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ABSTRACT
Currently a topic of high scientific interest is the quantum simulation of many-body spin interactions. Toric code model is highlighted, in which the spins are
located at the edges of a square lattice on the surface of a torus. In this paper the Hamiltonian of the system is initially dentified. If the lattice is of dimension

k X k, the Hamiltonian is a matrix of dimension 22k* % 22k* The many-qubit time evolution operator of the system is then obtained. Further to this, universal
logic quantum gates are constructed. This work may have relevance to establish a representation of anyons by using the toric code model, which would
simulate topological quantum gates.
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Introduction Toric Code Model

Quantum computing = Requires a fault
tolerant mechanism

The toric code is a quantum error correction code and
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represent a plaquette and a vertex of the network respectively.
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Toric Code Model

Stabilizers Operators
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Protected subespace

- Stabilizers operators constitute a complete
set of operators which commute with Hp.

- The dimension of the protected space L is

Hilbert space of the ubits.

L: Protected subspace = 4, which corresponds to the

The size of the Hilbert space of the system defined on a
k X k square lattice is N = 22k’ , thus Hp- has

1 and -1. Therefore, they constitute an Abelian
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Hamiltonian of an 2 X 2 arrangement case. Eg
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Application of the model . Quantum Gate T
P , n=8: 8 stabilizer operators, 4 Vertex operators and iThe initial state |0) arises from applying VZ operation on the ground state ng) in the
vertices, 4 plaquettes. N = 256, Hre 256 X 256 plagquette operators E Hilbert space. In other words, v/Z operation is a rotation of 45° counterclockwise. When the
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cl----{--- - Initial State and |1) for each system we proceed to determine states |00), |01), |10) and |11) which

provide the possibility of simulate a CNOT operation.

Figurae 3. Arrangement of spinsina 2 X 2 square
lattice of the toric code . The blue balls represent the
spins, green diamonds represent the 4 vertices, and
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