3. Spectral statistics.

Random Matrix Theory in a nut shell.

I. The Gaussian Orthogonal Ensemble (GOE)

The set of $N \times N$ symmetric real normally distributed random matrices H

$$P_{GOE}(H)dH = C_N \exp(-\mathrm{tr}H^2) \prod_{i \ge j} dH_{i,j}$$

II. The Gaussian Unitary Ensemble (GUE)

The set of $N\times N$ Hermitian complex normally distributed random matrices H

$$P_{GUE}(H)\mathrm{d}H = C_N \exp(-\mathrm{tr}HH^{\dagger}) \prod_{i\geq j} \mathrm{d}H_{i,j}$$

Eigenvalues distribution:

The spectral density: $\rho(\lambda) = \frac{1}{N} \sum_{j=1}^{N} \delta(\lambda - \lambda_j).$ The Wigner Semi-circle law: For $N \to \infty \quad \langle \rho(\lambda) \rangle_{GOE,GUE} \to \frac{1}{2\pi} \sqrt{4N - \lambda^2}$

Example: Nearest neigbour spectral distribution

$$s_n = \frac{\lambda_n - \lambda_{n-1}}{\text{mean spacing}} \quad ; \quad P(s) = \frac{1}{\Delta K} \sum_{k=K}^{K+\Delta K} \delta(s-s_k) \quad ; \quad N > \Delta K \gg 1$$
$$P_{GOE}(s) = \frac{\pi s}{2} \exp(-\frac{\pi s^2}{4}) \quad ; \quad P_{GUE}(s) = \frac{32s^2}{\pi^2} \exp(-\frac{4s^2}{\pi})$$

Graphs: the spectrum and the spectral statistics

The discrete Laplacian for d-regular graphs:

$$(L\mathbf{f})_i = -\sum_{j\sim i} (f_j - f_i) \Rightarrow L = -A + d I^{(V)}$$

Since L differes from the adjacency matrix A by a constant diagonal matrix, \Rightarrow we study the spectrum of $A : \sigma(\mathcal{G}) = \lambda_0 (= d) \ge \lambda_1 \ge \dots, \ge \lambda_{V-1}$.

$$\rho(\lambda) = \frac{1}{V-1} \sum_{k=1}^{V-1} \delta(\lambda - \lambda_k)$$

The mean spectral density for d regular graphs, $(V \rightarrow \infty, d = const)$

Kesten MacKay limit distribution: (Supported in $|\lambda| < 2\sqrt{d-1}$):

$$\rho_{KM}(\lambda) = \lim_{V \to \infty} \frac{1}{V-1} \left\langle \sum_{k=1}^{V-1} \delta(\lambda - \lambda_k) \right\rangle_{\mathcal{G}} = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2}$$

(a) Cubic graph on 2000 vertices. (b) 5-valent graph on 500 vertices.
Figure 1. Eigenvalue distributions of random graphs vs McKay's law

EIGENVALUE SPACINGS FOR REGULAR GRAPHS

DMITRY JAKOBSON, STEPHEN D. MILLER, IGOR RIVIN AND ZEÉV RUDNICK

Unfolding the spectrum with the Kesten-McKay density using \mathcal{N}_{KM} : The mean spectral counting function.

$$s_j = \mathcal{N}_{KM}(\lambda_j) \quad ; \quad \frac{\mathrm{d}\mathcal{N}_{KM}}{\mathrm{d}\lambda} = \rho_{KM}(\lambda) \quad ; \ \mathrm{d}s = \rho_{KM}(\lambda)\mathrm{d}\lambda = \frac{\mathrm{d}\lambda}{\langle \mathrm{d}\lambda \rangle}$$

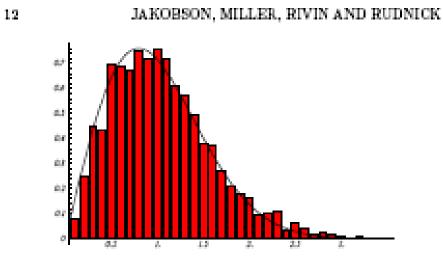
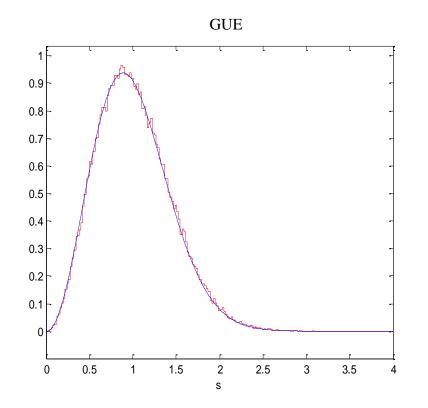


Figure 2. Level spacing distribution of a cubic graph on 2000 vertices vs GOE

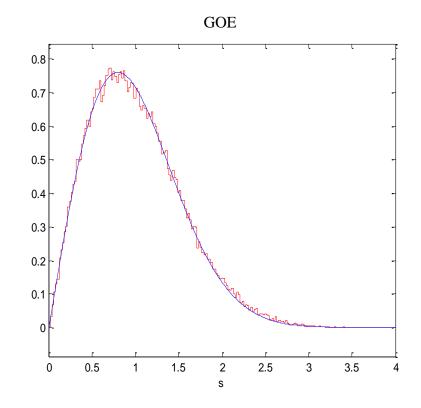
The "Magnetic" Adjacency Matrix: $A_{i,j}^{(M)} = A_{i,j} e^{i\phi_{i,j}}$; $\phi_{j,i} = -\phi_{i,j}$

$$P_{GUE}(s) = \frac{32s^2}{\pi^2} \exp(-\frac{4s^2}{\pi})$$



The random G(V,d) ensemble

$$P_{GOE}(s) = \frac{\pi s}{2} \exp(-\frac{\pi s^2}{4})$$

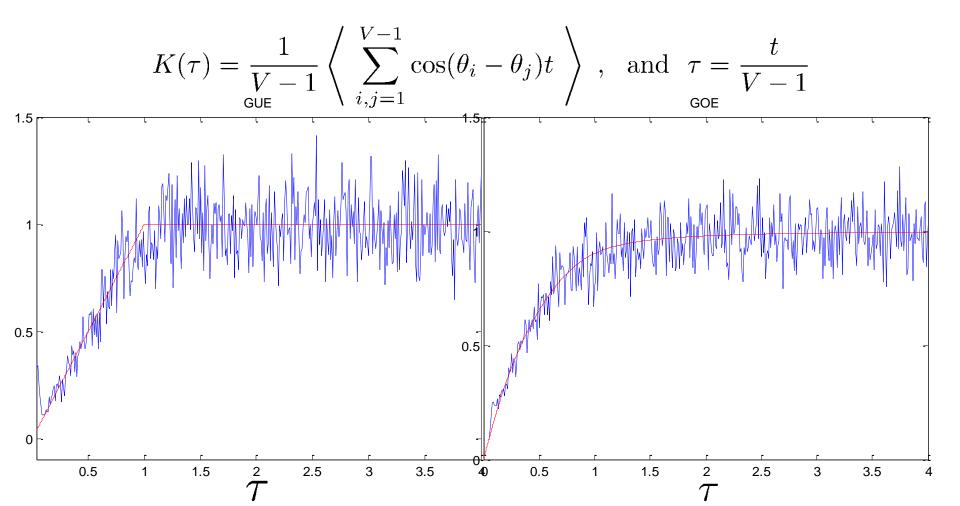


Spectral 2-points correlations:

The Circular ensembles (COE,CUE):

 $\theta_j = 2\pi \frac{\mathcal{N}_{MK}(\lambda_j)}{V-1}$ (mapping the spectrum on the unit circle)

The two points correlation function: $R_2(\eta) = \left\langle \frac{1}{(V-1)} \sum_{i,j}^{V-1} \delta(\eta - (\theta_i - \theta_j)) \right\rangle$. The "spectral form factor": Fourier transform of $R_2(\eta)$



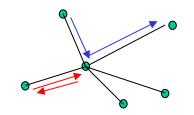
Why do random graphs display the canonical spectral statistics?

Counting statistics of cycles vs Spectral statistics

The main tool : Trace formulae connecting

spectral information and counts of periodic walks on the graph

The periodic walks to be encountered here are special: Backscattering along the walk is forbidden. Notation: non-backscattering walks = n.b. walks



Spectral Statistics

The fluctuating part of the spectral density :

$$\tilde{\rho}(\lambda) = \rho(\lambda) - \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2} = \frac{1}{\pi} \sum_{t=3}^{\infty} \frac{y_t}{\sqrt{4(d-1) - \lambda^2}} T_t\left(\frac{\lambda}{2\sqrt{d-1}}\right)$$

Using the Orthogonality of the Chebyshev Polynomials:

$$y_{t} = 2 \int_{-2\sqrt{d-1}}^{2\sqrt{d-1}} \mathrm{d}\lambda \ \tilde{\rho}(\lambda) \ T_{t}\left(\frac{\lambda}{2\sqrt{d-1}}\right) = 2 \int_{-1}^{1} \mathrm{d}u \ \tilde{\rho}(u) \ T_{t}(u)$$
$$\langle y_{t}^{2} \rangle_{\mathcal{G}} = 4 \int_{-1}^{1} \int_{-1}^{1} T_{t}(u) T_{t}(v) \ \langle \tilde{\rho}(u) \tilde{\rho}(v) \rangle_{\mathcal{G}} \ dudv$$

Map the spectrum to the unit circle: $\phi = \arccos u$, $\phi \in [0, \pi]$

$$\heartsuit \qquad \langle y_t^2 \rangle_{\mathcal{G}} = 4 \int_0^\pi \int_0^\pi \cos t\phi \cos t\psi \, \left\langle \tilde{\rho}(\phi) \tilde{\rho}(\psi) \right\rangle_{\mathcal{G}} \, d\phi d\psi$$

Two-point correlation function. **However:** the spectral variables are not distributed uniformly and to compare with RMT they need **unfolding**

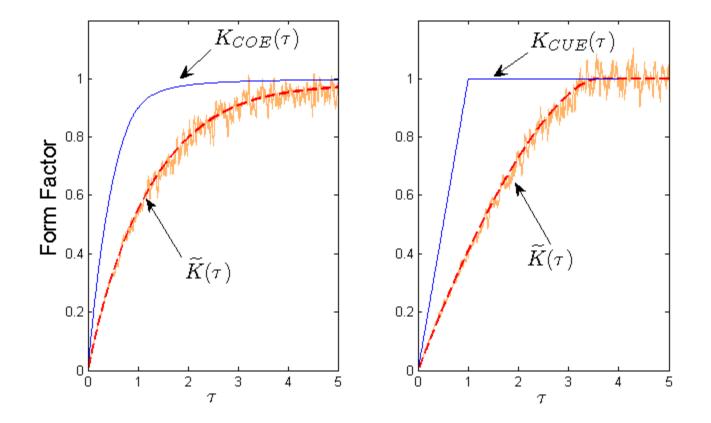
$$\begin{array}{l} \heartsuit \qquad \langle y_t^2 \rangle_{\mathcal{G}} = 4 \int_0^{\pi} \int_0^{\pi} \cos t\phi \cos t\psi \ \left\langle \tilde{\rho}(\phi) \tilde{\rho}(\psi) \right\rangle_{\mathcal{G}} \ d\phi d\psi \\ \\ \text{Define}: \qquad \widetilde{K}_V(t) \equiv \frac{2}{V-1} \left\langle \left(\sum_{k=1}^{V-1} \cos(t\phi_k) \right)^2 \right\rangle_{\mathcal{G}} \qquad \begin{array}{l} \text{The (not unfolded)} \\ \text{Spectral form factor} \\ \\ \text{Therefore} \\ \langle y_t^2 \rangle_{\mathcal{G}} = \underbrace{\frac{2}{V} \widetilde{K}_V(t)} \qquad \qquad \begin{array}{l} \text{Spectral form factor} = \\ \text{variance of the number of } \\ \text{t-periodic nb - walks} \\ \\ \text{Since } \phi \in [0, \pi], \text{ the mean-spacing is } \frac{2\pi}{2(V-1)}. \\ \\ \text{Define } \tau = \frac{t}{(V-1)}. \\ \end{array} \right. \\ \\ \hline C_t \ = \ \frac{\operatorname{tr} Y^t}{2t} \ \approx \ \left\{ \begin{array}{l} \# \text{t-periodic} \\ \text{nb cycles} \end{array} \right\} \end{array} \right\}$$

For t < logV/log (d-1) C_t are distributed as a Poissonian variable Hence: variance/mean =1 (Bollobas, Wormald, McKay)

$$\tilde{K}_V(t) = \frac{t}{V} \left\langle \frac{(C_t - \langle C_t \rangle_{\mathcal{G}})^2}{\langle C_t \rangle_{\mathcal{G}}} \right\rangle_{\mathcal{G}} \xrightarrow{\tau \to 0} \tau$$

$$K_V(t) = 2\tilde{K}(\tau) = 2\tau \text{ for } \tau \to 0$$

$$\tilde{K}_V(t) = 2 \int_0^{\frac{\pi}{2}} \rho_{KM}(\phi) K\left(\frac{\tau}{2\pi\rho_{KM}(\phi)}\right) \mathrm{d}\phi \quad ; \quad \tau = \frac{t}{V} \; .$$



Conjecture (assuming RMT for d-regular graphs):

Let C_t denote the number of t-periodic n.b. cycles on a (V, d) graph. Then: $\frac{\langle (C_t - \langle C_t \rangle)^2 \rangle}{\langle C_t \rangle} \to F_{GOE}(\tau)$ in the limit $t, V \to \infty$, $\tau = \frac{t}{V}$ constant. In particular: $F_{GOE}(\tau \to 0) \to 1$; $F_{GOE}(\tau \to \infty) \to \frac{1}{\tau}$.

$$\phi_j = \arccos \frac{\mu_j}{2\sqrt{d-1}} \quad ; \quad 0 \le \phi_j \le \pi \; .$$

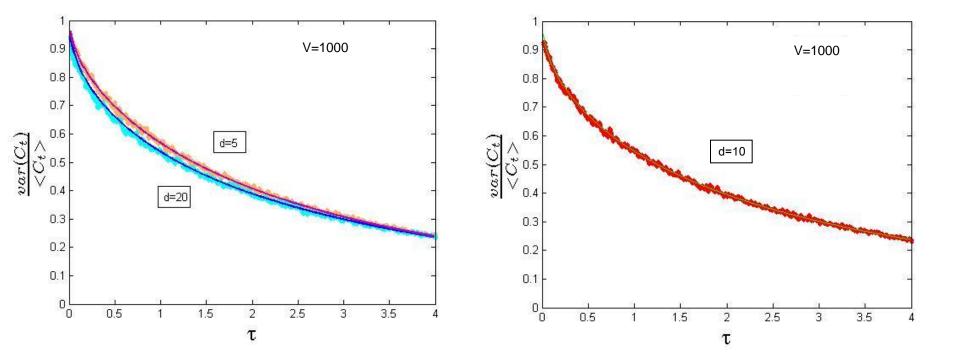
The Kesten McKay density on the circle is

$$\rho_{KM}(\phi) = \frac{2(d-1)}{\pi d} \frac{\sin^2 \phi}{1 - \frac{4(d-1)}{d^2} \cos^2 \phi} \cdot F_{GOE}(\tau) = \left\langle \frac{(C_t - \langle C_t \rangle)^2}{\langle C_t \rangle} \right\rangle = \frac{2}{\tau} \int_0^{\frac{\pi}{2}} \rho_{KM}(\phi) K_{COE}\left(\frac{\tau}{2\pi \rho_{KM}(\phi)}\right) \mathrm{d}\phi \quad ; \quad \tau = \frac{t}{V} \cdot \frac{1}{V} \cdot \frac$$

The explicit expressions for the COE is

$$K_{COE}(\tau) = \begin{cases} 2\tau - \tau \log (2\tau + 1), & \text{for } \tau < 1\\ 2 - \tau \log \frac{2\tau + 1}{2\tau - 1}, & \text{for } \tau > 1 \end{cases}$$

$$\frac{\left\langle \left(C_t - \left\langle C_t \right\rangle\right)^2 \right\rangle}{\left\langle C_t \right\rangle} = \frac{2}{\tau} \int_0^{\frac{\pi}{2}} \rho_{KM}(\phi) K_{COE}\left(\frac{\tau}{2\pi\rho_{KM}(\phi)}\right) \mathrm{d}\phi \xrightarrow[\tau \to 0]{} 1 + f_2(d)\sqrt{\tau} + \dots$$



$$\lim_{\tau \to \infty} \tau \frac{var(C_t)}{\langle C_t \rangle} = 1, \quad \text{for } V, t \to \infty; \quad \frac{t}{V} = \tau$$

The magnetic adjacency spectral statistics

The non-backtracking magnetic connectivity:

$$Y_{e',e}^{(M)} = e^{i\phi_{e'}/2} B_{e',e} e^{i\phi_{e}/2} - J_{e',e}$$
$$tr((Y^{(M)})^{t}) = \sum_{L_t} e^{i\Phi} + \sum_{R_t} e^{-i\Phi} + |S_t|$$

 L_t = the set of t-periodic nb-walks going clockwise R_t = the set of t-periodic nb-walks going counter-clockwise S_t = the set of self-tracing t-periodic nb-walks

These are nb-walks which traverse each edge both ways $\langle \operatorname{tr}((Y^{(M)})^t) \rangle_{\mathcal{M}} = |S_t| \approx 0 \text{ for } t < \log_{d-1} V ; \text{ Denote } \langle \cdot \rangle_{\mathcal{G}M} = \langle \cdot \rangle .$ $\langle \left(\operatorname{tr}((Y^{(M)})^t) - \left\langle \operatorname{tr}((Y^{(M)})^t) \right\rangle \right)^2 \rangle \approx |L_t| + |R_t| \approx 2 \langle C_t \rangle \cdot t^2$

$$\approx 4(d-1)^t \left\langle \left(\sum_k \cos\left(\phi_k\right)\right)^2 \right\rangle = 8t \langle C_t \rangle \left\langle \left(\sum_k \cos\left(\phi_k\right)\right)^2 \right\rangle$$
$$\rightarrow \left\langle \left(\sum_k \cos\left(\phi_k\right)\right)^2 \right\rangle \approx \frac{t}{4}$$

By multiplying by $\frac{2}{V-1}$ we get that for short times: $\widetilde{K}(\tau) \approx \tau$.