals.

ヘロト ヘアト ヘビト ヘビト

Modular categories

A category C is a *modular category* if: :

- is an abelian \mathbb{C} -linear category: $Hom_{\mathcal{C}}(X, Y) \in Vec_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.
- is rigid: for all $X \in C$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.

ヘロト 人間 ト ヘヨト ヘヨト

Modular categories

- A category C is a *modular category* if: :
 - is an abelian \mathbb{C} -linear category: $Hom_{\mathcal{C}}(X, Y) \in Vec_{\mathbb{C}}$.
 - is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.
 - is rigid: for all $X \in C$ there exist left and right duals.
 - is semisimple: objects are finite direct sums of simple obj.
 - C has finitely many isomorphism classes of simple objects.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Modular categories

- A category C is a *modular category* if: :
 - is an abelian \mathbb{C} -linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.
 - is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.
 - is rigid: for all $X \in C$ there exist left and right duals.
 - is semisimple: objects are finite direct sums of simple obj.
 - C has finitely many isomorphism classes of simple objects.

ヘロト ヘ戸ト ヘヨト ヘヨト

• the spaces of morphisms are finite dimensional.

Modular categories

- A category C is a *modular category* if: :
 - is an abelian \mathbb{C} -linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.
 - is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.
 - is rigid: for all $X \in C$ there exist left and right duals.
 - is semisimple: objects are finite direct sums of simple obj.
 - C has finitely many isomorphism classes of simple objects.

くロト (過) (目) (日)

- the spaces of morphisms are finite dimensional.
- 1 is a simple object of C.

- A category C is a *modular category* if: :
 - is an abelian \mathbb{C} -linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.
 - is a monoidal category: $(\mathcal{C}, \otimes, a, 1, l, r)$.
 - is rigid: for all $X \in C$ there exist left and right duals.
 - is semisimple: objects are finite direct sums of simple obj.
 - C has finitely many isomorphism classes of simple objects.

ヘロト ヘアト ヘビト ヘビト

- the spaces of morphisms are finite dimensional.
- 1 is a simple object of C.
- \mathcal{C} is braided: $\sigma_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X$ natural.

A category C is a *modular category* if: :

- is an abelian \mathbb{C} -linear category: $Hom_{\mathcal{C}}(X, Y) \in Vec_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, a, \mathbf{1}, l, r)$.
- is rigid: for all $X \in C$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- C has finitely many isomorphism classes of simple objects.

・ロン・(理)・ ・ ヨン・

- the spaces of morphisms are finite dimensional.
- 1 is a simple object of C.
- \mathcal{C} is braided: $\sigma_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X$ natural.
- *C* is ribbon: $\theta_X : X \xrightarrow{\sim} X$ natural and $\theta_{X \otimes Y} = (\theta_X \otimes \theta_Y) c_{Y,X} c_{X,Y}$.

A category C is a *modular category* if: :

- is an abelian \mathbb{C} -linear category: $Hom_{\mathcal{C}}(X, Y) \in Vec_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, a, 1, l, r)$.
- is rigid: for all $X \in C$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- C has finitely many isomorphism classes of simple objects.
- the spaces of morphisms are finite dimensional.
- 1 is a simple object of C.
- C is braided: $\sigma_{X,Y} : X \otimes Y \xrightarrow{\sim} Y \otimes X$ natural.
- *C* is ribbon: $\theta_X : X \xrightarrow{\sim} X$ natural and $\theta_{X \otimes Y} = (\theta_X \otimes \theta_Y) c_{Y,X} c_{X,Y}$.
- C is non-degenerated: det $(S_{X,Y}) \neq 0$, where $S_{X,Y} = \text{Tr}_{C}(\sigma_{X,Y^{*}}\sigma_{Y^{*},X}).$

Summarizing:

Definition

A *modular category* (MC) is a non-degenerate braided fusion category over \mathbb{C} , with a ribbon structure.

イロト イポト イヨト イヨト

A dictionary of terminologies between anyon theory and UMC theory

Modular categories	Anyonic system
simple object	anyon
label	anyon type or anyonic charge
tensor product a ⊗ b	fusion
fusion rules $a \times b$	fusion rules
triangular space $V_{ab}^c := \text{Hom}(a \otimes b, c)$	fusion/splitting space $\ket{axb ightarrow c}$
dual	antiparticle
coevaluation /evaluation	creation/annihilation
mapping class group representations	generalized anyon statistics
nonzero vector in $V(Y)$	ground state vector
unitary F-matrices	recoupling rules
twist $\theta_X = e^{2\pi i s_X}$	topological spin
morphism	physical process or operator
colored braided framed trivalent graphs	anyon trajectories
quantum invariants	topological amplitudes

イロト イポト イヨト イヨト

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.

César Galindo

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.

$\operatorname{Rep} H$ for H a finite dimensional Hopf C^* -algebra

The category of H-modules of a finite dimensional factorizable Hopf C^* -algebra is a modular category.

・ロン・西方・ ・ ヨン・ ヨン・

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.

RepH for H a finite dimensional Hopf C^* -algebra

The category of H-modules of a finite dimensional factorizable Hopf C^* -algebra is a modular category.

$\mathcal{C}(\mathfrak{g}, q, l),$

The category of tilting modules of the quantum groups $U_q(\mathfrak{g})$ (q^2 a *l*th root of unity) module negligible morphisms.

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.

$\operatorname{Rep} H$ for H a finite dimensional Hopf C^* -algebra

The category of H-modules of a finite dimensional factorizable Hopf C^* -algebra is a modular category.

$\mathcal{C}(\mathfrak{g}, \boldsymbol{q}, \boldsymbol{l}),$

The category of tilting modules of the quantum groups $U_q(\mathfrak{g})$ (q^2 a *l*th root of unity) module negligible morphisms. For example:

- $SU(N)_k = C(\mathfrak{sl}_N, N+k),$
- $SO(N)_k$,
- $PSU(N)_k \subset SU(N)_k$, for gcd(k, N) = 1.

Definition of fusion category in coordinates

Fusion rules

Let $L = \{X_1 = 1, X_2, ..., X_n\}$ be a set of representatives of isomorphism classes of simple objects.

イロト イポト イヨト イヨト

Definition of fusion category in coordinates

Fusion rules

Let $L = \{X_1 = 1, X_2, ..., X_n\}$ be a set of representatives of isomorphism classes of simple objects.

• There is an involution $*: L \to L$ such that $\mathbf{1}^* = \mathbf{1}$.

< □ > < □ > < □ > < □ > <

Definition of fusion category in coordinates

Fusion rules

Let $L = \{X_1 = 1, X_2, ..., X_n\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \to L$ such that $\mathbf{1}^* = \mathbf{1}$.
- X_i ⊗ X_j = ⊕_k N^k_{ij}X_k, so we have a colection of non-negative integres N^k_{ij}, for every i, j, k ∈ {1,...,n} and satisfy

ヘロト ヘアト ヘヨト ヘ

Definition of fusion category in coordinates

Fusion rules

Let $L = \{X_1 = 1, X_2, ..., X_n\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \to L$ such that $\mathbf{1}^* = \mathbf{1}$.
- X_i ⊗ X_j = ⊕_k N^k_{ij}X_k, so we have a colection of non-negative integres N^k_{ij}, for every i, j, k ∈ {1,...,n} and satisfy

$$N_{1a}^{b} = \delta_{ab} = N_{a1}^{b}$$

$$N_{ab}^{1} = \delta_{a^{*}b}$$

$$N_{abc}^{u} := \sum_{e} N_{ab}^{e} N_{ec}^{u} = \sum_{e'} N_{ae'}^{u} N_{bc}^{e'}$$

・ロト・西ト・ヨト・ヨー シック

Definition of fusion category in coordinates

Fusion rules

Let $L = \{X_1 = 1, X_2, ..., X_n\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \to L$ such that $\mathbf{1}^* = \mathbf{1}$.
- X_i ⊗ X_j = ⊕_k N^k_{ij}X_k, so we have a colection of non-negative integres N^k_{ij}, for every i, j, k ∈ {1,...,n} and satisfy

$$N_{1a}^b = \delta_{ab} = N_{a1}^b$$

$$N^{u}_{abc} := \sum_{e} N^{e}_{ab} N^{u}_{ec} = \sum_{e'} N^{u}_{ae'} N^{e'}_{bc}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Definition of fusion category in coordinates

Fusion rules

Let $L = \{X_1 = 1, X_2, ..., X_n\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \to L$ such that $\mathbf{1}^* = \mathbf{1}$.
- X_i ⊗ X_j = ⊕_k N^k_{ij}X_k, so we have a colection of non-negative integres N^k_{ij}, for every i, j, k ∈ {1,...,n} and satisfy

$$N_{1a}^{b} = \delta_{ab} = N_{a1}^{b}$$

$$N_{ab}^{1} = \delta_{a^{*}b}$$

$$N_{abc}^{u} := \sum_{e} N_{ab}^{e} N_{ec}^{u} = \sum_{e'} N_{ae'}^{u} N_{bc}^{e'}$$

イロト イヨト イヨト イ

F-matrices (6j-symbols)

Without loss of generality we can suppose that $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ for all $a, b, c, d \in L$.

イロト イポト イヨト イヨト

F-matrices (6j-symbols)

Without loss of generality we can suppose that $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ for all $a, b, c, d \in L$.

F-matrices

Define

$$F^d_{abc}$$
: Hom _{\mathcal{C}} $(a \otimes b \otimes c, d) \rightarrow$ Hom _{\mathcal{C}} $(a \otimes b \otimes c, d)$
 $f \mapsto f \circ a_{a,b,c}$

イロト 不得 とくほと くほとう

= 990

F-matrices (6j-symbols)

Without loss of generality we can suppose that $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ for all $a, b, c, d \in L$.

F-matrices

Define

$$F^d_{abc}$$
 : Hom _{\mathcal{C}} $(a \otimes b \otimes c, d) \to$ Hom _{\mathcal{C}} $(a \otimes b \otimes c, d)$
 $f \mapsto f \circ a_{a,b,c}$

The set of matrices

$$\{F^d_{abc} \in U(N^d_{abc}) | a, b, c, d \in L\}$$

イロト イポト イヨト イヨト

3

is called the F-matrices and they satisfy the **pentagonal** identity (pentagon axiom).

Pointed fusion categories, $\mathcal{C}(G,\omega)$

César Galindo

E 990

Pointed fusion categories, $C(G, \omega)$

• L = G (a finite group)

César Galindo

æ

Pointed fusion categories, $C(G, \omega)$

- L = G (a finite group)
- fusion rules are the product in G

イロン 不得 とくほ とくほとう

Pointed fusion categories, $C(G, \omega)$

- L = G (a finite group)
- fusion rules are the product in G

•
$$F^d_{a,b,c} = \omega(a,b,c) \delta_{abc,d}$$
, so is a function $\omega : G^{ imes 3} o U(1)$

イロン 不得 とくほ とくほとう

Pointed fusion categories, $C(G, \omega)$

- L = G (a finite group)
- fusion rules are the product in G
- $F^{d}_{a,b,c} = \omega(a,b,c)\delta_{abc,d}$, so is a function $\omega : G^{\times 3} \to U(1)$
- Pentagon equation is exactly 3-cocycle condition of group cohomology:

 $\omega(a, b, c)\omega(b, c, d)\omega(a, bc, d) = \omega(ab, c, d)\omega(a, b, cd)$

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Fibonnaci theory

César Galindo

Fibonnaci theory

•
$$L = \{1, x\}$$

César Galindo

Fibonnaci theory

• $L = \{1, x\}$

• fusion rules
$$x^2 = 1 + x (N_{xx}^1 = N_{xx}^x = 1)$$

・ロト ・聞ト ・ヨト ・ヨト

= 990

Fibonnaci theory

- $L = \{1, x\}$
- fusion rules $x^2 = 1 + x (N_{xx}^1 = N_{xx}^x = 1)$

•
$$F_{xxx}^x =$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● のへで

Fibonnaci theory

•
$$L = \{1, x\}$$

• fusion rules $x^2 = 1 + x$ ($N_{xx}^1 = N_{xx}^x = 1$)
• $F_{xxx}^x = \begin{pmatrix} \phi^{-1} & \phi^{-1/2} \\ \phi^{-1/2} & \phi^{-1} \end{pmatrix}$

César Galindo

Fibonnaci theory

•
$$L = \{\mathbf{1}, \mathbf{x}\}$$

• fusion rules
$$x^2 = 1 + x$$
 ($N_{xx}^1 = N_{xx}^x = 1$)

•
$$F_{xxx}^{x} = \begin{pmatrix} \phi^{-1} & \phi^{-1/2} \\ \phi^{-1/2} & \phi^{-1} \end{pmatrix}$$

Not every fusion rules admit a set of F-matrices

◆□ > ◆□ > ◆豆 > ◆豆 > -

æ

Fibonnaci theory

•
$$L = \{\mathbf{1}, \mathbf{x}\}$$

• fusion rules
$$x^2 = 1 + x (N_{xx}^1 = N_{xx}^x = 1)$$

•
$$F_{XXX}^{X} = \begin{pmatrix} \phi^{-1} & \phi^{-1/2} \\ \phi^{-1/2} & \phi^{-1} \end{pmatrix}$$

Not every fusion rules admit a set of F-matrices

As an example the fusion rules:

•
$$L_k = \{1, \mathbf{X}\}$$

•
$$x^2 = 1 + kx$$
 ($N_{xx}^1 = N_{xx}^x = k$), $k \in \mathbb{Z}^{>0}$

define a fusion category if and only if k = 1 (Victor Ostrik).

Ising theory

•
$$L = \{\mathbf{1}, \sigma, \psi\}$$

• fusion rules:
$$\sigma^2 = 1 + \psi, \psi^2 = 1, \psi \sigma = \sigma \psi = \sigma.$$

•
$$F_{\sigma\sigma\sigma}^{\sigma} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, F_{\psi\sigma\psi}^{\sigma} = F_{\sigma\psi\sigma}^{\psi} = -1.$$

Remarks

• The ising fusion rules has two possible realization (Isinig or Mayorama fermion) $F^{\sigma}_{\sigma\sigma\sigma} = \frac{-1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

 Ising categories are particular cases of a more general familily called Tambara-Yamagami categories.

Braided fusion category in coordinates

If (C, c) is a braided fusion, without loss of generality we can suppose that $a \otimes b = a \otimes b$ for all $a, b \in L$.

イロン 不得 とくほ とくほとう

Main results

Braided fusion category in coordinates

If (C, c) is a braided fusion, without loss of generality we can suppose that $a \otimes b = a \otimes b$ for all $a, b \in L$.

R-matrices

Define

$$egin{aligned} R^c_{a,b} : \operatorname{Hom}_{\mathcal{C}}(a \otimes b, c) & o \operatorname{Hom}_{\mathcal{C}}(b \otimes a, c) \ f &\mapsto f \circ c_{a,b} \end{aligned}$$

イロト イポト イヨト イヨト

3

César Galindo

Braided fusion category in coordinates

If (C, c) is a braided fusion, without loss of generality we can suppose that $a \otimes b = a \otimes b$ for all $a, b \in L$.

R-matrices

Define

$$egin{aligned} & \mathcal{R}^{c}_{a,b}: \mathsf{Hom}_{\mathcal{C}}(a \otimes b, c) o \mathsf{Hom}_{\mathcal{C}}(b \otimes a, c) \ & f \mapsto f \circ c_{a,b} \end{aligned}$$

The set of matrices

$$\{R^c_{a,b} \in U(N^c_{a,b}) | a, b, c \in L\}$$

イロト イポト イヨト イヨト

э

is called the R-matrices and they satisfy the **hexagonal** identities (hexagon axioms).

Pointed braided fusion category

César Galindo

E 990

Pointed braided fusion category

- If $C(G, \omega)$ has a braid structure then G is abelian
- $R_{xy}^{z} = c(x, y)\delta_{xy,z}$, so is a function $c : G \times G \rightarrow U(1)$

 Hexagonal equation is exacly the abelian 3-cocycle condition

$$\omega(y, z, x)c(x, yz)\omega(x, y, z) = c(x, z)\omega(y, x, z)c(x, y)$$
$$\omega(z, x, y)^{-1}c(xy, z)\omega(x, y, z)^{-1} = c(x, z)\omega(x, z, y)^{-1}c(y, z).$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

R-matrices for Fibonacci theory

$$R_{ au au}^{1} = e^{-4\pi i/5}, R_{ au au}^{ au} = e^{3\pi i/5}.$$

E 990

César Galindo

R-matrices for Fibonacci theory

$$R_{\tau\tau}^{1} = e^{-4\pi i/5}, R_{\tau\tau}^{\tau} = e^{3\pi i/5}.$$

R-matrices for Ising theory

$$R^1_{\psi\psi}=-1, R^{\sigma}_{\sigma\psi}=i, R^1_{\sigma\sigma}=e^{-\pi i/8}, R^{\psi}_{\sigma\sigma}=e^{3\pi i/8}$$

イロト イポト イヨト イヨト

3

The Ising category admist tree (non-equivalent) R-matrices.

Let C be a (strict) tensor category and let $X \in C$.

Definition

A half braiding $c_{-,X} : \cdot \otimes X \to X \otimes \cdot$ for X is a natural isomorphism such that $c_{Y \otimes Z, X} = (c_{Y,X} \otimes id_Z)(id_Y \otimes c_{Z,X})$, for all $Y, Z \in C$.

イロト イポト イヨト イヨト 一臣

The **Drinfeld center** $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

イロト イポト イヨト イヨト

The **Drinfeld center** $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

objects: pairs (X, c_{-,X}), where X ∈ C and c_{-,X} is a half braiding for X,

イロト イポト イヨト イヨト

The **Drinfeld center** $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs (X, c_{-,X}), where X ∈ C and c_{-,X} is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}((X, c_{-,X}), (Y, c_{-,Y})) = \{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y) : (\operatorname{id}_{W} \otimes f) c_{W,X} = c_{W,Y}(\operatorname{id}_{W} \otimes f), \forall W \in \mathcal{C}\},\$

イロト イポト イヨト イヨト

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs (X, c_{-,X}), where X ∈ C and c_{-,X} is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}((X, c_{-,X}), (Y, c_{-,Y})) = \{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y) : (\operatorname{id}_{W} \otimes f) c_{W,X} = c_{W,Y}(\operatorname{id}_{W} \otimes f), \forall W \in \mathcal{C}\},\$
- tensor product: $(X, c_{-,X}) \otimes (Y, c_{-,Y}) = (X \otimes Y, c_{-,X \otimes Y})$, where $c_{-,X \otimes Y} = (\mathrm{id}_X \otimes c_{-,Y})(c_{-,X} \otimes \mathrm{id}_Y)$,

<ロ> <問> <問> < E> < E> < E> < E

The **Drinfeld center** $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs (X, c_{-,X}), where X ∈ C and c_{-,X} is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}((X, c_{-,X}), (Y, c_{-,Y})) = \{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y) : (\operatorname{id}_{W} \otimes f) c_{W,X} = c_{W,Y}(\operatorname{id}_{W} \otimes f), \forall W \in \mathcal{C}\},\$
- tensor product: $(X, c_{-,X}) \otimes (Y, c_{-,Y}) = (X \otimes Y, c_{-,X \otimes Y})$, where $c_{-,X \otimes Y} = (\mathrm{id}_X \otimes c_{-,Y})(c_{-,X} \otimes \mathrm{id}_Y)$,

<ロ> <問> <問> < E> < E> < E> < E

• braiding:
$$\sigma_{(X,c_{-,X}),(Y,c_{-,Y})} = c_{X,Y}$$
.

The **Drinfeld center** $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs (X, c_{-,X}), where X ∈ C and c_{-,X} is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}((X, c_{-,X}), (Y, c_{-,Y})) = \{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y) : (\operatorname{id}_{W} \otimes f) c_{W,X} = c_{W,Y}(\operatorname{id}_{W} \otimes f), \forall W \in \mathcal{C}\},\$
- tensor product: $(X, c_{-,X}) \otimes (Y, c_{-,Y}) = (X \otimes Y, c_{-,X \otimes Y})$, where $c_{-,X \otimes Y} = (\mathrm{id}_X \otimes c_{-,Y})(c_{-,X} \otimes \mathrm{id}_Y)$,

• braiding:
$$\sigma_{(X,c_{-,X}),(Y,c_{-,Y})} = c_{X,Y}$$
.

Theorem (Muger)

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ is **modular** if \mathcal{C} is a spherical fusion category over \mathbb{C} .

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Set C be a fusion category.

イロト イポト イヨト イヨト

Set \mathcal{C} be a fusion category.

Let lrr(C) = {X₀ = 1, X₁,..., Xₙ} denote the set of isomorphism classes of simple objects in C.

・ロン・西方・ ・ ヨン・ ヨン・

э.

Set \mathcal{C} be a fusion category.

- Let Irr(C) = {X₀ = 1, X₁, ..., Xₙ} denote the set of isomorphism classes of simple objects in C.
- The *rank* of C is the cardinality of the set Irr(C).

イロト イ理ト イヨト イヨト

Set $\ensuremath{\mathcal{C}}$ be a fusion category.

- Let Irr(C) = {X₀ = 1, X₁,..., X_n} denote the set of isomorphism classes of simple objects in C.
- The *rank* of C is the cardinality of the set Irr(C).
- Fusion rules: $X \otimes Y \simeq \bigoplus_{Z \in Irr(\mathcal{C})} N_{X,Y}^Z Z$ $(X, Y \in Irr(\mathcal{C})).$

イロト イ押ト イヨト イヨト

Set \mathcal{C} be a fusion category.

- Let Irr(C) = {X₀ = 1, X₁,..., X_n} denote the set of isomorphism classes of simple objects in C.
- The *rank* of C is the cardinality of the set Irr(C).
- Fusion rules: $X \otimes Y \simeq \bigoplus_{Z \in Irr(\mathcal{C})} N_{X,Y}^Z Z$ $(X, Y \in Irr(\mathcal{C})).$
- The Frobenius-Perron dimension FPdim X ∈ ℝ⁺ of X ∈ C is the largest nonnegative eigenvalue of the matrix (N^Z_{X,Y})_{Y,Z∈Irr(C)}(matrix of left multiplication by X w.r.t ⊗).

イロト イポト イヨト イヨト 三日

Set \mathcal{C} be a fusion category.

- Let Irr(C) = {X₀ = 1, X₁,..., Xₙ} denote the set of isomorphism classes of simple objects in C.
- The *rank* of C is the cardinality of the set Irr(C).
- Fusion rules: $X \otimes Y \simeq \bigoplus_{Z \in Irr(\mathcal{C})} N_{X,Y}^Z Z$ $(X, Y \in Irr(\mathcal{C})).$
- The Frobenius-Perron dimension FPdim X ∈ ℝ⁺ of X ∈ C is the largest nonnegative eigenvalue of the matrix (N^Z_{X,Y})_{Y,Z∈Irr(C)}(matrix of left multiplication by X w.r.t ⊗).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• The Frobenius-Perron dimension of C is FPdim $C = \sum_{X \in Irr(C)} (FPdim X)^2$.

More definitions

 A fusion category C is pointed if all the simple objects are invertible ⇔ FPdim X = 1.

イロト イポト イヨト イヨト

= 990

- A fusion category C is pointed if all the simple objects are invertible ⇔ FPdim X = 1.
- A fusion category C is called integral if FPdim $X \in \mathbb{Z}^+$, $\forall X \in C \iff C \simeq \operatorname{Rep} H$, H semisimple quasi-Hopf [ENO]).

イロト イポト イヨト イヨト

э.

- A fusion category C is pointed if all the simple objects are invertible ⇔ FPdim X = 1.
- A fusion category C is called integral if FPdim $X \in \mathbb{Z}^+$, $\forall X \in C \iff C \simeq \operatorname{Rep} H, H$ semisimple quasi-Hopf [ENO]).

イロト イポト イヨト イヨト

• A fusion category C is *weakly integral* if FPdim $C \in \mathbb{Z}$.

Main results

Example: Tambara-Yamagami categories

Data:

• an abelian finite group G,

イロト イポト イヨト イヨト

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi : \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{k}^{\times}$,

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi : \mathbf{G} \times \mathbf{G} \to \mathbf{k}^{\times}$,

イロト イポト イヨト イヨト

• an element $\tau \in \mathbb{C}$ s.t. $|\mathbf{G}|\tau^2 = 1$.

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi : \mathbf{G} \times \mathbf{G} \to \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G|\tau^2 = 1$.

Tambara-Yamagami category $T\mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

< ロ > < 同 > < 回 > < 回 > <</p>

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi : \mathbf{G} \times \mathbf{G} \to \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G|\tau^2 = 1$.

Tambara-Yamagami category $T\mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

・ロン ・聞と ・ ほと ・ ほとう

• $\operatorname{Irr}(\mathcal{TY}(G,\chi,\tau)) = G \bigcup \{X\}, X \notin G.$

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi : \mathbf{G} \times \mathbf{G} \to \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G|\tau^2 = 1$.

Tambara-Yamagami category $T\mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

- $\operatorname{Irr}(\mathcal{TY}(G,\chi,\tau)) = G \bigcup \{X\}, X \notin G.$
- Fusion rules $a \otimes b = ab$, $X \otimes X = \sum_{a \in G} a$, $a \otimes X = X$.

・ロン ・聞と ・ ほと ・ ほとう

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi : \mathbf{G} \times \mathbf{G} \to \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G|\tau^2 = 1$.

Tambara-Yamagami category $T\mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

- $\operatorname{Irr}(\mathcal{TY}(G,\chi,\tau)) = G \bigcup \{X\}, X \notin G.$
- Fusion rules $a \otimes b = ab$, $X \otimes X = \sum_{a \in G} a$, $a \otimes X = X$.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

• Duality $a^* = a^{-1}$ and $X^* = X$.

Main results

Example: Tambara-Yamagami categories

Remark

• FPdim $X = \sqrt{|G|}$ and FPdim $\mathcal{TY}(G, \chi, \tau) = 2|G| \rightsquigarrow$ weakly integral but not necessarily integral.

イロト イポト イヨト イヨト

э

Main results

Example: Tambara-Yamagami categories

Remark

- FPdim $X = \sqrt{|G|}$ and FPdim $\mathcal{TY}(G, \chi, \tau) = 2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- *TY*(*G*, *χ*, *τ*) admits a braiding ⇔ *G* is an elementary abelian 2-group.

Remark

- FPdim $X = \sqrt{|G|}$ and FPdim $\mathcal{TY}(G, \chi, \tau) = 2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- *TY*(*G*, *χ*, *τ*) admits a braiding ⇔ *G* is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G = \langle a \rangle \simeq \mathbb{Z}_2$.

Remark

- FPdim $X = \sqrt{|G|}$ and FPdim $\mathcal{TY}(G, \chi, \tau) = 2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- *TY*(*G*, *χ*, *τ*) admits a braiding ⇔ *G* is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G = \langle a \rangle \simeq \mathbb{Z}_2$. In this case, $X^{\otimes 2} = \mathbf{1} \oplus a$.

Remark

- FPdim $X = \sqrt{|G|}$ and FPdim $\mathcal{TY}(G, \chi, \tau) = 2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- *TY*(*G*, *χ*, *τ*) admits a braiding ⇔ *G* is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G = \langle a \rangle \simeq \mathbb{Z}_2$. In this case, $X^{\otimes 2} = \mathbf{1} \oplus a$. Then, FPdim $X = \sqrt{2}$ and FPdim $\mathcal{TY} = 4$.

Remark

- FPdim $X = \sqrt{|G|}$ and FPdim $\mathcal{TY}(G, \chi, \tau) = 2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- *TY*(*G*, *χ*, *τ*) admits a braiding ⇔ *G* is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G = \langle a \rangle \simeq \mathbb{Z}_2$. In this case, $X^{\otimes 2} = \mathbf{1} \oplus a$. Then, FPdim $X = \sqrt{2}$ and FPdim $\mathcal{TY} = 4$. Moreover, \mathcal{I} is **modular**.

Recall that the frame problem is:

César Galindo

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -

2

Recall that the frame problem is:

Problem

Classify modular categories.

César Galindo

<ロト <回 > < 注 > < 注 > 、

2

Recall that the frame problem is:

Problem

Classify modular categories.

Hard problem! Different approaches, for example:

César Galindo

イロン 不得 とくほ とくほとう

э

Recall that the frame problem is:

Problem

Classify modular categories.

Hard problem! Different approaches, for example:

• low rank MC,

イロト イポト イヨト イヨト

э

Recall that the frame problem is:

Problem

Classify modular categories.

Hard problem! Different approaches, for example:

- low rank MC,
- weakly integral MC,

イロン イボン イヨン イヨン

æ

Recall that the frame problem is:

Problem

Classify modular categories.

Hard problem! Different approaches, for example:

- low rank MC,
- weakly integral MC,
- MC of a given FPdim.

< ロ > < 同 > < 回 > < 回 > <</p>

Main results

Rank finiteness for braided fusion categories

Theorem

(Bruillard, Ng, Rowell, Wang) 2013 There are **finitely** many modular categories of a given rank r.

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang) 2015

There are **finitely** many braided fusion categories of a given rank *r*.

< ロ > < 同 > < 回 > < 回 > <</p>

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

イロト イポト イヨト イヨト

= 990

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Theorem

If C is a modular category with $2 \le \text{Rank } C \le 5$ it is Grothendieck equivalent to one of the following:

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Theorem

If C is a modular category with $2 \le \text{Rank } C \le 5$ it is Grothendieck equivalent to one of the following:

• PSU(2)₃ (Fibonacci), SU(2)₁ (pointed),

ヘロト 人間 ト ヘヨト ヘヨト

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Theorem

If C is a modular category with $2 \le \text{Rank } C \le 5$ it is Grothendieck equivalent to one of the following:

- PSU(2)₃ (Fibonacci), SU(2)₁ (pointed),
- PSU(2)₅, SU(2)₂ (Ising), SU(3)₁ (pointed),

・ロト ・聞 ト ・ ヨト ・ ヨトー

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Theorem

If C is a modular category with $2 \le \text{Rank } C \le 5$ it is Grothendieck equivalent to one of the following:

- PSU(2)₃ (Fibonacci), SU(2)₁ (pointed),
- PSU(2)₅, SU(2)₂ (Ising), SU(3)₁ (pointed),
- *PSU*(2)₇, *SU*(2)₃, *SU*(4)₁, *products*,

ヘロト ヘアト ヘビト ヘビト

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Theorem

If C is a modular category with $2 \le \text{Rank } C \le 5$ it is Grothendieck equivalent to one of the following:

- PSU(2)₃ (Fibonacci), SU(2)₁ (pointed),
- PSU(2)₅, SU(2)₂ (Ising), SU(3)₁ (pointed),
- *PSU*(2)₇, *SU*(2)₃, *SU*(4)₁, *products*,
- *PSU*(2)₉, *SU*(2)₄, *SU*(5)₁, *PSU*(3)₄.

・ロン・西方・ ・ ヨン・ ヨン・

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

イロト イ押ト イヨト イヨトー

æ

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

• C MC, FPdim $C \in \{p^n, pq, pqr, pq^2, pq^3, pq^4, pq^5\}$

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

• C MC, FPdim $C \in \{p^n, pq, pqr, pq^2, pq^3, pq^4, pq^5\} \rightarrow$ group-theoretical.

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

- C MC, FPdim $C \in \{p^n, pq, pqr, pq^2, pq^3, pq^4, pq^5\} \rightarrow$ group-theoretical.
- Classification of non-group-theoretical modular C with FPdim $C = 4q^2$.

Main results

Main theorem: FPdim C = 4m

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is an odd square-free integer.

Main results

Main theorem: FPdim C = 4m

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is an odd square-free integer. Then C is equivalent to a (Deligne) product of the following:

ヘロン 人間 とくほ とくほ とう

э.

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is an odd square-free integer. Then C is equivalent to a (Deligne) product of the following: pointed categories, Ising categories and metaplectic categories.

ヘロト ヘアト ヘビト ヘビト

Recall that:

A MC is pointed if all its simple objects are invertible. A cyclic *P_n* of rank *n* is a pointed MC with the same fusion rules as Rep(ℤ_n).

イロト イポト イヨト イヨト

3

Recall that:

- A MC is pointed if all its simple objects are invertible. A cyclic *P_n* of rank *n* is a pointed MC with the same fusion rules as Rep(ℤ_n).
- An Ising MC \mathcal{I} is a Tambara-Yamagami category with $G \simeq \mathbb{Z}_2$.

イロト イポト イヨト イヨト

3

Recall that:

- A MC is pointed if all its simple objects are invertible. A cyclic *P_n* of rank *n* is a pointed MC with the same fusion rules as Rep(ℤ_n).
- An Ising MC \mathcal{I} is a Tambara-Yamagami category with $G \simeq \mathbb{Z}_2$.
- A metaplectic m.c. \mathcal{M}_N is any MC with the same fusion rules as the MC SO(N)₂, for N odd. The rank of \mathcal{M}_N is $\frac{N+7}{2}$, the dimension is 4N and it has two 1-dimensional objects and two simple objects of dimension \sqrt{N} , while the remaining simple objects have dimension 2. For example, $\mathcal{TY}(\mathbb{Z}_N, \chi, \nu)^{\mathbb{Z}_2}$, for N odd, is a metaplectic MC.

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m, where *m* is an odd square-free integer.

César Galindo

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m, where m is an odd square-free integer. Then either

• C contains an object of dimension $\sqrt{2}$ and $C \cong \mathcal{I} \boxtimes \mathcal{P}_m$,

< ロ > < 同 > < 三 >

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m, where m is an odd square-free integer. Then either

- C contains an object of dimension $\sqrt{2}$ and $C \cong \mathcal{I} \boxtimes \mathcal{P}_m$,
- C is non-integral with no objects of dimension √2 and C ≅ *M_k* ⊠ *P_{m/k}*, with *M_k* ≅ *TY*(ℤ_k, *χ*, *ν*)^{ℤ₂}, or

ヘロト ヘアト ヘヨト ヘ

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m, where m is an odd square-free integer. Then either

- C contains an object of dimension $\sqrt{2}$ and $C \cong \mathcal{I} \boxtimes \mathcal{P}_m$,
- C is non-integral with no objects of dimension √2 and C ≅ *M_k* ⊠ *P_{m/k}*, with *M_k* ≅ *TY*(ℤ_k, *χ*, *ν*)^{ℤ₂}, or

< ロ > < 同 > < 回 > < 回 > <</p>

• C is pointed.

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category *C* is equivalent to one of the following:

César Galindo

イロト イポト イヨト イヨト

3

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category C is equivalent to one of the following:

• $\mathcal{I} \boxtimes \mathcal{P}_2$,

César Galindo

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category C is equivalent to one of the following:

- $\mathcal{I} \boxtimes \mathcal{P}_2$,
- $\mathcal{TY}(\mathbb{Z}_5,\chi,\nu)^{\mathbb{Z}_2},$ or

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category *C* is equivalent to one of the following:

- $\mathcal{I} \boxtimes \mathcal{P}_2$,
- $\mathcal{TY}(\mathbb{Z}_5,\chi,\nu)^{\mathbb{Z}_2},$ or
- \mathcal{P}_6 , a cyclic MC of rank 6.

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

The only strictly weakly integral rank 7 modular categories are metaplectic categories.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

César Galindo

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

The only strictly weakly integral rank 7 modular categories are metaplectic categories.

If C is an integral modular category of rank 7, then C is pointed.

・ロン・西方・ ・ ヨン・ ヨン・

Main results

Main theorem: rank 8

Theorem (Bruillard, G., Hughes, Plavnik, Rowell, Sun)

There are no rank 8 strictly weakly integral modular categories.

・ロン ・聞と ・ ほと ・ ほとう

3

César Galindo