We consider a particle leaving on a plane whose dynamical variables satisty the following deformed Heisenberg algebra:
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where the momenta commutator is proportional to the pseudospin o3 and 6 is a parameter with dimensions of mo-
mentum (we take A = 1 and return to full units when necessary). This algebra can be realized in terms of ordinary
coordinates and momenta by means of a non-Abelian Bopp’s shift as X; — x;, P; — p; + 0o; (where o; are the
Pauli matrices).

We consider the direct generalization of the (nonrelativistic) Hamiltonian of a particle of charge e and mass m, min-

imally coupled to an external electromagnetic field A, in the Coulomb gauge, V - A = 0. We also take Ay = 0.
Then,

- (P— eA)’  (P—eA+ o)’
which can also be written as )
— eA
H:(p 2; ) +vpo-(p—€eA), (0.3)

where we have defined the Ferms velocity vp = % and subtracted the constant 62 /m.
In the m — oo limit, with fixed vy > 0, we get the linear Hamiltonian usually employed to describe the effective low
energy excitations around the Fermi points of graphene (2, 6, 7], which justifies our proposal.

e The Free Case

. . . . . 1 .
First, we consider the A = 0 case. There are two linearly independent constant solutions, ( O) and (?), with

vanishing eigenvalue.
On the other hand, for k # 0, if we write
() = e *x(k) (0.4)

with y(k) € C2, we get the dispersion relation (approximately linear for small |k|, see Figure)

k2
Ek)=—= k 0.5
() =5 +vp [k, 0.5
which can be compared with the isotropic terms in the dispersion relation obtained from the tight binding model

for graphene around one Fermi point K,

FEs(k) = st §a|k| -~ §CLZk2 Sin(3(9)] +t [—ZanZ +- 3] + O (|k|3) , (0.6)

where a ~ 1.42A, tan(f) = ko/k1 and s = £1. This leads to the identification vy = %a,t and m = —2/ (9t'a%) < 0
(a negative mass parameter).
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e Constant Magnetic Field Perpendicular to the Plane
We now consider the Landau problem, with

A=Brié = 0A—0bA =B and V- -A=0. (07)

The eigenvalue problem can be solved to get the non-degenerate spectrum

A
n,s = 27;’; = — (UF\/eB) % [n—l— 1 +54/1+8w?(n + 1)} , neN, (0.8)
with s = +1 and w = —% > (), and a linearly independent solution with & = eB/2m = —eB/2|m| < 0 (a

hole with small energy).
Since we are only interested in the low energy excitations and w ~ 103 for B ~ 10 Tesla, it is sufficient to retain

(See Figure 2)
En,s = (UF@) {—s\/Q(n + 1) — ntl + O (w_z) } : (0.9)
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The Hall conductivity has a topological character and can be calculated from the weak field and gradient expansion of
the effective action of the system. In our case, we know the exact energy eigenvalues of our model (a discrete spectrum
with no accumulation points) and so, we can employ a more direct evaluation method (a (-function approach), based
on the relation between the external electromagnetic field and the conserved current, whose density is given by

V= el (0.11)

It is known that, in 241 dimensions, this relation is dominated by a Chern-Simons term which gives the Hall conduc-
tivity in terms of the density mean value,

(Jo) = Jo = OrybB . (0.12)

[f we consider the partition function (in the Grand Canonical ensamble) for fluctuations around K at inverse temper-
ature 8 and chemical potential 1, the mean number of particles is given by

Olog Z o
o (8, 1, B) =ﬁ/d2w —B. (0.13)
Moreover,
log Z(06, u, B) = log Det (D) dT Dy (0.14)
9] = 10 e = —— 17T — .
g y s g du A 0 ;
where A is an arbitrary mass scale and D = _a% + pu— H is a differential operator defined on a domain of anti-periodic functions of 7 € [0, 5].
Then,
. d )\l,n,s - )\l,() v
log Z(8, 1, B) = —— lz ( A ) + zl: (T) . (0.15)
TS u—0
with

Mns =wp+p—Ens, Ao =w+pu— &), (0.16)

where &, s y & are the eigenvalues of our Hamiltonian and wj are the Matsubara frequencies.
Let us first consider the contribution of the lowest level. We can write
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(0.17)

Taking into account that we are interested in the mean particle number with respect to the neutral material (p = 0), we get for the contribution
of the Landau level with energy &) to the Hall conductivity at zero temperature

Be | 0 0
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Therefore, for positive &), we get a contribution (+%) to o,y it > & and zero otherwise. On the other hand, for negative & we get a

contribution (—%) if u < &y and zero otherwise.

Similar results are obtained for other Landau levels. Then, taking into account that the complete spectrum is the union of the spectra of both
Dirac points, and considering the additional degeneracy corresponding to the two polarizations of the electron spin we get, in full units and
for a given chemical potential u, the Hall conductivity

_ 2¢?

ooy =40 | D 1| =6=m| Y 1] (0.19)

0<€E<p u<&<O

For small |u| (but |u| > |&| = UFQ{UG_B ), 422 O_a:y‘ = 1. This is the characteristic behavior of the anomalous integer quantum Hall effect of

graphene, which shows a nonvanishing Hall conductivity for small (positive or negative) values of the Fermi level.
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We have studied a simple non-relativistic model, obtained through the introduction of a non-Abelian magnetic field proportional to the
pseudo-spin, to describe the low energy excitations of graphene. The parameters of the model can be identified with those in the tight binding
model employed to describe the low energy expansion of the dispersion relation around a Dirac point, K, when the leading order terms for
both nearest and next-to-nearest-neighbor interactions are retained.

We have obtained an almost doubly degenerate spectrum, where the degeneracy is broken by O (w‘l) terms, with w = % ~ 103 for realistic

values of the parameters. Moreover, there is one quasi-particle state of energy £'¢ = eB/2|m| and one hole state of energy & = —eB/2|m)|.
The Hall conductivity of the model has been obtained from the partition function, employing the (-function approach to evaluate the asso-
ciated functional determinant in the zero temperature limit. This led us to a rather general expression, valid for the Landau problem of a




