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1. INTRODUCTION

The theory of open quantum systems is of fundamental im-
portance to properly describe real systems, which do not
exist in complete isolation [1, 2]. Among the main ap-
proaches usually considered to incorporate environmental
effects in the dynamics of the system under study, non-
linear Schrödinger equations and system-plus-bath tech-
niques are two of the most representative ones. In this
work, a non-Markovian generalized Schrödinger-Langevin
equation is derived from the system-plus-bath approach [7].
Specifically Bohmian mechanics is shown to be of great im-
portance in order to obtain a compact expression for the
damping potential, which reduces to the well known situ-
ations reported in the literature, where Markovian and/or
non-linear effects are considered. Finally, an application
regarding the generalized uncertainty principle (GUP) as a
quantum gravitational principle is presented [8].

2. PRELIMINARIES

Let us consider the Caldeira-Legget model [4] for a one di-
mensional system. This approach models a massive parti-
cle in a heath bath, consisting of an infinite set of harmonic
oscillators. From these considerations the following total
Hamiltonian arises:

H = Hs + Hb + Hsb. (1)

The first term is the Hamiltonian of an isolated particle in
presence of a potential,

Hs =
p2

m
+ V (x). (2)

The Hamiltonian of the bath is
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and the coupling between the system and the bath is
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− 2dif (x)xi

]
. (4)

The time evolution of the position x of the system is given
by the Heisenberg equations of motion. After eliminating
the bath degrees of freedom, we can arrive at the general-
ized Langevin equation (GLE) [2]:

mẍ(t) +
∂V (x)

∂x
+ mf ′(x(t))

∫ t

0
α(t− τ )f ′(x(τ ))ẋ(τ )dτ (5)

= f ′(x(t))ξ(t).

where the memory kernel and the noise term are given, re-
spectively, by
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In general we are not going to restrict our study to the
Markovian regime, where the kernel is a δ-function in time.
We will look for an effective quantum Hamiltonian from
which, using the Heisenberg evolution equations, Eq. (5)
can be obtained. For that purpose, we start by considering
the following Schrödinger equation

ı~
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+ V (x) + Vd + Vr

]
Ψ, (8)

where Vr and Vd correspond to random and dissipative ef-
fective potentials which try to capture all the information
present in the GSLE regarding randomness and dissipa-
tion, respectively.

By working in the Heisenberg picture of quantum mechan-
ics we obtain the evolution of the momentum operator and

applying the Ehrenfest theorem in Eq. (5) we obtain another
equation for expectation values of the forces. After identi-
fying terms in the two previous expressions, the random
potential is shown to be given by (the linear and Markovian
case is discussed, for example, in [1])

Vr(x, t) = −f (x)ξ(t) (9)

In particular, if only linear coupling and a Markovian regime
is considered, the expression first obtained by Kostin is re-
covered [3].

Vd =
~α
2ı

ln (ψ(x, t)/ψ∗(x, t)) (10)

Now we are up to the challenge of finding the most general
dissipative potential such that under the Heisenberg evolu-
tion equations it will effectively describe the correct dissi-
pative term appearing in Eq. (5). Following the same pro-
cedure as for the random potential, the following integro-
differential equation for Vd can be obtained∫

Ψ∗
(
−∂Vd
∂x

)
Ψdx = (11)

m
∫

Ψ∗
(
f ′(x(t))

∫ t

0
α(t− τ )f ′(x(τ ))ẋ(τ )dτ

)
Ψdx.

Solving Eq. (11) in terms of Vd represents a tough problem
whose solution, under very general assumptions, is far from
being trivial [7].

3. A POSIBLE SOLUTION BASED ON THE BOHMIAN
APPROACH

Let us tackle the problem of solving Eq. (11) whithin the
Bohmian approach. In this formulation the wave-function is
expressed in its polar form as Ψ(x, t) = A(x, t)e

ı
hS(x,t). Us-

ing the fact that the phase of the wavefunction (the quantum
action) is related with the momentum by ∂S(x,t)

∂x = p(x, t),
a non-Markovian effective dissipative potential can be ex-
pressed as

Vd =

∫
df

dx

[(
df

dx
p

)
∗ α
]
dx (12)

Although we have considered the simple one-dimensional
case, the generalization to higher dimensions is straight-
forward, see [7]. Therefore, the non-linear non-Markovian
GSLE can be finally written as
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=

[
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∇2 + V (r) + Vd(r, t) + f (r)ξ(t)

]
Ψ, (13)

In addition, we would like to recall the reader that Eq. (13) is
free for any ansatz. That is, we have not chosen any partic-
ular form for the dissipative force in the Bohmian framework.

4. APPLICATION TO THE GENERALIZED
UNCERTAINTY PRINCIPLE

Gravity plays a mayor role in the existence of a fundamen-
tal measurable length which modifies the Heisenberg un-
certainty principle. This modification known as Generalized
Uncertainty Principle (GUP) [8]. To understand this we now
define a deformed commutation relation by means of

xi = xoi pi = poi(1− γp0 + O(p2)) (14)

Where [xoi, poj] = ihδij ; p2
o = Σ3

j=1pojpoj and γ = γo
mpc

(γo is
adimensional).

Consider a one dimensional non-relativistic system that
possesses a Hamiltonian of the form: H = p2

2m + V (x).
From the relationships (14) a deformed conmutator can be
established. Using the Heisenberg picture of quantum me-
chanics one can get the evolution equation in configuration
space, namely

ẍ + γ̃ẋ +
V
′
(x)

m
= 0 (15)

Where γ̃ = −2γom
mpc

V
′
(x). This clearly resembles a

Schödinger Langevin equation with a position-dependant
friction. Using the formalism here developed we can con-
sider (11) with an ohmic dissipation (α = γδ(t)) a non-linear
coupling (f (x)) and after dropping the noise term is [5]:

mẍ + mγ[f
′
(x)]2ẋ + V

′
(x) = 0 (16)

by comparing (15) and (16) we conclude γ̃ = −mγ[f
′
(x)]2

or by recalling the definition of γ̃

2γoV
′
(x)

mpc
= −γ[f

′
(x)]2 (17)

From this one can define a quantum gravity friction as:

γQG ≡
2γo
mpc

(18)

By means of (14) and (18) we can describe the system by
a classical Hamiltonian given by

H =
p2

2m
+ V (x)−

γQGp
3

2m
(19)

Using the Bohmian approach here presented, under this
regime, the dissipative potential takes the form:

Vd = −
γQGS̃

2
= γQG(pV (x)) (20)

Where S̃ is defined as
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And is the coupling-dependant phase of the wave function.
Therefore the GUP dissipative Hamiltonian [8] equivalent of
equation (19) is

HGUP =
p2

2m
+ V (x)[1− γQGp] + O(γ2

o) (21)

This Hamiltonian is correctly predicted by (13), under this
considerations, by introducing the potential given by (20)
and dropping the noise term. Namely:

HGSLE =
p2

2m
+ V (x) + S̃ =

p2

2m
+ V (x)− γQG(pV (x))

or regrouping terms

HGSLE =
p2

2m
+ V (x)[1− γQGp] = HGUP (22)

From this, the selected GUP can be seen as a dissipative
term in the system. Its remarkable that the generalized
Schrödinger Langevin Hamiltonian here presented correctly
predicts the Hamiltonian plus dissipative GUP term (HGUP )
derived by a different mean.

5. CONCLUSIONS

In this work we have derived a generalized non-Markovian
and non-linear Schrödinger–Langevin equation compatible
with a Caldeira–Leggett approach. Bohmian techniques
have been shown to be of great importance in order to have
a compact expression for the non-Markovian damping po-
tential. This potential reduces to the well know situations re-
ported in the literature when simple Markovian and/or non-
linear effects are considered as was evidenced in the ap-
plication presented. Although this model does not include
temperature, it may be useful to describe simple condensed
phase models within the quantum trajectory perspective,
which provides an intuitive visualization of the dynamics.
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