
The goal of this exercise is to explore some properties of Gaussian matrices in order to derive deeper
and fundamental results in Random Matrix Theory.

Wick’s theorem

We begin by recalling the joint probability density for a N ×N Gaussian hermitian matrix X = {xij},
i, j = 1, . . . , N of variance 1 and mean 0:

P (x11, x12, . . . , xNN ) = CNe−
N
2
TrX2

(1)

1. Write the probability density function in terms of the entries of the matrix {xij}.

2. Calculate 〈xij〉,
〈
x2ij

〉
and 〈xijxlp〉.

3. Calculate
〈

et
∑
i,j kijxij

〉
.

This last item can be shown to have a more general form:〈
et

∑
ij kijxij

〉
= e

t2

2

∑
i,j,l,p kijklp〈xijxlp〉. (2)

5. Expanding both sides in powers of t, show that all n-point correlation functions of the Gaussian
matrix can be expressed as a sum of 2-point correlation functions. We name this result Wick’s
theorem and it is quite more general than this small exercise shows.

The Green’s function

We turn our attention to the eigenvalues {λi} of a hermitian Gaussian random matrix X. We define the
following matrix

GN (z) =
〈

(z1N −X)−1
〉
, (3)

where z is a complex number and the average is taken over the measure of X.
Using GN (z), we define the so called Green’s function or resolvent,

GN (z) =
1

N
TrGN (z) (4)

6. Write GN (z) as a function of z and {λi}.

7. What is the domain of definition of GN (z)? Knowing that the eigenvalues of a Gaussian random
matrix, when correctly normalized, fall within a compact support, what will intuitivly happen to
GN (z) when N →∞?

To match this intuitive notion, we define the average density of eigenvalues

ρ(λ) =

〈
1

N

N∑
i=1

δ(λ− λi)

〉
, (5)

which allows us to write the resolvent, in the large N limit, as

GN (z) =

∫
ρ(x)

z − x
dx. (6)
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8. Use the Sokhotski–Plemelj identity

lim
ε→0+

1

x± iε
= Pr

1

x
∓ iπδ(x), (7)

where Pr stands for Cauchy principal part to obtain a way of, having GN (z), finding ρ(x)
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The goal of this exercise is to derive Wigner’s semicircle law using the resolvent technique. We recall
the probability density function Pβ(λ) for the eigenvalues of the Gaussian ensemble:

Pβ(λ) =
1

ZN,β
e−

βN
2

∑N
j=1 λ

2
j

∏
i>j

|λi − λj |β (8)

1. Write the probability density function (8) as a Boltzmann weight, i.e., a function of the form:

Pβ(λ) =
e−βE[λ]

ZN,β
(9)

and identify the function E[λ].

2. We introduce the density ρ(λ), defined as:

ρ(λ) =
1

N

N∑
i=1

δ(λ− λi). (10)

Note that with this function we may exchange sums for integrals:
∑
f(λi)→

∫
ρ(x)f(x)dx. Using

this function, write E[λ] → N2S[ρ] in terms of integrals of ρ(x), recalling the fact that we are in
the large-N limit.

3. Apply the saddle-point method on Pβ(λ) and write it as a single exponential (instead of the integral
of an exponential) whose exponent is the function obtained previously applied to a certain ρ?(λ).
What is the interpretation of ρ??

4. Show that by differetiating functionally S[ρ] with respect to ρ we obtain the integral equation for
ρ?.

x = Pr

∫ ∞
−∞

ρ?(y)

x− y
dy, (11)

where Pr stands for Cauchy principal value and x ∈ supp(ρ?).

5. We define the resolvent G(z):

G(z) =

∫
ρ(y)

z − y
dy, (12)

which is an analytic function everywhere outside of the support of ρ(x). Multiplying (11) by ρ(x)
z−x

and integrating it over x yields∫
x
ρ(x)

z − x
dx =

∫∫
ρ(x)

z − x
ρ?(y)

x− y
dydx. (13)

(a) Using the identity
1

(z − x)(x− y)
=

(
1

z − x
+

1

x− y

)
1

z − y
(14)

show that the right hand side (RHS) of equation (13) can be written as G(z)2/2.

(b) Using the quite evident identity x = x + z − z, show that the LHS of equation (13) can be
written as −1 + zG(z).

(c) Solve the equation and obtain G(z).

6. Using the method derived on the last exercise class, find ρ(x).
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The goal of this exercise is to derive Wigner’s semicircle law using the diagrammatic approach, a
powerful tool to analyse random matrices without having the full eigenvalue distribution. Let A be a
Gaussian random matrix. We begin by recalling the first exercise class, the definition of the matrix
GN (z)

GN (z) =
〈

(z1N −A)−1
〉
, (15)

where z is a complex number and the average is taken over the measure of A.
Using GN (z), we define the so called Green’s function or resolvent. As shown previosly, in the large

N limit we may write

GN (z) =
1

N
TrGN (z)→

∫
ρ(x)

z − x
dx, (16)

and we need only to determine GN (z) to obtain the average density by the identity − 1
π limε−>0 Im GN (x+

iε) = ρ(x).

1. Expand equation (15) in powers of A.

We introduce a diagrammatic notation. The element Z−1ab will be noted as a horizontal line between
points a and b, while the two-point correlation element 〈AabAcd〉 will be noted as a rainbow-like diagram.

3. Using this notation, write the two first non-zero terms of the expansion of equation (15) in powers
of A.

4. Use Wick’s theorem to express the fourth order term as a sum of products of 2-point correlation
functions. Write the result in diagrammatic notation.

It has been shown rigorously by ’t Hooft that non-planar diagrams (i.e. diagrams with crossing lines)
in the large-N limit are sub-dominant, hence negligeable. We define the self-energy Σ diagrammatically
as the um of all orders of ”rainbows”:

5. Write the remaining diagrams of the expansion of GN (z) in terms of Σ, show that GN (z) =
(z1N −Σ)−1. What is the different between this expression and the original expression for GN (z)?
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6. What happens to GN (z) when you add a rainbow-like diagram around it? This would be the
equivalent of calculating

∑N
a,b[GN (z)]a,b 〈AiaAbj〉.

The equations

GN (z) = (z1N −Σ)−1 [Σ]ij =
N∑
a,b

[GN (z)]a,b 〈AiaAbj〉

form the Dyson-Schwinger equation, a fundamental result in quantum field theory.

7. Take the trace of both equations to obtain the trace of GN (z), the resolvent.

8. Deduce the average density for the eigenvalues of a Gaussian random matrix. Notice that at no
point we used the eigenvalue distribution.
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