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“The steady progress of physics requires for its
theoretical formulation a mathematics which get
continually more advanced. This is only natural and
to be expected. (...) the advance in physics is to be
associated with continual modification and
generalisation of the axioms at the base of
mathematics rather than with a logical development
of any one mathematical scheme on a fixed
foundation.”

P. A. M. Dirac in the paper on magnetic monopoles (1931)



“...under the demoralizing influence of quantum
field theoretic perturbation theory (infested with
divergences), the mathematics required for a
theoretical physicist was reduced to a rudimentary
knowledge of the Latin and Greek alphabet.”

Res Jost



Consider a manifold M with a boundary ∂M .

Nowadays there are discussions about quantum systems on
such M with

I low-lying excitations localised near ∂M ,

I bulk levels which are gapped.

Often these edge levels are called “topological”.



Of these quantum Hall edge states violate P and T .

We discuss a new class of edge states conserving P and T .

They occur at the interface of say superconductor and normal
metal.

They occur for integral and half-integral spin.

They occur in all dimensions.

Provide models for topological insulators?



Emergent Edge States in QHE

Lagrangian

L =
k

4π

∫
M

d2x εijkAi∂jAk (1)

No bulk excitations since

Fij = ∂iAj − ∂jAi = 0 in M . (2)

This is Gauss law

∂1A2 − ∂2A1 = 0 in M . (3)

Write this as

k

2π

∫
M

d2xεij (∂iΛ) Aj ≈ 0 for Λ|∂M = 0. (4)



Now can consider

Q[χ] =
k

2π

∫
M

d2xεij ∂iχ Aj , χ|∂M 6= 0. (5)

Also

[ Ai(x) , Aj(y) ]x0=y0 = i
2π

k
εijδ

2(x , y), (6)

⇒ [ Q[χ1] , Q[χ2] ] = i
k

2π

∫
M

dx εij ∂iχ1 ∂jχ2

= i

∫
∂M

dθ (χ1∂χ2) (R , θ). (7)

Q[χ] describes edge states.



This is the algebra of Massless Scalar Fields on ∂M :

[ ϕ(θ) , ϕ̇(θ′) ]t=t′ = iδ(θ − θ′) (8)

=⇒ [ ∂θϕ(θ) , ϕ̇(θ′) ] = i∂θδ(θ − θ′). (9)

Let

ϕ+ =
1√
2

(∂t + ∂θ)ϕ(θ), (10)

then

[ ϕ+(θ) , ϕ+(θ′) ] = i∂θδ(θ − θ′). (11)

If

q[χ1] =

∫
dθ χ1(θ)ϕ+(θ), (12)

[ q[χ1] , q[χ2] ] = i

∫
dθ′ (χ1∂θχ2) (θ′) (13)

Bal, Bimonte, Gupta, Stern (1992)



The above fields describe quantum Hall edge states.

We now shift to edge states conserving P and T .



The Laplacian ∇2 and Robin Boundary

Conditions

In QFT, to quantise massless tensor fields ϕ, we solve

−∇2un = λnun, (14)

and expand

ϕ =
∑

anun. (15)

We need
λn ≥ 0. (16)

That is ok on Rd .



But suppose manifold M has boundary ∂M . Then

−∇2 � 0 (17)

for Robin boundary conditions(
~n · ~∇

)
u = mu, m > 0. (18)

Known already to Lieb and Liniger (1993).

Later found by Bal, Chandar, Ercolessi, Govindarajan and
Shankar (1994).

Used for black hole physics by Govindarajan and Tibrewala
(2011).



Example in 1d : Laplacian on M = [0,∞)

Consider∫
M

dx u
(
−∂2

x

)
u(x) :=

(
u,−∂2

x u
)

= (∂xu, ∂xu) + u(0)∂xu(0).

Here limx→∞ u(x) = 0.

Now, fix Robin boundary conditions:

∂xu(0) = −~n · ~∇u(0) = −mu(0).

Therefore, (
u,−∂2

x u
)

= (∂xu, ∂xu)︸ ︷︷ ︸
>0

−m u(0)u(0)︸ ︷︷ ︸
<0

One concludes that ∃ u with ~n · ~∇u = −mu localised near
x = 0 such that (

u,−∂2
x u
)
< 0.



Argument valid in all dimensions d if

M has compact boundary ∂M

Set ∫
M

dVM u(x)
(
−∇2

)
u(x) :=

(
u,−∇2u

)
(19)

Then (
u,−∇2u

)
=
(
~∇u, ~∇u

)
−
∫
∂M

dV∂M
u ~n · ~∇u

=
(
~∇u, ~∇u

)
︸ ︷︷ ︸

>0

−m

∫
∂M

dV∂M
uu︸ ︷︷ ︸

<0

(20)



In fact, Asorey, Ibort and Marmo:

∃ sequence u(n), with
(
u(n), u(n)

)
= 1,

1. which fulfil ~n · ~∇u(n)|∂M = nm u(n),

2. are edge localised with width

∼ 1

nm
→ 0, as n→∞, (21)

3.
(
u(n),−∇2u(n)

)
→ −∞, as n→∞!



Thus,

a)
(
u(n), u(n)

)
= 1 implies that u(n) is in Hilbert

space for all n.

b) By 3),
(
u(n),−∇2u(n)

)
≈ non-relativistic energy

→ −∞.

c) By 2), they get narrower and narrower as n→∞

Item c) means
∣∣(ψ, u(n)

)∣∣→ 0 for any fixed ψ in Hilbert

space. We say u(n) → 0 weakly.



As n→∞, we approach Dirichlet boundary condition.

So, there exist a sequence of progressively localised edge states
u(n) with energies → −∞ as m→∞ and weakly converging
to 0 !

Can we understand them?



Boundaries ∂M of Superconductors

Figure: Electromagnetic field is massless in RN\M, but it has
London mass m in M, the Meissner effect: Ai ∼ emrai .



Meissner effect

For static solution
Ai ∼ em(r−R), (22)

as r decreases from R , i.e., ∂M .

This implies Ȧi = mAi : Robin boundary condition.

Also (
−∇2 + m2

)
Ai = 0. (23)



So Laplacian in superconductor has Robin boundary condition
Ȧi = mAi on ∂M .

Hence it has edge states!

Photon massive in M and its mass lifts the edge levels from
negative to positive values. Numerically

m2 ≥ m2. (24)



On Edge Levels

Let us consider massive scalar fields ϕ with Robin boundary
condition:

n · ∇ϕ = mϕ, m > 0 on ∂M . (25)

The field ϕ can be a “pseudo-Goldstone” boson.

Scalar fields are easier to discuss.

In spherical coordinates,

−∇2 = − ∂2

∂r 2
− 1

r 2
∇2
θ, (26)

−∇2
θ ≥ 0. (27)

Lowest level has

−∇2
θ ' 0 for zero angular momentum. (28)

Angular excitation are spaced by 1
r2 .



On Bulk Levels

If χ is a bulk level, χ|∂M = 0, then

(
χ,
(
−∇2 + m2

)
χ
)

=
(
~∇χ, ~∇χ

)
+ m2 (χ, χ)

≥ m2 (29)

for normalised χ.

Bulk is gapped.



On Parity P and Time-Reversal T

Robin condition preserve P and T

I P is ok: ~n · ~∇ is P or orientation-reversal invariant.

I T is ok: m is real.

Edge states must observable.

May affect Casimir energies?



An Example

M = [0, L] with Dirichlet at 0 and Robin at L.

Figure: This example is prototype of what happens in all
dimensions.



There is one level ψ0 localised near x = L with energy ≈ −m2

for −∂2
x :

−∂2
xψ(x) ' −m2ψ(x). (30)

For let

ψ(x) = αe−Kx + βeKx (31)

−∂2
xψ(x) = −K 2ψ(x). (32)

I x = 0:

ψ(0) = 0 ⇒ α + β = 0

⇒ ψ(x) = e−Kx − eKx . (33)

I x = L:

∂xψ(L) = mψ(L)

⇒ m = K
eKL + e−KL

eKL − e−KL
≡ f (K ). (34)



Can assume K > 0 since K < 0 only makes ψ → −ψ.
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Figure: Plot of f (K ) = K eKL+e−KL

eKL−e−KL versus K

For large m, near Dirichlet point, f (K ) ' K ,

K ' m and (35)

ψ(x) ≈ e−mx − emx . (36)



e+mx dominates near x = L.

No edge states near x = 0 where |ψ| is small.

We see
−∂2

xψ ' −m2ψ. (37)

So for mass m ' m,

−∂2
x + m2 (38)

has a low-lying level localised at x = L.

Bulk is gapped by m2



The Edge States for Dirac Operator

Topological insulators: described in literature by Dirac
operator with edge states with small gap and gapped bulk.

P , T preserved for space dimension d odd.

There is “spin-momentum locking”.

Such Dirac operators emerge from previous analysis.



The d-dimensional Dirac operator D is the Dirac-Hamiltonian
of (d + 1) dimensions:

D = −iγ i∇i + mγd+1 (39)

γd+1 = β of d = 3,

γµγν + γνγµ = 2δµν (40)

It implies D2 = −∇2 + m2 = −Laplacian + m2.

QUESTION: If D2 has edge states, does D have them too?

For that we must understand boundary conditions for D



Boundary Conditions for D

We have Hilbert space

H(M) on M , with (ψ, χ) =

∫
M

dVM ψ†χ.

H(∂M) on ∂M , with 〈ψ, χ〉 =

∫
∂M

dVM−1 ψ
†χ.

Let K be any self-adjoint operator on ∂M with no zero
eigenvalue and anti-commuting with γ · n:

γ · n K = −K γ · n. (41)



We can write

H(∂M) = H(−)(∂M)︸ ︷︷ ︸
K<0

⊕H(+)(∂M)︸ ︷︷ ︸
K>0

,

(
ψ(+), ψ(−)

)
= 0 if ψ(±) ∈ H(±)(∂M).

Boundary condition – or domain – of D:

ψ|∂M ∈ H(−)(∂M). (42)



So
(χ,Dψ)− (Dχ, ψ) = −i〈χ, γ · n ψ〉. (43)

But if

Kψj = −|λj |ψj , |λj | > 0,

K γ · n ψj = +|λj | γ · n ψj . (44)

=⇒

γ · n H(−)(∂M) = H(+)(∂M)

〈χ, γ · n ψ〉 = 0. (45)

So D is symmetric. Self-adjointness also follows easily.



Atiyah-Patodi-Singer (APS) boundary condition:

K = iγ · n A(m). (46)

where

D = −iγ · n Dr + A(m), (47)

A(m) = −i~γθ · ∇θ + mγd+1, (48)

with −i~γθ · ∇θ the tangential part of D.

Below we choose
K = iγ · n A(µ) (49)

to get low-lying edge states.

Here m, µ can be different.

m, µ here are like m, m̄ for −∇2.

We can tune m and µ for optimal results.



Example: M = (−∞, 0], ∂M = {0}

D = −iσ1∂1 + σ2m, (50)

D2 = −∂2
1 + m2, (51)

and

A(m) = σ2m. (52)

So

K = iσ1A(m) = −mσ3 (53)

σ1K = −Kσ1. (54)



In addition, for edge state at x = 0, we look for ψ fulfilling

ψ̇ = mψ. (55)

This is suggested by Robin boundary conditions.

Now we want (Dψ,Dψ) to be small for edge state:

(Dψ,Dψ) = iψ†(0) σ1 Dψ(0) +
(
ψ,D2ψ

)
, (56)

where the second term is governed by a low energy edge state
by (55).

Now,

iσ1
(
−iσ1∂1 + mσ2

)
ψ|x=0 = iσ1

[
−iσ1ψ̇(0) + mσ2ψ(0)

]
=
(
m −m σ3

)
ψ(0).

gives boundary term in (Dψ,Dψ):

m ψ(0)†ψ(0)−m ψ(0)† σ3 ψ(0). (57)



First term is large. So cancel it with

ψ(0) =

(
ξ
0

)
, (58)

and regularising mass
m = m. (59)

Note that

Kψ(0) = −mσ3ψ(0) = −mψ(0) < 0, (60)

as needed.

Then the edge state is

ψ(x) = emx

(
ξ
0

)
. (61)

It has zero energy
Dψ(x) = 0. (62)

State ψ is normalisable and localised near x = 0.



D has also eigenstates of form

e ikx η + e−ikx ζ. (63)

Its full set of eigenstates are complete.

Can be generalised to higher dimensions.



Remarks

I We have explicitly calculated the low-lying edge states for
disk.

I Proved spin-momentum locking or net spin transport.

Figure: It shows net ⊕ spin transport to left.



I A Majorana or reality condition on K .

I P and T invariance for Dirac operator if d is odd.

I P and T seems broken by mass term of Dirac operator if
d is even.

I Last two points are still being examined.


