Reminder from the previous lecture:

d-regular graphs :

Graphs where all the vertices have the same degree.

Examples:

- 1. Complete graphs
- 2. Lattices
- 3. d-regular infinite trees.

d-regular graphs are an expanding family.

$$E = \frac{Vd}{2} \rightarrow V$$
 or d must be even
 $\beta = V(\frac{d}{2} - 1)$

 $\mathcal{G}_{V,d}$. The ensemble of all the *d* regular graphs with *V* vertices .

For fixed d and
$$V \to \infty$$
 : $|\mathcal{G}_{V,d}| \approx \sqrt{2} e^{\frac{1-d^2}{4}} \left(\frac{d^d V^d}{e^d (d!)^2}\right)^{\frac{V}{2}}$

 $\langle \cdots \rangle_{\mathcal{G}}$: Ensemble average taken with uniform probability distribution.

$$C_t$$
: Number of t - periodic cycles with no back tracking
 $\langle C_t \rangle_{\mathcal{G}} = \frac{V \cdot d \cdot (d-1)^{t-1} \cdot \frac{d-1}{dV}}{2t} = \frac{(d-1)^t}{2t}$

Hence, short t - perioic cycles with $t < \log_{d-1} V$ are \mathbf{rare} .

The *R*-neighbourhood of every vertex for $R \leq \log_{d-1} \frac{V}{2}$ is almost surely a d-regular tree.

The diameter of a G(V, d) graph, i.e. the maximal distance between vertices in G, is given by

$$diam(G) = \log_{d-1}(V \log_{d-1} V) + O(1)$$

Therefore, the typical distance between vertices along the boundary of the 'local tree' is of the same magnitude as the distance between two arbitrary vertices in G.

Denote by C_t the number of t- cycles (prinitive, non backscatter, non self intersecting t-periodic orbits).

For $t < \log_{d-1} \frac{V}{2}$, the C_t distribute as independent Poisson variables with a mean: $\langle C_t \rangle_{\mathcal{G}} = \frac{(d-1)^t}{2t}$

Reminder : For d-regular graphs the spectra of A and L are the same but for a shift by d and sign change.

Spectral properties of d-regular graphs

The spectral density $\rho(\lambda) = \frac{1}{V-1} \sum_{k=1}^{V-1} \delta(\lambda - \lambda_k)$ (The trivial eigenvalue is excluded)

The mean spectral density for d regular graphs, $(V \rightarrow \infty, d = const)$

Kesten MacKay limit distribution: (Supported in $|\lambda| < 2\sqrt{d-1}$):

(a) Cubic graph on 2000 vertices. (b) 5-valent graph on 500 vertices. Figure 1. Eigenvalue distributions of random graphs vs McKay's law

EIGENVALUE SPACINGS FOR REGULAR GRAPHS

DMITRY JAKOBSON, STEPHEN D. MILLER, IGOR RIVIN AND ZEÉV RUDNICK

Unfolding the spectrum with the Kesten-McKay density using \mathcal{N}_{KM} : The mean spectral counting function.

$$s_j = \mathcal{N}_{KM}(\lambda_j) \quad ; \quad \frac{\mathrm{d}\mathcal{N}_{KM}}{\mathrm{d}\lambda} = \rho_{KM}(\lambda) \quad ; \ \mathrm{d}s = \rho_{KM}(\lambda)\mathrm{d}\lambda = \frac{\mathrm{d}\lambda}{\langle \mathrm{d}\lambda \rangle}$$

Figure 2. Level spacing distribution of a cubic graph on 2000 vertices vs GOE

2. The trace formula

Purpose: express the spectral density in terms of "periodic orbits"

Connectivity of directed edges

 $B_{e,e'} = \delta_{o(e),\tau(e')}$

 $J_{e,e'} = \delta_{o(e),\tau(e')} \delta_{o(e'),\tau(e)}$

Y = B - J

Y excludes back tracking connections!

Note: The number of non-backtracking periodic walks = trY^t However: The number of all periodic walks = $trA^t = trB^t$

Bartholdi's Identity for *d*-regular graphs

Define the two $2E \times V$ rectangular matrices

$$B_{e,i}^{(+)} := \begin{cases} 1 & \text{if } t(e) = i \\ 0 & \text{otherwise} \end{cases}; \quad B_{e,i}^{(-)} := \begin{cases} 1 & \text{if } o(e) = i \\ 0 & \text{otherwise} \end{cases}$$

Denoting by \widetilde{X} the transpose of X, one can easily prove that

$$\begin{array}{ll}
B^{(+)}\widetilde{B^{(-)}} = B & ; & \widetilde{B^{(-)}}B^{(+)} = A \\
\widetilde{B^{(+)}}B^{(+)} = dI^{(V)} & ; & B^{(+)}\widetilde{B^{(+)}} = YJ + I^{(2E)} \\
\end{array} (1)$$

For arbitrary complex s, w construct the two $(2E+V) \times (2E+V)$ square matrices

$$\mathcal{L} = \begin{bmatrix} (1 - w^2 s^2) I^{(V)} & -\widetilde{B^{(-)}} + w s \widetilde{B^{(+)}} \\ 0 & I^{(2E)} \end{bmatrix} ; \ M = \begin{bmatrix} I^{(V)} & \widetilde{B^{(-)}} - w s \widetilde{B^{(+)}} \\ s B^{(+)} & (1 - w^2 s^2) I^{(2E)} \end{bmatrix}$$

Using the identities (1) one can compute the matrices LM and ML, and since their determinants are equal, one finally gets Bartholdi's identity.

$$\det(I^{(2E)} - s(B - wJ)) = (1 - w^2 s^2)^{E - V} \det(I^{(V)}(1 + w(d - w)s^2) - sA) .$$

2.a The "canonical " trace formula (w = 1)

Bass' (Bartholdi's) identity :

$$\det(\eta I^{(2E)} - Y) = (\eta^2 - 1)^{E-V} \det(I^{(V)}(\eta^2 + (d-1)) - \eta A) .$$

 η arbitrary complex number.

 $I^{(2E)}$ and $I^{(V)}$ unit matrix in 2E and V dimensions. $A_{i,j}$: Adjacency Matrix, dimA = V ; $B_{e',e} = \delta_{o(e'),\tau(e)}$, dimB = 2E. $J_{e',e} = \delta_{e',\hat{e}}$; Y = B - J: The Hashimoto connectivity matrix.

The spectrum of A can be used to count n.b. periodic walks and *vice versa*

The counts of n.b. periodic walks can be used to compute the spectrum of A

Bartholdi again : $\det(\eta I^{(2E)} - Y) = (\eta^2 - 1)^{E-V} \det(I^{(V)}(\eta^2 + (d-1)) - \eta A)$.

The spectrum of Y: $\sigma(Y) =$

$$\left\{1 \times (E - V), (-1) \times (E - V), \{\eta_l^{\pm} : \eta_l^{\pm 2} + (d - 1) - \lambda_l \eta_l^{\pm} = 0, \ l = 1, \cdots, V\}\right\}$$

$$\eta_l^{\pm} = \frac{1}{2} \left(\lambda_l \pm i \sqrt{4(d-1) - \lambda_l^2} \right) \; .$$

 $\lambda_0 = d \quad \rightarrow \quad \eta_0^{\pm} = (d-1), 1$ Assume Ramanujan: $\eta_l^{\pm} = \sqrt{d-1} e^{\pm i\phi_l}$; $\phi_l = \arccos \frac{\lambda_l}{2\sqrt{d-1}}$ $l = 1, \cdots, V-1$

The number of t-periodic non backscattering walks :

tr
$$Y^t = (d-1)^t + (E-V)(1+(-1)^t) + 1 + 2(d-1)^{\frac{t}{2}} \sum_{l=1}^{V-1} \cos t\phi_l$$
.

Remember $E = \frac{Vd}{2}$ and use Chebyshev Polynomials : $T_n(x) = \cos(n \arccos(x))$

tr
$$Y^t = (d-1)^t + V(\frac{d}{2}-1)(1+(-1)^t) + 1 + 2(d-1)^{\frac{t}{2}} \sum_{l=1}^{V-1} T_t\left(\frac{\lambda_l}{2\sqrt{d-1}}\right)$$

$$y_t = \frac{1}{V} \frac{\operatorname{tr} Y^t - (d-1)^t - 1}{(d-1)^{\frac{t}{2}}} = \frac{(\frac{d}{2}-1)}{(d-1)^{\frac{t}{2}}} (1 + (-1)^t) + \frac{2}{V} \sum_{l=1}^{V-1} T_t \left(\frac{\lambda_l}{2\sqrt{d-1}}\right).$$

Multiply by
$$\frac{1}{\pi(1+\delta_{0,n})} T_t\left(\frac{\lambda}{2\sqrt{d-1}}\right)$$
, and sum over t:

$$\frac{1}{\pi} \sum_{t=0}^{\infty} \frac{1}{1+\delta_{t,0}} T_t \left(\frac{\lambda}{2\sqrt{d-1}}\right) y_t = \\ = \frac{d-2}{2\pi} \sum_{t=0}^{\infty} \frac{1}{1+\delta_{t,0}} \frac{(1+(-1)^t)}{(d-1)^{\frac{t}{2}}} T_t \left(\frac{\lambda}{2\sqrt{d-1}}\right) + \frac{1}{V} \sum_{l=1}^{V-1} \delta_T \left(\frac{\lambda-\lambda_l}{2\sqrt{d-1}}\right).$$

Where :
$$\delta_T(x-y) = \frac{2}{\pi} \sum_{t=0}^{\infty} \frac{1}{1+\delta_{t,0}} T_t(x) T_t(y)$$

$$\int_{-1}^{1} \frac{\mathrm{d}x}{\sqrt{1-x^2}} \delta_T(x-y) f(x) = f(y)$$

Note:

tr
$$Y^0 = 2E \rightarrow y_0 = \frac{2E-1}{V} = d - \frac{1}{V}$$

tr $Y^1 = \text{tr } Y^2 = 0 \rightarrow y_t = -\frac{1}{V}(d-1)^{\frac{t}{2}}$; $t = 1, 2$

The trace formula:

$$\rho(\lambda) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2} + \frac{1}{\pi} \mathcal{R}e \left[\sum_{t=3}^{\infty} \frac{y_t}{\sqrt{4(d-1) - \lambda^2}} e^{it \arccos \frac{\lambda}{2\sqrt{d-1}}} \right]$$
Kesten McKay
Sum over t-periodic non-backscattering walks.

$$y_t = \frac{1}{V} \frac{[\text{Number of t periodic n.b. walks}] - [(d-1)^t - 1]}{(d-1)^{\frac{t}{2}}}$$

 y_t : The deviation of the number of t-periodic non-back scattering walks from its mean. (properly normalized)

Note: $\langle y_t \rangle_{\mathcal{G}} = 0$ for $t \leq \log_{d-1} V$ (Bollobas, McKay, Wormald) "Action" per single step on the orbit: $\arccos \frac{\lambda}{2\sqrt{d-1}}$

Alternatively:

$$\rho(\lambda) = \frac{d}{2\pi} \frac{\sqrt{4(d-1) - \lambda^2}}{d^2 - \lambda^2} + \frac{1}{\pi} \sum_{t=3}^{\infty} \frac{y_t}{\sqrt{4(d-1) - \lambda^2}} T_t\left(\frac{\lambda}{2\sqrt{d-1}}\right)$$

 $T_l(x)$: Chebyshev Polynomials of the first kind.

$$\mathcal{R} = \left\{ \lambda : |\lambda| < 2(d-1)^{1/2} \right\}$$

Non Ramanujan graphs : \mathcal{R}^c not empty.

$$\operatorname{tr} Y^{t} = (d-1)^{t} + (E-V)(1+(-1)^{t}) + 1 + 2(d-1)^{\frac{t}{2}} \left[\sum_{\lambda_{l} \in \mathcal{R}} \cos t\phi_{l} + \sum_{\lambda_{l} \in \mathcal{R}^{c}} \cosh t\psi_{m} \right]$$

 $\psi_m = \operatorname{arcosh} \frac{|\lambda_m|}{2\sqrt{d-1}}$

$$\operatorname{tr} Y^{t} = (d-1)^{t} + 2(d-1)^{\frac{t}{2}} \sum_{\lambda_{l} \in \mathcal{R}^{c}} \cosh t \psi_{m} + V(\frac{d}{2}-1)(1+(-1)^{t}) + 1 + 2(d-1)^{\frac{t}{2}} \sum_{\lambda_{l} \in \mathcal{R}} T_{t}\left(\frac{\lambda_{l}}{2\sqrt{d-1}}\right)$$

$$y_t = \frac{1}{V} \frac{\left[\text{Number of t periodic n.b. walks}\right] - \left[(d-1)^t \left(1 + \frac{2}{(d-1)^{t/2}} \sum_{\lambda_l \in \mathcal{R}^c} \cosh t \psi_m \right) - 1 \right]}{(d-1)^{\frac{t}{2}}}$$

 y_t : The deviation of the number of t-periodic non-backscattering walks from its exponentially growing part (properly normalized).

$$\left[\cdots\right] \approx (d-1)^t \left(1 + \exp\left[-t\left(\frac{1}{2}\ln(d-1) - \left(\frac{V^{-0.6}}{\sqrt{d-1}}\right)^{\frac{1}{2}}\right)\right]\right) - 1$$

2.b A continuous family of trace formulas

Back to Bartholdi's identity :

$$\det(\eta I^{(2E)} - (B - wJ)) = (\eta^2 - w^2)^{E-V} \det(I^{(V)}(\eta^2 + w(d - w)) - \eta A)$$

The spectrum of Y(w) = B - wJ reads:

$$(d-w), w, (w,-w) \times (E-V), \left(\sqrt{w(d-w)} e^{\pm i\phi_k}\right)_{k=1,V-1}$$

For 1 < w < d - 1, $2\sqrt{d - 1} < 2\sqrt{w(d - w)}$.

Choose w such that $\lambda_1 < 2\sqrt{w(d-w)} \rightarrow \phi_k = \arccos \frac{\lambda_k}{2\sqrt{w(d-w)}}$ are real.

Y(w) gives a weight (1-w) to back scattering!

Define:
$$y_t(w) = \frac{1}{V} \frac{\operatorname{tr} Y(w)^t - ((d-w)^t + w^t)}{(w(d-w))^{\frac{t}{2}}}$$

The w - trace formula:

$$\rho(\lambda) = \rho^{smooth}(\lambda; w) + \frac{1}{\pi} \mathcal{R}e\left[\sum_{t=3}^{\infty} \frac{y_t(w)}{\sqrt{4w(d-w) - \lambda^2}} e^{it\frac{\lambda}{2\sqrt{w(d-w)}}}\right]$$

$$\rho^{smooth}(\lambda;w) = \frac{d}{2\pi\sqrt{4w(d-w) - \lambda^2}} \cdot \left(1 - \frac{(d-2w)(d-2)}{d^2 - \lambda^2} + 2\frac{(w-1)^2(2\lambda^2 - 1)}{w(d-w)}\right)$$

The *w* - trace formula includes counting of backscattering walks weighted by (1-*w*) per backscatter!

2.c The spectrum of equilateral quantum graphs from Bartholdi

For an equilateral *d*-regular quantum graph with $L = \pi$

$$U = e^{ik\pi} \left(\frac{2}{d}B - J\right).$$

Taking $\eta = \frac{d}{2}e^{-ik\pi}$, $w = \frac{d}{2}$, Bartholdi gives:
$$\det(I^{(2E)} - U(k)) = C(1 - e^{2ik\pi})^{E-V} \prod_{l=1}^{V} (\cos k\pi - \frac{\lambda_l}{d})$$

$$\frac{1}{V}\rho_Q(k) = \frac{1}{2} \frac{\sqrt{4(d-1) - d^2 \cos^2(k\pi)}}{|\sin(k\pi)|} \cdot \mathbb{I}_R + (\frac{d-2}{2})\delta(k-1)|$$
$$\mathbb{I}_R = \begin{cases} 1 & \text{if } k \in [\frac{1}{\pi}\arccos(\frac{2\sqrt{d-1}}{d}), 1 - \frac{1}{\pi}\arccos(\frac{2\sqrt{d-1}}{d})] \\ 0 & \text{otherwise} \end{cases}$$

The spectrum for the equi lateral graph is periodic consisting of two components.

When the lengths are randomized $l_{ij} = \pi(1 + \epsilon r_{ij})$ with $|r_{ij}| \leq 1$ random uniformly distributed, the numerical distribution is:

