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The Discrete Schroedinger Operator on d-Reqular Graphs
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1. Introduction

A graph G is a set V of vertices connected by a set &£ of edges.

The number of vertices : V = |V|

The number of edges : E =|&|. 2F directed edges: from o(e) to 7(e).
é the reverse of e : 0(é) = 7(e),7(é) = ofe).

Simple graphs: at most 1 edge connects any 2 vertices.
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A walk: {ig,i1,---,1,}, i €V with i, connected to g, 1.
Or: {e1,e9, - +,en}, e € E witho(er) =g, 7(ep) = i, and o(egr1) = 7(ex)

Non back tracking walk: epy1 # é.

t-cycle: A non back tracking
walk which starts and ends at the
The same vertex (edge).

The V x V adjacency (connectivity) matrix A:
A; ; =1 if the vertices i, 7 are connected and 0 otherwise, A;; = 0.

degree d; (valency) : f { edges emanating from the vertex}, d; = Z;./Zl A



Examples:
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Tree graph Complete graph d=4 regular graph

N AN

N
K | 4

'/ >4/

The first Betti number: B=&E-V+C

8 = number of independent cycles on the graph
= number of edges that should be deleted to get a tree.

C = number of connected components (For a connected graphs C = 1).




The Laplacian and its spectrum

Definition:

(LE)i=—> (fi—f)=—> fi+df:

jroi jri

Where D = diag{dy,---,dy} so, L=—A+ D.

For the discrete Laplacian on d-regular graphs:

(LE)s ==Y (fi=f)==)_fi+df:

jri jrvi

(@)
In other words, for a d regular graph: L =—A +d IV).
This is the generalization of the discretized Laplacian. In 2-d e.g., : @ @
0? o?
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[z, y) (8$2 + ay2> f(z,y)

(flz+o,y)+ flx,y+d)+ flx—d,y)+ flz,y — &) —4f(x,y)
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basic properties of the Laplacian

1. The Laplacian is a positive operator:
Zfz Lf de2 Zfz z;}f3>zdf2 Z|f@|A,J

2. The lowest eigenvalue is 0 corresponding to the eigenvector (1,---,1).

fj|>Zd ~1)f2>0

3. Let G and G’ be two graphs whose Laplacians have the same spectrum.
Then: Vg — Vg/ , Eg — Egr

Exercise
(a) Prove statement 3. above.

Does 3. imply that graphs which have the same spectrum are isomorphic?



Isospectral (co-spectral) graphs
Non isomorphic graphs whose Laplace (or Adjacency) spectra are the same

G G’
G and G’ are isospectral

Denote:

Center vertex “0”, the vertices on the ring i=1,..,N ; N=2m (even)

The number of radial edges in G and in G’ is m and they do not overlap

1) = (1,1,---, 1) (vector of length N)

|c) = (cl, ven)t e; = 1 if vertex i is connected to 0 in G, otherwise
=0

|C> :(Clv"'a l

cy) T, i =1 ifvertexiis connected to 0in G’, otherwisec, = 0

&) = 1) — |}



Proof:
Denote |f) = (fi,..., fn)? the eigenvector entries on the N ring vertices,
fo the entry on the center vertex.

The Adjacency eigenvalue problem for the graph G reads:
(c|f) =Afo and  (fiy1 + fic1) +eifo=Afi Vi€ [l N]

Denote by Agr the Adjacecy matrix for the ring graph without the center
vertex. The above can be written as:

(Ar = AD|f) = =fole) — |f) =—fo(Ar — M)~ |c)
(clf) = =folcl(Ar — AI)~He) = Afo
The secular equation reads: A+ (c[(Ar — AI)"tlc) =0, if fo #0.

Denote: |k) and oy, the eigenvectors and corresponding eigenvalues of Ap.

In particular |1) = (1,---,1)? is the (not normalized) eigenvector with a; = 2
N
{c]1)” (clk)?
A+ + =0
(N()\Q) kz_:z()\—ak)

The secular equation is invariant under |¢) — |¢)  Since:

) = [1)—e), (1) = (1]e) = m, {kle') = —(k|c), k > 2, [Hence o(G) = o(G") .




In general:
Switching theorem Seidel (1974), Godsil-McKay (1982), Dam—Haemers, (2003).

Let B and C' be symmetric matrices of dimensions b X b and ¢ X ¢, such that B
has constant row (and hence column) sums. Then the matrices

(B N , (B N’
M_<NTC) andM—(N,TC)

are cospectral if N is a (0, 1)-matrix where each column sum is either 0, %, or

b, and N’ is the matrix obtained from N by replacing each column (v| with
column sum % by (1| — (v|.

Comment: We can define graph Laplacians L = —M |, L' = —M' (with the
off-diagonal entries of M, M’ from (0, 1) ). These graphs are isospectral.

Proof: Define Q = (%Eb — I,) @ I. where I, and I. are the unit matrices of
dimensions resp. b,c and Ej is the all 1 matrix in dimension b.

Direct computation shows: M’ = QMQ~!.

Exercise: Construct a non-trivial pair of graphs with isospectral Laplacians.



d-regular graphs :

Graphs where all the vertices have the same degree.
Examples:
1. Complete graphs
2. Lattices
3. d-reqular infinite trees.
d-regular graphs are an expanding family.

E:VTd — V or d must be even
B

:V(i_ )

2

Gv.a- The ensemble of all the d regular graphs with V' vertices .

: s
For fixed d and V — 00 : |Gy q| = V2T (%)

(---)g : Ensemble average taken with uniform probability distribution.

C : Number of ¢ - periodic cycles with no back tracking
(O))g = V=Dt @)

2t o 2t

Hence, short t - perioic cycles with ¢ < log, ; V' are rare .



The R-neighbourhood of every vertex for R < logd_lg is almost surely a
d-regular tree.

The diameter of a G(V,d) graph, i.e. the maximal distance between vertices in
(7, is given by
diam(G) =log,;_(Vlog,_, V) + O(1)

Therefore, the typical distance between vertices along the boundary of the 'local
tree’ is of the same magnitude as the distance between two arbitrary vertices in

G.

Denote by C} the number of t- cycles (prinitive, non backscatter, non self inter-
secting t-periodic orbits).

For t < logd_lz, the C; distribute as independent Poisson variables with a
2

mean: (Cy)g = %

Reminder : For d-regular graphs the spectra of A and L are
the same but for a shift by d and sign change.



Spectral properties of d-regular graphs

The spectral density ~ p(A) = ——— Y 6(A— Ag)

The mean spectral density for d regular graphs, (V — oo, d = const)

Kesten MacKay limit distribution: (Supported in || < 2v/d — 1):

V-1
d \/3d—1) -
prm(A) = Vh_rgov_l<2“ )"“> - 27r\/ d2 — \2
k=1 G

(a) Cubic graph on 2000 vertices. (b)) S-valent graph on 500 vertices.

Figure 1. Eigenvalue distributions of random graphs ve Mekay's law



EIGENVALUE SPACINGS FOR REGULAR GRAFPHS

DMITRY JARKOBSON, STEPHEN D MILLER,
ICOR RIVIN AND ZEEV RUDNICK

Unfolding the spectrum with the Kesten-McKay density using
Nxar : The mean spectral counting function.

. ANk e — _
sp=Nim(Ng) 5 FEL =prem(N) 5 ds = prm(N)dA = 355
13 JAKOBSON, MILLER, RIVIN AND RUDNICEK

Figure 2. Lavel spacing distribution of a cubic graph on 2000 vertices vz GOE



Spectral properties and mixing
The mattix M = éA is a bi-stocastic matrix.
M is the evolution operator for a random walk on the graph:
Denote by p(t) the vector of vertex probabilities after t steps.
p(t) = M'p(0).
The largest eigenvector of M is 1 with eigenvector corresponding to uniform
distribution.
The spectral gap s(G) gives an estimate for the speed at which any initial
distribution reaches equidistribution.

s(G) = - (Amaz — max{[A1], An—1})

A’I’)’LCLSU

Alon Boppana: s(G) <1 — 2y ;‘H + dlozgn

. o . s(G
Cheeger inequalities % < h(G) < 1/2s(G)

h(G) is the expansion factor explained in the next page



Expanding family of graphs
Intuition: expanding graphs are extremely well connected graphs.
Definition: For a graph G = (V, £) and a subset of vertices S C V, the boundary
0S is defined as the set of edges which connects S to G\ S. The expansion
parameter of a graph is defined as

. 0S|
h(G) = min — '

Thus, in order to disassemble a set S out of the graph which contains F edges,
one has to remove at least F - h(G) edges. In particular, for a regular graph,
one has to disconnect at least d|S|- h(G) edges.

A family of graphs {G} }52, with increasing V(Gy) is defined as a (geometrical)
expanding family of graphs, if there exists a positive constant ¢ > 0, so that
liminfg_, o A(Gk) = c.

Note that in an expanding graph, the volume of any ball is proportional to that
of its boundary, which implies that the growth rate of the graph is exponential,
hence the name ’expander’.

Exercise:
Compute the expansion parameter for a finite tree which is d-regular but for its canopy.



Ramanujan graphs
A d-regular graph is Ramanujan if V 1 <7<V -1 :|\;| <2vd-1

Number Theory: Ramanujan graphs exist for d = p — 1.
(A. Lubotsky, R. Philips and P. Sarnak)

Numerical experiments: (Hoory)
A finite fraction of the graphs in G(V, d) are Ramanujan.

The fraction is ~ 2/3 independent of V or d.
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Ficure 9. (a) Distribution of A{G) for 1000 random 4-regular
graphs in the permutation model. Four 40 bin histograms of A{G)
for graph sizes 10000, 40000, 100000, 400000, (b)) Median, mean
and standard deviation of 2yd — 1 — A(G) as a function of the
graph swe n. A log-log graph, along with the best linear mterpo-
latioms,



