Classification of Modular Categories

César Galindo

Universidad de los Andes
Séptima escuela de física matemática
UniAndes, May 26

Why Braided Fusion Categories?

Mathematics:

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).
- Representations of quantum groups and Hopf algebras, Vertex operator algebras.

Physics:

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define (2+1)-TQFT (knots and 3-manifolds invariants).
- Representations of quantum groups and Hopf algebras, Vertex operator algebras.

Physics:

- Unitary modular categories (i.e., non-degenerated unitary braided fusion categories) are algebraic models of anyons in two dimensional topological phases of matter where simple objects model anyons.

Why Braided Fusion Categories?

Mathematics:

- Complete invariants of finite depth subfactors.
- Define $(2+1)$-TQFT (knots and 3-manifolds invariants).
- Representations of quantum groups and Hopf algebras, Vertex operator algebras.

Physics:

- Unitary modular categories (i.e., non-degenerated unitary braided fusion categories) are algebraic models of anyons in two dimensional topological phases of matter where simple objects model anyons.
- In topological quantum computation, anyons give rise to quantum computational models.

What is a modular category?

Short answer (Mathematics): The category of unitary representations of a finite quantum group
Fusion categories are monoidal categories with many of the properties of the monoidal category of finite-dimensional complex representations of a finite group.

What is a modular category?

> Short answer (Mathematics): The category of unitary representations of a finite quantum group
> Fusion categories are monoidal categories with many of the properties of the monoidal category of finite-dimensional complex representations of a finite group.

Short answer (Physics): Anyons

Unitary modular categories (UMCs) are algebraic models of anyons in topological phases of matter.

Modular categories

A category \mathcal{C} is a modular category if:

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- \mathcal{C} has finitely many isomorphism classes of simple objects.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- \mathcal{C} has finitely many isomorphism classes of simple objects.
- the spaces of morphisms are finite dimensional.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- \mathcal{C} has finitely many isomorphism classes of simple objects.
- the spaces of morphisms are finite dimensional.
- 1 is a simple object of \mathcal{C}.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- \mathcal{C} has finitely many isomorphism classes of simple objects.
- the spaces of morphisms are finite dimensional.
- 1 is a simple object of \mathcal{C}.
- \mathcal{C} is braided: $\sigma_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ natural.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \operatorname{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- \mathcal{C} has finitely many isomorphism classes of simple objects.
- the spaces of morphisms are finite dimensional.
- 1 is a simple object of \mathcal{C}.
- \mathcal{C} is braided: $\sigma_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ natural.
- \mathcal{C} is ribbon: $\theta_{X}: X \xrightarrow{\sim} X$ natural and $\theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) c_{Y, X} c_{X, Y}$.

Modular categories

A category \mathcal{C} is a modular category if: :

- is an abelian \mathbb{C}-linear category: $\operatorname{Hom}_{\mathcal{C}}(X, Y) \in \mathrm{Vec}_{\mathbb{C}}$.
- is a monoidal category: $(\mathcal{C}, \otimes, \mathrm{a}, \mathbf{1}, \mathrm{l}, \mathrm{r})$.
- is rigid: for all $X \in \mathcal{C}$ there exist left and right duals.
- is semisimple: objects are finite direct sums of simple obj.
- \mathcal{C} has finitely many isomorphism classes of simple objects.
- the spaces of morphisms are finite dimensional.
- 1 is a simple object of \mathcal{C}.
- \mathcal{C} is braided: $\sigma_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ natural.
- \mathcal{C} is ribbon: $\theta_{X}: X \xrightarrow{\sim} X$ natural and

$$
\theta_{X \otimes Y}=\left(\theta_{X} \otimes \theta_{Y}\right) c_{Y, X} c_{X, Y}
$$

- \mathcal{C} is non-degenerated: $\operatorname{det}\left(S_{X, Y}\right) \neq 0$, where

$$
S_{X, Y}=\operatorname{Tr}_{\mathcal{C}}\left(\sigma_{X, Y^{*}} \sigma_{Y^{*}, X}\right)
$$

Modular categories

Summarizing:
Definition
A modular category (MC) is a non-degenerate braided fusion category over \mathbb{C}, with a ribbon structure.

A dictionary of terminologies between anyon theory and UMC theory

Modular categories	Anyonic system
simple object	anyon
label	anyon type or anyonic charge
tensor product $a \otimes b$	fusion
fusion rules $a \times b$	fusion rules
triangular space $V_{a b}^{c}:=\mathrm{Hom}(a \otimes b, c)$	fusion/splitting space $\|a x b \rightarrow c\rangle$
dual	antiparticle
coevaluation /evaluation	creation/annihilation
mapping class group representations	generalized anyon statistics
nonzero vector in $V(Y)$	ground state vector
unitary F-matrices	recoupling rules
twist $\theta_{X}=e^{2 \pi i s_{X}}$	topological spin
morphism	physical process or operator
colored braided framed trivalent graphs	anyon trajectories
quantum invariants	topological amplitudes

Examples

$\operatorname{Rep}(D(G))$
Representation of the Drinfeld double of a finite group.

Examples

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.
RepH for H a finite dimensional Hopf C^{*}-algebra
The category of H -modules of a finite dimensional factorizable Hopf C^{*}-algebra is a modular category.

Examples

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.

RepH for H a finite dimensional Hopf C^{*}-algebra

The category of H-modules of a finite dimensional factorizable Hopf C^{*}-algebra is a modular category.
$\mathcal{C}(\mathfrak{g}, q, I)$,
The category of tilting modules of the quantum groups $U_{q}(\mathfrak{g})$ (q^{2} a lth root of unity) module negligible morphisms.

Examples

$\operatorname{Rep}(D(G))$

Representation of the Drinfeld double of a finite group.

RepH for H a finite dimensional Hopf C^{*}-algebra

The category of H-modules of a finite dimensional factorizable Hopf C^{*}-algebra is a modular category.

$\mathcal{C}(\mathfrak{g}, q, I)$,

The category of tilting modules of the quantum groups $U_{q}(\mathfrak{g})$ (q^{2} a /th root of unity) module negligible morphisms. For example:

- $\operatorname{SU}(N)_{k}=\mathcal{C}\left(\mathfrak{s l}_{N}, N+k\right)$,
- $S O(N)_{k}$,
- $\operatorname{PSU}(N)_{k} \subset S U(N)_{k}$, for $\operatorname{gcd}(k, N)=1$.

Definition of fusion category in coordinates

Fusion rules
 Let $L=\left\{X_{1}=\mathbf{1}, X_{2}, \ldots, X_{n}\right\}$ be a set of representatives of isomorphism classes of simple objects.

Definition of fusion category in coordinates

Fusion rules

Let $L=\left\{X_{1}=\mathbf{1}, X_{2}, \ldots, X_{n}\right\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \rightarrow L$ such that $\mathbf{1}^{*}=\mathbf{1}$.

Definition of fusion category in coordinates

Fusion rules

Let $L=\left\{X_{1}=\mathbf{1}, X_{2}, \ldots, X_{n}\right\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \rightarrow L$ such that $\mathbf{1}^{*}=\mathbf{1}$.
- $X_{i} \otimes X_{j}=\bigoplus_{k} N_{i j}^{k} X_{k}$, so we have a colection of non-negative integres $N_{i j}^{k}$, for every $i, j, k \in\{1, \ldots, n\}$ and satisfy

Definition of fusion category in coordinates

Fusion rules

Let $L=\left\{X_{1}=\mathbf{1}, X_{2}, \ldots, X_{n}\right\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \rightarrow L$ such that $\mathbf{1}^{*}=\mathbf{1}$.
- $X_{i} \otimes X_{j}=\bigoplus_{k} N_{i j}^{k} X_{k}$, so we have a colection of non-negative integres $N_{i j}^{k}$, for every $i, j, k \in\{1, \ldots, n\}$ and satisfy

$$
\begin{aligned}
N_{1 a}^{b} & =\delta_{a b}=N_{a 1}^{b} \\
N_{a b}^{1} & =\delta_{a^{*} b} \\
N_{a b c}^{u} & :=\sum_{e} N_{a b}^{e} N_{e c}^{u}=\sum_{e^{\prime}} N_{a e^{\prime}}^{u} N_{b c}^{e^{\prime}}
\end{aligned}
$$

Definition of fusion category in coordinates

Fusion rules

Let $L=\left\{X_{1}=\mathbf{1}, X_{2}, \ldots, X_{n}\right\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \rightarrow L$ such that $\mathbf{1}^{*}=\mathbf{1}$.
- $X_{i} \otimes X_{j}=\bigoplus_{k} N_{i j}^{k} X_{k}$, so we have a colection of non-negative integres $N_{i j}^{k}$, for every $i, j, k \in\{1, \ldots, n\}$ and satisfy

$$
\begin{aligned}
N_{1 a}^{b} & =\delta_{a b}=N_{a 1}^{b} \\
N_{a b c}^{u} & :=\sum_{e} N_{a b}^{e} N_{e c}^{u}=\sum_{e^{\prime}} N_{a e^{\prime}}^{u} N_{b c}^{e^{\prime}}
\end{aligned}
$$

Definition of fusion category in coordinates

Fusion rules

Let $L=\left\{X_{1}=\mathbf{1}, X_{2}, \ldots, X_{n}\right\}$ be a set of representatives of isomorphism classes of simple objects.

- There is an involution $*: L \rightarrow L$ such that $\mathbf{1}^{*}=\mathbf{1}$.
- $X_{i} \otimes X_{j}=\bigoplus_{k} N_{i j}^{k} X_{k}$, so we have a colection of non-negative integres $N_{i j}^{k}$, for every $i, j, k \in\{1, \ldots, n\}$ and satisfy

$$
\begin{aligned}
N_{1 a}^{b} & =\delta_{a b}=N_{a 1}^{b} \\
N_{a b}^{1} & =\delta_{a^{*} b} \\
N_{a b c}^{u} & :=\sum_{e} N_{a b}^{e} N_{e c}^{u}=\sum_{e^{\prime}} N_{a e^{\prime}}^{u} N_{b c}^{e^{\prime}}
\end{aligned}
$$

F-matrices (6j-symbols)

Without loss of generality we can suppose that
$(a \otimes b) \otimes c=a \otimes(b \otimes c)$ for all $a, b, c, d \in L$.

F-matrices (6j-symbols)

Without loss of generality we can suppose that
$(a \otimes b) \otimes c=a \otimes(b \otimes c)$ for all $a, b, c, d \in L$.

F-matrices

Define

$$
\begin{aligned}
F_{a b c}^{d}: \operatorname{Hom}_{\mathcal{C}}(a \otimes b \otimes c, d) & \rightarrow \operatorname{Hom}_{\mathcal{C}}(a \otimes b \otimes c, d) \\
f & \mapsto f \circ a_{a, b, c}
\end{aligned}
$$

F-matrices (6j-symbols)

Without loss of generality we can suppose that
$(a \otimes b) \otimes c=a \otimes(b \otimes c)$ for all $a, b, c, d \in L$.

F-matrices

Define

$$
\begin{aligned}
F_{a b c}^{d}: \operatorname{Hom}_{\mathcal{C}}(a \otimes b \otimes c, d) & \rightarrow \operatorname{Hom}_{\mathcal{C}}(a \otimes b \otimes c, d) \\
f & \mapsto f \circ a_{a, b, c}
\end{aligned}
$$

The set of matrices

$$
\left\{F_{a b c}^{d} \in U\left(N_{a b c}^{d}\right) \mid a, b, c, d \in L\right\}
$$

is called the F-matrices and they satisfy the pentagonal identity (pentagon axiom).

Examples

Pointed fusion categories, $\mathcal{C}(G, \omega)$

Examples

Pointed fusion categories, $\mathcal{C}(G, \omega)$

- $L=G$ (a finite group)

Examples

Pointed fusion categories, $\mathcal{C}(G, \omega)$

- $L=G$ (a finite group)
- fusion rules are the product in G

Examples

Pointed fusion categories, $\mathcal{C}(G, \omega)$

- $L=G$ (a finite group)
- fusion rules are the product in G
- $F_{a, b, c}^{d}=\omega(a, b, c) \delta_{a b c, d}$, so is a function $\omega: G^{\times 3} \rightarrow U(1)$

Examples

Pointed fusion categories, $\mathcal{C}(G, \omega)$

- $L=G$ (a finite group)
- fusion rules are the product in G
- $F_{a, b, c}^{d}=\omega(a, b, c) \delta_{a b c, d}$, so is a function $\omega: G^{\times 3} \rightarrow U(1)$
- Pentagon equation is exactly 3-cocycle condition of group cohomology:

$$
\omega(a, b, c) \omega(b, c, d) \omega(a, b c, d)=\omega(a b, c, d) \omega(a, b, c d)
$$

Examples

Fibonnaci theory

Examples

Fibonnaci theory

- $L=\{\mathbf{1}, \mathbf{x}\}$

Examples

Fibonnaci theory

- $L=\{\mathbf{1}, \mathbf{x}\}$
- fusion rules $x^{2}=1+x\left(N_{x x}^{1}=N_{x x}^{x}=1\right)$

Examples

Fibonnaci theory

- $L=\{\mathbf{1}, \mathbf{x}\}$
- fusion rules $x^{2}=1+x\left(N_{x x}^{1}=N_{x x}^{x}=1\right)$
- $F_{x x x}^{x}=($

Examples

Fibonnaci theory

- $L=\{\mathbf{1}, \mathbf{x}\}$
- fusion rules $x^{2}=1+x\left(N_{x x}^{1}=N_{x x}^{x}=1\right)$
- $F_{x x x}^{x}=\left(\begin{array}{cc}\phi^{-1} & \phi^{-1 / 2} \\ \phi^{-1 / 2} & \phi^{-1}\end{array}\right)$

Examples

Fibonnaci theory

- $L=\{\mathbf{1}, \mathbf{x}\}$
- fusion rules $x^{2}=1+x\left(N_{x x}^{1}=N_{x x}^{x}=1\right)$
- $F_{x x x}^{x}=\left(\begin{array}{cc}\phi^{-1} & \phi^{-1 / 2} \\ \phi^{-1 / 2} & \phi^{-1}\end{array}\right)$

Not every fusion rules admit a set of F-matrices

Examples

Fibonnaci theory

- $L=\{\mathbf{1}, \mathbf{x}\}$
- fusion rules $x^{2}=1+x\left(N_{x x}^{1}=N_{x x}^{x}=1\right)$
- $F_{x x x}^{x}=\left(\begin{array}{cc}\phi^{-1} & \phi^{-1 / 2} \\ \phi^{-1 / 2} & \phi^{-1}\end{array}\right)$

Not every fusion rules admit a set of F-matrices
As an example the fusion rules:

- $L_{k}=\{\mathbf{1}, \mathbf{x}\}$
- $x^{2}=1+k x\left(N_{x x}^{1}=N_{x x}^{x}=k\right), k \in \mathbb{Z}^{>0}$
define a fusion category if and only if $k=1$ (Victor Ostrik).

Examples

Ising theory

- $L=\{\mathbf{1}, \sigma, \psi\}$
- fusion rules: $\sigma^{2}=1+\psi, \psi^{2}=1, \psi \sigma=\sigma \psi=\sigma$.
- $F_{\sigma \sigma \sigma}^{\sigma}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right), F_{\psi \sigma \psi}^{\sigma}=F_{\sigma \psi \sigma}^{\psi}=-1$.

Remarks

- The ising fusion rules has two possible realization (Isinig or Mayorama fermion) $F_{\sigma \sigma \sigma}^{\sigma}=\frac{-1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$.
- Ising categories are particular cases of a more general familily called Tambara-Yamagami categories.

Braided fusion category in coordinates

If (\mathcal{C}, c) is a braided fusion, without loss of generality we can suppose that $a \otimes b=a \otimes b$ for all $a, b \in L$.

Braided fusion category in coordinates

If (\mathcal{C}, c) is a braided fusion, without loss of generality we can suppose that $a \otimes b=a \otimes b$ for all $a, b \in L$.

R-matrices

Define

$$
\begin{aligned}
R_{a, b}^{c}: \operatorname{Hom}_{\mathcal{C}}(a \otimes b, c) & \rightarrow \operatorname{Hom}_{\mathcal{C}}(b \otimes a, c) \\
f & \mapsto f \circ c_{a, b}
\end{aligned}
$$

Braided fusion category in coordinates

If (\mathcal{C}, c) is a braided fusion, without loss of generality we can suppose that $a \otimes b=a \otimes b$ for all $a, b \in L$.

R-matrices

Define

$$
\begin{aligned}
R_{a, b}^{c}: \operatorname{Hom}_{\mathcal{C}}(a \otimes b, c) & \rightarrow \operatorname{Hom}_{\mathcal{C}}(b \otimes a, c) \\
f & \mapsto f \circ c_{a, b}
\end{aligned}
$$

The set of matrices

$$
\left\{R_{a, b}^{c} \in U\left(N_{a, b}^{c}\right) \mid a, b, c \in L\right\}
$$

is called the R-matrices and they satisfy the hexagonal identities (hexagon axioms).

Example

Pointed braided fusion category

Example

Pointed braided fusion category

- If $\mathcal{C}(G, \omega)$ has a braid structure then G is abelian
- $R_{x y}^{z}=c(x, y) \delta_{x y, z}$, so is a function $c: G \times G \rightarrow U(1)$
- Hexagonal equation is exacly the abelian 3-cocycle condition

$$
\begin{aligned}
\omega(y, z, x) c(x, y z) \omega(x, y, z) & =c(x, z) \omega(y, x, z) c(x, y) \\
\omega(z, x, y)^{-1} c(x y, z) \omega(x, y, z)^{-1} & =c(x, z) \omega(x, z, y)^{-1} c(y, z) .
\end{aligned}
$$

Examples

R-matrices for Fibonacci theory

$$
R_{\tau \tau}^{1}=e^{-4 \pi i / 5}, R_{\tau \tau}^{\tau}=e^{3 \pi i / 5}
$$

Examples

R-matrices for Fibonacci theory

$$
R_{\tau \tau}^{1}=e^{-4 \pi i / 5}, R_{\tau \tau}^{\tau}=e^{3 \pi i / 5}
$$

R-matrices for Ising theory

$$
R_{\psi \psi}^{1}=-1, R_{\sigma \psi}^{\sigma}=i, R_{\sigma \sigma}^{1}=e^{-\pi i / 8}, R_{\sigma \sigma}^{\psi}=e^{3 \pi i / 8}
$$

The Ising category admist tree (non-equivalent) R-matrices.

More examples: the Drinfeld center

Let \mathcal{C} be a (strict) tensor category and let $X \in \mathcal{C}$.

Definition

A half braiding $c_{-, ~}$: : $\otimes X \rightarrow X \otimes$. for X is a natural isomorphism such that $c_{Y \otimes Z, X}=\left(c_{Y, X} \otimes \mathrm{id}_{Z}\right)\left(\mathrm{id}_{Y} \otimes c_{Z, X}\right)$, for all $Y, Z \in \mathcal{C}$.

More examples: the Drinfeld center

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

More examples: the Drinfeld center

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs $\left(X, c_{-}, X\right)$, where $X \in \mathcal{C}$ and $c_{-, X}$ is a half braiding for X,

More examples: the Drinfeld center

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs $\left(X, c_{-}, X\right)$, where $X \in \mathcal{C}$ and $c_{-, X}$ is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}\left(\left(X, c_{-, X}\right),\left(Y, c_{-, Y}\right)\right)=$ $\left\{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y):\left(\operatorname{id}_{W} \otimes f\right) c_{W, X}=c_{W, Y}\left(\mathrm{id}_{W} \otimes f\right), \forall W \in \mathcal{C}\right\}$,

More examples: the Drinfeld center

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs $\left(X, c_{-}, X\right)$, where $X \in \mathcal{C}$ and $c_{-, X}$ is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}\left(\left(X, c_{-, X}\right),\left(Y, c_{-, Y}\right)\right)=$ $\left\{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y):\left(\operatorname{id}_{W} \otimes f\right) c_{W, X}=c_{W, Y}\left(\mathrm{id}_{W} \otimes f\right), \forall W \in \mathcal{C}\right\}$,
- tensor product: $\left(X, c_{-, X}\right) \otimes\left(Y, c_{-, Y}\right)=\left(X \otimes Y, c_{-, X} \otimes Y\right)$, where $c_{-, X} \otimes Y=\left(\mathrm{id}_{X} \otimes c_{-, Y}\right)\left(c_{-, X} \otimes \mathrm{id}_{Y}\right)$,

More examples: the Drinfeld center

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs $\left(X, c_{-}, X\right)$, where $X \in \mathcal{C}$ and $c_{-, X}$ is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}\left(\left(X, c_{-, X}\right),\left(Y, c_{-, Y}\right)\right)=$ $\left\{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y):\left(\operatorname{id}_{W} \otimes f\right) c_{W, X}=c_{W, Y}\left(\mathrm{id}_{W} \otimes f\right), \forall W \in \mathcal{C}\right\}$,
- tensor product: $\left(X, c_{-, X}\right) \otimes\left(Y, c_{-, Y}\right)=\left(X \otimes Y, c_{-, X} \otimes Y\right)$, where $c_{-, X} \otimes Y=\left(\mathrm{id}_{X} \otimes c_{-, Y}\right)\left(c_{-, X} \otimes \mathrm{id}_{Y}\right)$,
- braiding: $\sigma_{\left(X, c_{-, ~}\right),\left(Y, c_{-}, r\right)}=c_{X, Y}$.

More examples: the Drinfeld center

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ of \mathcal{C} is the following braided fusion category

- objects: pairs $\left(X, c_{-, X}\right)$, where $X \in \mathcal{C}$ and $c_{-, X}$ is a half braiding for X,
- morphisms: $\operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}\left(\left(X, c_{-, X}\right),\left(Y, c_{-, Y}\right)\right)=$ $\left\{f \in \operatorname{Hom}_{\mathcal{C}}(X, Y):\left(\operatorname{id}_{W} \otimes f\right) c_{W, X}=c_{W, Y}\left(\mathrm{id}_{W} \otimes f\right), \forall W \in \mathcal{C}\right\}$,
- tensor product: $\left(X, c_{-, X}\right) \otimes\left(Y, c_{-, Y}\right)=\left(X \otimes Y, c_{-, X} \otimes Y\right)$, where $c_{-, X} \otimes Y=\left(\mathrm{id}_{X} \otimes c_{-, Y}\right)\left(c_{-, X} \otimes \mathrm{id}_{Y}\right)$,
- braiding: $\sigma_{\left(X, c_{-, X}\right),\left(Y, c_{-}, r\right)}=c_{X, Y}$.

Theorem (Muger)

The Drinfeld center $\mathcal{Z}(\mathcal{C})$ is modular if \mathcal{C} is a spherical fusion category over \mathbb{C}.

Frobenius-Perron dimensions

Set \mathcal{C} be a fusion category.

Frobenius-Perron dimensions

Set \mathcal{C} be a fusion category.

- Let $\operatorname{lrr}(\mathcal{C})=\left\{X_{0}=\mathbf{1}, X_{1}, \ldots, X_{n}\right\}$ denote the set of isomorphism classes of simple objects in \mathcal{C}.

Frobenius-Perron dimensions

Set \mathcal{C} be a fusion category.

- Let $\operatorname{lrr}(\mathcal{C})=\left\{X_{0}=\mathbf{1}, X_{1}, \ldots, X_{n}\right\}$ denote the set of isomorphism classes of simple objects in \mathcal{C}.
- The rank of \mathcal{C} is the cardinality of the set $\operatorname{lrr}(\mathcal{C})$.

Frobenius-Perron dimensions

Set \mathcal{C} be a fusion category.

- Let $\operatorname{lrr}(\mathcal{C})=\left\{X_{0}=\mathbf{1}, X_{1}, \ldots, X_{n}\right\}$ denote the set of isomorphism classes of simple objects in \mathcal{C}.
- The rank of \mathcal{C} is the cardinality of the set $\operatorname{lrr}(\mathcal{C})$.
- Fusion rules: $X \otimes Y \simeq \bigoplus_{Z \in \operatorname{lr}(\mathcal{C})} N_{X, Y}^{Z} Z \quad(X, Y \in \operatorname{lrr}(\mathcal{C}))$.

Frobenius-Perron dimensions

Set \mathcal{C} be a fusion category.

- Let $\operatorname{lrr}(\mathcal{C})=\left\{X_{0}=\mathbf{1}, X_{1}, \ldots, X_{n}\right\}$ denote the set of isomorphism classes of simple objects in \mathcal{C}.
- The rank of \mathcal{C} is the cardinality of the set $\operatorname{lrr}(\mathcal{C})$.
- Fusion rules: $X \otimes Y \simeq \bigoplus_{Z \in \operatorname{lr}(\mathcal{C})} N_{X, Y}^{Z} Z \quad(X, Y \in \operatorname{lrr}(\mathcal{C}))$.
- The Frobenius-Perron dimension FPdim $X \in \mathbb{R}^{+}$of $X \in \mathcal{C}$ is the largest nonnegative eigenvalue of the matrix $\left(N_{X, Y}^{Z}\right)_{Y, Z \in \operatorname{lr}(\mathcal{C})}($ matrix of left multiplication by X w.r.t $\otimes)$.

Frobenius-Perron dimensions

Set \mathcal{C} be a fusion category.

- Let $\operatorname{lrr}(\mathcal{C})=\left\{X_{0}=\mathbf{1}, X_{1}, \ldots, X_{n}\right\}$ denote the set of isomorphism classes of simple objects in \mathcal{C}.
- The rank of \mathcal{C} is the cardinality of the set $\operatorname{lrr}(\mathcal{C})$.
- Fusion rules: $X \otimes Y \simeq \bigoplus_{Z \in \operatorname{lr}(\mathcal{C})} N_{X, Y}^{Z} Z \quad(X, Y \in \operatorname{lrr}(\mathcal{C}))$.
- The Frobenius-Perron dimension FPdim $X \in \mathbb{R}^{+}$of $X \in \mathcal{C}$ is the largest nonnegative eigenvalue of the matrix $\left(N_{X, Y}^{Z}\right)_{Y, Z \in \operatorname{lr}(\mathcal{C})}$ (matrix of left multiplication by X w.r.t $\left.\otimes\right)$.
- The Frobenius-Perron dimension of \mathcal{C} is

FPdim $\mathcal{C}=\sum_{X \in \operatorname{lr}(\mathcal{C})}(\text { FPdim } X)^{2}$.

More definitions

- A fusion category \mathcal{C} is pointed if all the simple objects are invertible \Leftrightarrow FPdim $X=1$.

More definitions

- A fusion category \mathcal{C} is pointed if all the simple objects are invertible \Leftrightarrow FPdim $X=1$.
- A fusion category \mathcal{C} is called integral if FPdim $X \in \mathbb{Z}^{+}$, $\forall X \in \mathcal{C}(\Leftrightarrow \mathcal{C} \simeq \operatorname{Rep} H, H$ semisimple quasi-Hopf [ENO]).

More definitions

- A fusion category \mathcal{C} is pointed if all the simple objects are invertible \Leftrightarrow FPdim $X=1$.
- A fusion category \mathcal{C} is called integral if FPdim $X \in \mathbb{Z}^{+}$, $\forall X \in \mathcal{C}(\Leftrightarrow \mathcal{C} \simeq \operatorname{Rep} H, H$ semisimple quasi-Hopf [ENO]).
- A fusion category \mathcal{C} is weakly integral if $F \operatorname{Fdim} \mathcal{C} \in \mathbb{Z}$.

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi: G \times G \rightarrow \mathbf{k}^{\times}$,

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi: G \times G \rightarrow \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G| \tau^{2}=1$.

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi: G \times G \rightarrow \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G| \tau^{2}=1$.

Tambara-Yamagami category $\mathcal{T} \mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi: G \times G \rightarrow \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G| \tau^{2}=1$.

Tambara-Yamagami category $\mathcal{T} \mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

- $\operatorname{Irr}(\mathcal{T} \mathcal{Y}(G, \chi, \tau))=G \bigcup\{X\}, X \notin G$.

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi: G \times G \rightarrow \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G| \tau^{2}=1$.

Tambara-Yamagami category $\mathcal{T} \mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

- $\operatorname{Irr}(\mathcal{T} \mathcal{Y}(G, \chi, \tau))=G \bigcup\{X\}, X \notin G$.
- Fusion rules $a \otimes b=a b, X \otimes X=\sum_{a \in G} a, a \otimes X=X$.

Example: Tambara-Yamagami categories

Data:

- an abelian finite group G,
- a non-degenerate symmetric bicharacter $\chi: G \times G \rightarrow \mathbf{k}^{\times}$,
- an element $\tau \in \mathbb{C}$ s.t. $|G| \tau^{2}=1$.

Tambara-Yamagami category $\mathcal{T} \mathcal{Y}(G, \chi, \tau)$: is the semisimple category with

- $\operatorname{Irr}(\mathcal{T} \mathcal{Y}(G, \chi, \tau))=G \bigcup\{X\}, X \notin G$.
- Fusion rules $a \otimes b=a b, X \otimes X=\sum_{a \in G} a, a \otimes X=X$.
- Duality $a^{*}=a^{-1}$ and $X^{*}=X$.

Example: Tambara-Yamagami categories

Remark

- $\operatorname{FPdim} X=\sqrt{|G|}$ and $\operatorname{FPdim} \mathcal{T} \mathcal{Y}(G, \chi, \tau)=2|G| \rightsquigarrow$ weakly integral but not necessarily integral.

Example: Tambara-Yamagami categories

Remark

- $\operatorname{FPdim} X=\sqrt{|G|}$ and $\operatorname{FPdim} \mathcal{T} \mathcal{Y}(G, \chi, \tau)=2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- $\mathcal{T Y}(G, \chi, \tau)$ admits a braiding $\Leftrightarrow G$ is an elementary abelian 2-group.

Example: Tambara-Yamagami categories

Remark

- FPdim $X=\sqrt{|G|}$ and FPdim $\mathcal{T} \mathcal{Y}(G, \chi, \tau)=2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- $\mathcal{T Y}(G, \chi, \tau)$ admits a braiding $\Leftrightarrow G$ is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G=<a>\simeq \mathbb{Z}_{2}$.

Example: Tambara-Yamagami categories

Remark

- FPdim $X=\sqrt{|G|}$ and FPdim $\mathcal{T} \mathcal{Y}(G, \chi, \tau)=2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- $\mathcal{T Y}(G, \chi, \tau)$ admits a braiding $\Leftrightarrow G$ is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G=<a>\simeq \mathbb{Z}_{2}$. In this case, $X^{\otimes 2}=1 \oplus a$.

Example: Tambara-Yamagami categories

Remark

- FPdim $X=\sqrt{|G|}$ and FPdim $\mathcal{T} \mathcal{Y}(G, \chi, \tau)=2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- $\mathcal{T Y}(G, \chi, \tau)$ admits a braiding $\Leftrightarrow G$ is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G=<a>\simeq \mathbb{Z}_{2}$. In this case, $X^{\otimes 2}=1 \oplus a$. Then, FPdim $X=\sqrt{2}$ and $\operatorname{FPdim} \mathcal{T} \mathcal{Y}=4$.

Example: Tambara-Yamagami categories

Remark

- FPdim $X=\sqrt{|G|}$ and FPdim $\mathcal{T} \mathcal{Y}(G, \chi, \tau)=2|G| \rightsquigarrow$ weakly integral but not necessarily integral.
- $\mathcal{T Y}(G, \chi, \tau)$ admits a braiding $\Leftrightarrow G$ is an elementary abelian 2-group.

Example

Ising categories \mathcal{I} are Tambara-Yamagami categories with $G=<a>\simeq \mathbb{Z}_{2}$. In this case, $X^{\otimes 2}=1 \oplus a$. Then, FPdim $X=\sqrt{2}$ and $\operatorname{FPdim} \mathcal{T} \mathcal{Y}=4$. Moreover, \mathcal{I} is modular.

Frame problem

Recall that the frame problem is:

Frame problem

Recall that the frame problem is:
Problem
Classify modular categories.

Frame problem

Recall that the frame problem is:
Problem
Classify modular categories.
Hard problem! Different approaches, for example:

Frame problem

Recall that the frame problem is:
Problem
Classify modular categories.
Hard problem! Different approaches, for example:

- Iow rank MC,

Frame problem

Recall that the frame problem is:

Problem

Classify modular categories.
Hard problem! Different approaches, for example:

- Iow rank MC,
- weakly integral MC,

Frame problem

Recall that the frame problem is:

Problem

Classify modular categories.
Hard problem! Different approaches, for example:

- Iow rank MC,
- weakly integral MC,
- MC of a given FPdim.

Rank finiteness for braided fusion categories

Theorem

(Bruillard, Ng, Rowell, Wang) 2013 There are finitely many modular categories of a given rank r.

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang) 2015
There are finitely many braided fusion categories of a given rank r.

Known results: Rank $\mathcal{C} \leq 5$

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Known results: Rank $\mathcal{C} \leq 5$

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5.

Theorem
If \mathcal{C} is a modular category with $2 \leq \operatorname{Rank} \mathcal{C} \leq 5$ it is
Grothendieck equivalent to one of the following:

Known results: Rank $\mathcal{C} \leq 5$

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5 .

Theorem

If \mathcal{C} is a modular category with $2 \leq \operatorname{Rank} \mathcal{C} \leq 5$ it is
Grothendieck equivalent to one of the following:

- PSU(2) ${ }_{3}$ (Fibonacci), SU(2) ${ }_{1}$ (pointed),

Known results: Rank $\mathcal{C} \leq 5$

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5 .

Theorem

If \mathcal{C} is a modular category with $2 \leq \operatorname{Rank} \mathcal{C} \leq 5$ it is
Grothendieck equivalent to one of the following:

- $P S U(2)_{3}$ (Fibonacci), SU(2) ${ }_{1}$ (pointed),
- $\operatorname{PSU}(2)_{5}, S U(2)_{2}$ (lsing), $S U(3)_{1}$ (pointed),

Known results: Rank $\mathcal{C} \leq 5$

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5 .

Theorem

If \mathcal{C} is a modular category with $2 \leq \operatorname{Rank} \mathcal{C} \leq 5$ it is
Grothendieck equivalent to one of the following:

- PSU(2) ${ }_{3}$ (Fibonacci), SU(2) ${ }_{1}$ (pointed),
- $\operatorname{PSU}(2)_{5}, S U(2)_{2}$ (Ising), $S U(3)_{1}$ (pointed),
- $\operatorname{PSU}(2)_{7}, S U(2)_{3}, S U(4)_{1}$, products,

Known results: Rank $\mathcal{C} \leq 5$

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang gave the classification of MC of rank at most 5 .

Theorem

If \mathcal{C} is a modular category with $2 \leq \operatorname{Rank} \mathcal{C} \leq 5$ it is
Grothendieck equivalent to one of the following:

- PSU(2) ${ }_{3}$ (Fibonacci), SU(2) ${ }_{1}$ (pointed),
- $\operatorname{PSU}(2)_{5}, S U(2)_{2}$ (Ising), $S U(3)_{1}$ (pointed),
- $\operatorname{PSU}(2)_{7}, S U(2)_{3}, S U(4)_{1}$, products,
- $P S U(2)_{9}, S U(2)_{4}, S U(5)_{1}, P S U(3)_{4}$.

Known results: FPdim \mathcal{C} fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

Known results: FPdim C fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

- \mathcal{C} MC, FPdim $\mathcal{C} \in\left\{p^{n}, p q, p q r, p q^{2}, p q^{3}, p q^{4}, p q^{5}\right\}$

Known results: FPdim C fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

- \mathcal{C} MC, FPdim $\mathcal{C} \in\left\{p^{n}, p q, p q r, p q^{2}, p q^{3}, p q^{4}, p q^{5}\right\} \rightsquigarrow$ group-theoretical.

Known results: FPdim C fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina, Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to advance in the classification program.

- \mathcal{C} MC, FPdim $\mathcal{C} \in\left\{p^{n}, p q, p q r, p q^{2}, p q^{3}, p q^{4}, p q^{5}\right\} \rightsquigarrow$ group-theoretical.
- Classification of non-group-theoretical modular \mathcal{C} with FPdim $\mathcal{C}=4 q^{2}$.

Main theorem: FPdim $\mathcal{C}=4 m$

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let \mathcal{C} be a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer.

Main theorem: FPdim $\mathcal{C}=4 m$

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let \mathcal{C} be a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer. Then \mathcal{C} is equivalent to a (Deligne) product of the following:

Main theorem: FPdim $\mathcal{C}=4 m$

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let \mathcal{C} be a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer. Then \mathcal{C} is equivalent to a (Deligne) product of the following: pointed categories, Ising categories and metaplectic categories.

Main theorem: FPdim $\mathcal{C}=4 m$

Recall that:

- A MC is pointed if all its simple objects are invertible. A cyclic \mathcal{P}_{n} of rank n is a pointed MC with the same fusion rules as $\operatorname{Rep}\left(\mathbb{Z}_{n}\right)$.

Main theorem: FPdim $\mathcal{C}=4 m$

Recall that:

- A MC is pointed if all its simple objects are invertible. A cyclic \mathcal{P}_{n} of rank n is a pointed MC with the same fusion rules as $\operatorname{Rep}\left(\mathbb{Z}_{n}\right)$.
- An Ising MC \mathcal{I} is a Tambara-Yamagami category with $G \simeq \mathbb{Z}_{2}$.

Main theorem: FPdim $\mathcal{C}=4 m$

Recall that:

- A MC is pointed if all its simple objects are invertible. A cyclic \mathcal{P}_{n} of rank n is a pointed MC with the same fusion rules as $\operatorname{Rep}\left(\mathbb{Z}_{n}\right)$.
- An Ising MC \mathcal{I} is a Tambara-Yamagami category with $G \simeq \mathbb{Z}_{2}$.
- A metaplectic m.c. \mathcal{M}_{N} is any MC with the same fusion rules as the $\mathrm{MC} \mathrm{SO}(N)_{2}$, for N odd. The rank of \mathcal{M}_{N} is $\frac{N+7}{2}$, the dimension is $4 N$ and it has two 1-dimensional objects and two simple objects of dimension \sqrt{N}, while the remaining simple objects have dimension 2. For example, $\mathcal{T} \mathcal{Y}\left(\mathbb{Z}_{N}, \chi, \nu\right)^{\mathbb{Z}_{2}}$, for N odd, is a metaplectic MC.

Main theorem: FPdim $\mathcal{C}=4 m$

We can give a more precise statement:
Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)
Suppose that \mathcal{C} is a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer.

Main theorem: FPdim $\mathcal{C}=4 m$

We can give a more precise statement:
Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)
Suppose that \mathcal{C} is a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer. Then either

- \mathcal{C} contains an object of dimension $\sqrt{2}$ and $\mathcal{C} \cong \mathcal{I} \boxtimes \mathcal{P}_{m}$,

Main theorem: FPdim $\mathcal{C}=4 m$

We can give a more precise statement:
Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)
Suppose that \mathcal{C} is a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer. Then either

- \mathcal{C} contains an object of dimension $\sqrt{2}$ and $\mathcal{C} \cong \mathcal{I} \boxtimes \mathcal{P}_{m}$,
- \mathcal{C} is non-integral with no objects of dimension $\sqrt{2}$ and $\mathcal{C} \cong$ $\mathcal{M}_{k} \boxtimes \mathcal{P}_{m / k}$, with $\mathcal{M}_{k} \cong \mathcal{T} \mathcal{Y}\left(\mathbb{Z}_{k}, \chi, \nu\right)^{\mathbb{Z}_{2}}$, or

Main theorem: FPdim $\mathcal{C}=4 m$

We can give a more precise statement:
Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)
Suppose that \mathcal{C} is a modular category with $\operatorname{FPdim}(\mathcal{C})=4 m$, where m is an odd square-free integer. Then either

- \mathcal{C} contains an object of dimension $\sqrt{2}$ and $\mathcal{C} \cong \mathcal{I} \boxtimes \mathcal{P}_{m}$,
- \mathcal{C} is non-integral with no objects of dimension $\sqrt{2}$ and $\mathcal{C} \cong$ $\mathcal{M}_{k} \boxtimes \mathcal{P}_{m / k}$, with $\mathcal{M}_{k} \cong \mathcal{T} \mathcal{Y}\left(\mathbb{Z}_{k}, \chi, \nu\right)^{\mathbb{Z}_{2}}$, or
- \mathcal{C} is pointed.

Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category \mathcal{C} is equivalent to one of the following:

Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)
A weakly integral rank 6 modular category \mathcal{C} is equivalent to one of the following:

- $\mathcal{I} \boxtimes \mathcal{P}_{2}$,

Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category \mathcal{C} is equivalent to one of the following:

- $\mathcal{I} \boxtimes \mathcal{P}_{2}$,
- $\mathcal{T} \mathcal{Y}\left(\mathbb{Z}_{5}, \chi, \nu\right)^{\mathbb{Z}_{2}}$, or

Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

A weakly integral rank 6 modular category \mathcal{C} is equivalent to one of the following:

- $\mathcal{I} \boxtimes \mathcal{P}_{2}$,
- $\mathcal{T} \mathcal{Y}\left(\mathbb{Z}_{5}, \chi, \nu\right)^{\mathbb{Z}_{2}}$, or
- \mathcal{P}_{6}, a cyclic MC of rank 6.

Application: Rank 7 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)
The only strictly weakly integral rank 7 modular categories are metaplectic categories.

Application: Rank 7 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)
The only strictly weakly integral rank 7 modular categories are metaplectic categories.
If \mathcal{C} is an integral modular category of rank 7 , then \mathcal{C} is pointed.

Main theorem: rank 8

Theorem (Bruillard, G., Hughes, Plavnik, Rowell, Sun)
There are no rank 8 strictly weakly integral modular categories.

