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Abstract
Anyons are the third fundamental category of particles, for two anyons under particle exchange the wavefunction acquires a

fractional phase eiθ, giving rise to fractional statistics with 0 < θ < π. The greatest interest for the anyons study emerged when

the fractional quantum Hall effect observed experimentally had natural explanation in term of anyons. We study a Hubbard

model for anyons equivalent to a variant of the Bose-Hubbard, we established an exact mapping between anyons and bosons

in one-dimension. Using the density matrix renormalization group method we studied the system properties, we presented the

phase diagram for density ρ = 1 with some angles, the quantum transition is from Mott insulator to Superfluid phase, the Mott

lobe expands with increasing statistical angle.

We study the block von Neumann entropy, which was used to establish the critical points. For a fixed density we study the

critical point evolution vs θ and find that the position of the critical point increasing with the angle. For fixing statistical we

showed the dependency between the position of the critical point and the density, also the critical point decreases with increasing

of the density, implying that the Mott region decreases.

Introduction

> Anyons

Anyons—particles carrying fractional sta-
tistics that interpolate between bosons and
fermions—have been conjectured to exist in
low-dimensional systems. For two anyons under
particle exchange the wavefunction acquires a
fractional phase eiθ[1].

> Model

The Anyon-Hubbard Model:

H = −t
L∑
j

(
a†jaj+1 + h.c

)
+
U

2

L∑
j

nj(nj − 1)

(1)
Where t is the tunnelling amplitude connecting
two neighbouring sites and U is the on-site in-
teraction energy. We introduce an exact mapping
between anyons and bosons in 1D. Let us define
the fractional version of a Jordan–Wigner trans-
formation,

aj = bjexp

(
iθ

j−1∑
i=1

ni

)
, (2)

with ni = a†iai = b†i bi the number operator for
both particle types. Provided that the particles
of type b are bosons, [bj , b

†
j ] = δji and [bj , bi] = 0.

By inserting the Anyon–Boson mapping, equation
(2), the Hamiltonian can be rewritten in terms of
bosonic operators:

H = −t
L∑
j

(
b†jbj+1e

iθnj + h.c
)

+
U

2

L∑
j

nj(nj−1).

(3)
The mapped, bosonic Hamiltonian thus describes
bosons with a occupation-dependent amplitude
eiθnj [1].

> Method

We used the density matrix renormalization
group (DMRG) method with open boundary
conditions [2]. We used the finite-size algorithm
for sizes up to L = 256; we considered a truncated
Hilbert space with five states by site and the
density ρ = N/L. We kept up to m = 200 states
per block and obtained a discarded weight around
10−8 or less.

Results
We present the phase diagram for conditional-
hopping bosons for density ρ = 1

Fig 1: Phase diagram with different angles. In-

set: Critical point dependence[1].

The quantum phase transition is from Mott insu-
lator to Superfluid phase, the Mott lobe expands
with increasing statistical angle. the conditional-
hopping help to localize the particles.

Fig 2: Comparison with bosonic case.

We can observe (Fig. 2) a superfluid phase su-
rrounding an Mott insulator phase also we presen-
ted the comparison with the bosonic case (θ = 0)
for two densities (ρ = 1 and ρ = 2), the position
of the critical point increasing with the angle for
constant density and decreases with increasing of
the density for the same angle.
In the (Fig. 3) we present the phase diagram for
three densities and the inset we showed the evo-
lution of critical points with the density.

Fig 3: Phase diagram with θ = π/4. Inset: Cri-

tical point dependence.

Results
The behavior of the von Neumann entropy (block
entropy) SL(l) as a function of l

SL(l) =

{
c

3η ln
[
ηL
π sen(πl/L)

]
+ θ critical,

c
3η ln [ζL] + θ′ noncritical,

Lauchli and Kollath proposed the estimator [3]

∆SLK = SL(L/2)− SL/2(L/4) (4)

∆SLK(L) =

{ c
3η ln(2) t ≥ tc

0 t < tc

Fig 4: Determination of critical points. ∆SLK

as a function t/U .

The (Fig. 5) present the evolution of the critical
point as a function of the density, calculate with
the Lauchli and Kollath estimator

Fig 5: Evolution of the critical point.

We use the function for explain the type of the
anyons transition [4]

∆µ = Aexp
[
−b/
√
tc − t

]
(5)

Fig 6: Adjustments to the Kosterlitz-Thouless

transition.

which indicates that the Kosterlitz-Thouless
behavior is suitable for describing the closing of
the gap.
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