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Main results

Why Braided Fusion Categories?

Mathematics:

Complete invariants of finite depth subfactors.
Define (2+1)-TQFT (knots and 3-manifolds invariants).
Representations of quantum groups and Hopf algebras,
Vertex operator algebras.

Physics:
Unitary modular categories (i.e., non-degenerated unitary
braided fusion categories) are algebraic models of
anyons in two dimensional topological phases of matter
where simple objects model anyons.
In topological quantum computation, anyons give rise to
quantum computational models.
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Main results

What is a modular category?

Short answer (Mathematics): The category of unitary
representations of a finite quantum group

Fusion categories are monoidal categories with many of the
properties of the monoidal category of finite-dimensional
complex representations of a finite group.

Short answer (Physics): Anyons
Unitary modular categories (UMCs) are algebraic models of
anyons in topological phases of matter.
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Main results

Modular categories

A category C is a modular category if:

:
is an abelian C-linear category: HomC(X ,Y ) ∈ VecC.
is a monoidal category: (C,⊗,a,1, l, r).
is rigid: for all X ∈ C there exist left and right duals.
is semisimple: objects are finite direct sums of simple obj.
C has finitely many isomorphism classes of simple objects.
the spaces of morphisms are finite dimensional.
1 is a simple object of C.
C is braided: σX ,Y : X ⊗ Y ∼−→ Y ⊗ X natural.

C is ribbon: θX : X ∼−→ X natural and
θX⊗Y = (θX ⊗ θY )cY ,X cX ,Y .
C is non-degenerated: det(SX ,Y ) 6= 0, where
SX ,Y = TrC(σX ,Y∗σY∗,X ).
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Main results

Modular categories

Summarizing:

Definition
A modular category (MC) is a non-degenerate braided fusion
category over C, with a ribbon structure.
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Main results

A dictionary of terminologies between anyon theory
and UMC theory

Modular categories Anyonic system
simple object anyon
label anyon type or anyonic charge
tensor product a⊗ b fusion
fusion rules a× b fusion rules
triangular space V c

ab := Hom(a⊗ b, c) fusion/splitting space |axb → c〉
dual antiparticle
coevaluation /evaluation creation/annihilation
mapping class group representations generalized anyon statistics
nonzero vector in V (Y ) ground state vector
unitary F -matrices recoupling rules
twist θx = e2πisx topological spin
morphism physical process or operator
colored braided framed trivalent graphs anyon trajectories
quantum invariants topological amplitudes
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Main results

Examples

Rep(D(G))

Representation of the Drinfeld double of a finite group.

RepH for H a finite dimensional Hopf C∗-algebra

The category of H-modules of a finite dimensional factorizable
Hopf C∗-algebra is a modular category.

C(g,q, l),
The category of tilting modules of the quantum groups Uq(g)
(q2 a l th root of unity) module negligible morphisms. For
example:

SU(N)k = C(slN ,N + k),
SO(N)k ,
PSU(N)k ⊂ SU(N)k , for gcd(k ,N) = 1.
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Main results

Definition of fusion category in coordinates

Fusion rules
Let L = {X1 = 1,X2, . . . ,Xn} be a set of representatives of
isomorphism classes of simple objects.

There is an involution ∗ : L→ L such that 1∗ = 1.
Xi ⊗ Xj =

⊕
k Nk

ij Xk , so we have a colection of
non-negative integres Nk

ij , for every i , j , k ∈ {1, . . . ,n} and
satisfy

Nb
1a = δab = Nb

a1

N1
ab = δa∗b

Nu
abc :=

∑
e

Ne
abNu

ec =
∑
e′

Nu
ae′N

e′
bc
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Main results

F-matrices (6j-symbols)

Without loss of generality we can suppose that
(a⊗ b)⊗ c = a⊗ (b ⊗ c) for all a,b, c,d ∈ L.

F-matrices
Define

F d
abc : HomC(a⊗ b ⊗ c,d)→ HomC(a⊗ b ⊗ c,d)

f 7→ f ◦ aa,b,c

The set of matrices

{F d
abc ∈ U(Nd

abc)|a,b, c,d ∈ L}

is called the F-matrices and they satisfy the pentagonal
identity (pentagon axiom).
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Main results

Examples

Pointed fusion categories, C(G, ω)

L = G (a finite group)
fusion rules are the product in G
F d

a,b,c = ω(a,b, c)δabc,d , so is a function ω : G×3 → U(1)
Pentagon equation is exactly 3-cocycle condition of group
cohomology:

ω(a,b, c)ω(b, c,d)ω(a,bc,d) = ω(ab, c,d)ω(a,b, cd)
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Main results

Examples

Fibonnaci theory

L = {1,x}
fusion rules x2 = 1 + x (N1

xx = Nx
xx = 1)

F x
xxx =

(
φ−1 φ−1/2

φ−1/2 φ−1

)

Not every fusion rules admit a set of F -matrices
As an example the fusion rules:

Lk = {1,x}
x2 = 1 + kx (N1

xx = Nx
xx = k ), k ∈ Z>0

define a fusion category if and only if k = 1 (Victor Ostrik).
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Main results

Examples

Ising theory

L = {1, σ, ψ}
fusion rules: σ2 = 1 + ψ,ψ2 = 1, ψσ = σψ = σ.

Fσ
σσσ = 1√

2

(
1 1
1 −1

)
, Fσ

ψσψ = Fψ
σψσ = −1.

Remarks
The ising fusion rules has two possible realization (Isinig or

Mayorama fermion) Fσ
σσσ = −1√

2

(
1 1
1 −1

)
.

Ising categories are particular cases of a more general
familily called Tambara-Yamagami categories.
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Main results

Braided fusion category in coordinates

If (C, c) is a braided fusion, without loss of generality we can
suppose that a⊗ b = a⊗ b for all a,b ∈ L.

R-matrices
Define

Rc
a,b : HomC(a⊗ b, c)→ HomC(b ⊗ a, c)

f 7→ f ◦ ca,b

The set of matrices

{Rc
a,b ∈ U(Nc

a,b)|a,b, c ∈ L}

is called the R-matrices and they satisfy the hexagonal
identities (hexagon axioms).
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Main results

Example

Pointed braided fusion category

If C(G, ω) has a braid structure then G is abelian
Rz

xy = c(x , y)δxy ,z , so is a function c : G ×G→ U(1)
Hexagonal equation is exacly the abelian 3-cocycle
condition

ω(y , z, x)c(x , yz)ω(x , y , z) = c(x , z)ω(y , x , z)c(x , y)

ω(z, x , y)−1c(xy , z)ω(x , y , z)−1 = c(x , z)ω(x , z, y)−1c(y , z).
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Main results

Examples

R-matrices for Fibonacci theory

R1
ττ = e−4πi/5,Rτ

ττ = e3πi/5.

R-matrices for Ising theory

R1
ψψ = −1,Rσ

σψ = i ,R1
σσ = e−πi/8,Rψ

σσ = e3πi/8

The Ising category admist tree (non-equivalent) R-matrices.
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Main results

More examples: the Drinfeld center

Let C be a (strict) tensor category and let X ∈ C.

Definition
A half braiding c−,X : �⊗ X → X ⊗ � for X is a natural
isomorphism such that cY⊗Z ,X = (cY ,X ⊗ idZ )(idY ⊗ cZ ,X ), for
all Y , Z ∈ C.
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Main results

More examples: the Drinfeld center

The Drinfeld center Z(C) of C is the following braided fusion
category

objects: pairs (X , c−,X ), where X ∈ C and c−,X is a half
braiding for X ,
morphisms: HomZ(C)((X , c−,X ), (Y , c−,Y )) =
{f ∈ HomC(X ,Y ) : (idW ⊗ f )cW ,X = cW ,Y (idW ⊗ f ),∀W ∈ C},
tensor product: (X , c−,X )⊗ (Y , c−,Y ) = (X ⊗ Y , c−,X⊗Y ), where
c−,X⊗Y = (idX ⊗ c−,Y )(c−,X ⊗ idY ),
braiding: σ(X ,c−,X ),(Y ,c−,Y ) = cX ,Y .

Theorem (Muger)

The Drinfeld center Z(C) is modular if C is a spherical fusion
category over C.
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Main results

Frobenius-Perron dimensions

Set C be a fusion category.

Let Irr(C)= {X0 = 1,X1, . . . ,Xn} denote the set of
isomorphism classes of simple objects in C.
The rank of C is the cardinality of the set Irr(C).
Fusion rules: X ⊗ Y '

⊕
Z∈Irr(C) NZ

X ,Y Z (X ,Y ∈ Irr(C)).
The Frobenius-Perron dimension FPdim X ∈ R+ of X ∈ C
is the largest nonnegative eigenvalue of the matrix
(NZ

X ,Y )Y ,Z∈Irr(C)(matrix of left multiplication by X w.r.t ⊗).
The Frobenius-Perron dimension of C is
FPdim C =

∑
X∈Irr(C)(FPdim X )2.
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Main results

More definitions

A fusion category C is pointed if all the simple objects are
invertible⇔ FPdim X = 1.

A fusion category C is called integral if FPdim X ∈ Z+,
∀X ∈ C (⇔ C ' Rep H, H semisimple quasi-Hopf [ENO]).
A fusion category C is weakly integral if FPdim C ∈ Z.
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Main results

Example: Tambara-Yamagami categories

Data:
an abelian finite group G,

a non-degenerate symmetric bicharacter χ : G ×G→ k×,
an element τ ∈ C s.t. |G|τ2 = 1.

Tambara-Yamagami category T Y(G, χ, τ): is the semisimple
category with

Irr(T Y(G, χ, τ)) = G
⋃
{X}, X /∈ G.

Fusion rules a⊗ b = ab, X ⊗ X =
∑

a∈G a, a⊗ X = X .
Duality a∗ = a−1 and X ∗ = X .
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Main results

Example: Tambara-Yamagami categories

Remark

FPdim X =
√
|G| and FPdim T Y(G, χ, τ) = 2|G|  

weakly integral but not necessarily integral.

T Y(G, χ, τ) admits a braiding⇔ G is an elementary
abelian 2-group.

Example
Ising categories I are Tambara-Yamagami categories with
G =< a >' Z2. In this case, X⊗2 = 1⊕ a. Then,
FPdim X =

√
2 and FPdim T Y = 4. Moreover, I is modular.
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Main results

Frame problem

Recall that the frame problem is:

Problem
Classify modular categories.

Hard problem! Different approaches, for example:

low rank MC,
weakly integral MC,
MC of a given FPdim.
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Main results

Rank finiteness for braided fusion categories

Theorem
(Bruillard, Ng, Rowell, Wang) 2013 There are finitely many
modular categories of a given rank r .

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang) 2015

There are finitely many braided fusion categories of a given
rank r .
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Main results

Known results: Rank C ≤ 5

Results of Bruillard, Hong, Ng, Ostrik, Rowell, Stong, Wang
gave the classification of MC of rank at most 5.

Theorem
If C is a modular category with 2 ≤ Rank C ≤ 5 it is
Grothendieck equivalent to one of the following:

PSU(2)3 (Fibonacci), SU(2)1 (pointed),
PSU(2)5, SU(2)2 (Ising), SU(3)1 (pointed),
PSU(2)7, SU(2)3, SU(4)1, products,
PSU(2)9, SU(2)4, SU(5)1, PSU(3)4.
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Main results

Known results: FPdim C fixed

Results of Bruillard, Drinfeld, Etingof, G., Gelaki, Kashina,
Hong, Ostrik, Naidu, Natale, Nikshych, P, Rowell help to
advance in the classification program.

C MC, FPdim C ∈ {pn,pq,pqr ,pq2,pq3,pq4,pq5} 
group-theoretical.
Classification of non-group-theoretical modular C with
FPdim C = 4q2.
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Main results

Main theorem: FPdim C = 4m

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)

Let C be a modular category with FPdim(C) = 4m, where m is
an odd square-free integer.

Then C is equivalent to a (Deligne)
product of the following: pointed categories, Ising categories
and metaplectic categories.
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Main results

Main theorem: FPdim C = 4m

Recall that:
A MC is pointed if all its simple objects are invertible. A
cyclic Pn of rank n is a pointed MC with the same fusion
rules as Rep(Zn).

An Ising MC I is a Tambara-Yamagami category with
G ' Z2.
A metaplectic m.c. MN is any MC with the same fusion
rules as the MC SO(N)2, for N odd. The rank ofMN is
N+7

2 , the dimension is 4N and it has two 1-dimensional
objects and two simple objects of dimension

√
N, while the

remaining simple objects have dimension 2. For example,
T Y(ZN , χ, ν)

Z2 , for N odd, is a metaplectic MC.
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Main results

Main theorem: FPdim C = 4m

We can give a more precise statement:

Theorem (Bruillard, G., Ng, Plavnik., Rowell, Wang)

Suppose that C is a modular category with FPdim(C) = 4m,
where m is an odd square-free integer.

Then either
C contains an object of dimension

√
2 and C ∼= I � Pm,

C is non-integral with no objects of dimension
√

2 and C ∼=
Mk � Pm/k , withMk

∼= T Y(Zk , χ, ν)
Z2 , or

C is pointed.
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Main results

Application: Rank 6 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)
A weakly integral rank 6 modular category C is equivalent to
one of the following:

I � P2,
T Y(Z5, χ, ν)

Z2 , or
P6, a cyclic MC of rank 6.
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Main results

Application: Rank 7 case

Theorem (Bruillard, G., Ng, Plavnik, Rowell, Wang)
The only strictly weakly integral rank 7 modular categories are
metaplectic categories.

If C is an integral modular category of rank 7, then C is pointed.
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Main results

Main theorem: rank 8

Theorem (Bruillard, G., Hughes, Plavnik, Rowell, Sun)
There are no rank 8 strictly weakly integral modular categories.
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