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I
Problem statement

[ T
R D

ion—disk: parameter

1 N
§= 55@1‘]1? (1)
v
ion—ion: parameter I'
1 1
= 55112 oc T 2
Bpundary: Qo
[C)lsl“ Q. Often recalled I in the literature
ounter—ions: q y

Figure : The 2D cell model. The disk with charge

Q1 and radius R is surrounded by counter-ions of
charge —q enclosed by an exterior boundary at D

1 N
with charge Q. B = EBQNOC —. 3)

T

Same meaning as the Manning parameter

lateral extension parameter

D
A = log — (4)
R 4
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Problem statement
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i i — Nz — R
BH =2 Y log| 2| —22 Y] log|Z el INS =87 L NEieg B 1
j=1 R 1<j<k<N R L (1)
Ep
I
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= |
|
|
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Boundary: Q,
Disk: Q,

Counter—ions: q
Neutrality NE = £ + £p.
Figure : The 2D cell model. The disk with charge lgﬁi\t/g?e"mc;gygalmg“aTg’og;t%tz ;JZB
Q1 and radius R is surrounded by counter-ions of
charge —q enclosed by an exterior boundary at D
with charge Q2.
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I
Different cases

— Characteristics
o=Z—0
- Mean field theory, to this problem often attributed to
o= — 0 Fuoss et al. (1951), Katchalsky et al. (1953). To our
f—_— problem it is equivalentto & — 0
I Eis a whole number Method: Poisson-Boltzmann equation
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I
Different cases

0o =—0 Characteristics

0= o The strong coupling regime (Samaj and Trizac
2011a;b)

1 = is a whole number Method: Wigner Strong Coupling approach
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I
Different cases

Characteristics
o =2—0 Method: Analytic
0= o0 > = = 1: Free fermion (Deutsch and Lavaud

1974, Deutsch et al. 1979, Jancovici 1981)
= is a whole number » 5

-+
I

2,3, ... method proposed by Samaj
(

tal. (1 994)
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Different cases

—0
— 0

o
[1]

(1]

= is a whole number
= is small

* a4+ O
I

JP Mallarino (U Andes)

Objectives

The weak coupling regime (Burak and Orland 2006)
> Determine Z
> Derive the profile
> Recover mean field results

> Determine condensation (MF —
fm =1-1/§)
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The partition function Z

Zy = Jd2NT e PHELr2rN) (2)

Using a complex variable notation the Hamiltonian reads,

N
BH =2¢ ) loglz| —E ), logl(z —=z)(z —a)] + B, (3)

Jj=1 1<j<k<N

and the partition function is rewritten as,

EnN
ZNOCJDNZl [T Iz —Zk||2] UIHZJ'H%- (4)

1<j<k<N
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The partition function Z

EN
ZNOCJDNZ l H |z — ;HQ] H HZJ‘H_2£-
j=1

1<j<k<N

Which brings us back to = € {1, 2, ...} since,

l 1 (zj—zk)l—Det[VNxN],

1<j<k<N

with ~ ~

1 1 1 1

z1 ) z3 . ZN

2 2 2 2

23 25 23 24

VNN = .
-1 -1 _N-1 -1

| %1 22 Z3 AN
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Weak coupling approximation

Proposed by Burak and Orland (2006),
2log|r1 — ro| = log|r1| + log |r2| + log [2 cosh (log ||r1 | — log [r2|]) — 2cos012] ~ 2log|r=]|, (5)

transforming the Hamiltonian to,

ﬁHz

m‘m

N
Z -2 > y9P 4 Ep, ®)

1<j<k<N

with y = Elog(r/R) (a.k.a. centrifugal variables).
x Distance between particles is large
* Dropped angular correlations
* Z needs to be small
* 2D — 1D.
* Yy~ suggests arrangement
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Weak coupling approximation

Proposed by Burak and Orland (2006),

2log|r1 — ra| = log|lr1| + log |[r2| + log [2 cosh (log |r1]| — log |rz2|]) — 2 cos 612]

transforming the Hamiltonian to,

ﬁHz

m‘m

N
DIRTEE DY
=1 1<j<k<N
with y = Elog(r/R) (a.k.a. centrifugal variables).

* Distance between particles is large

* Dropped angular correlations

* Z needs to be small

* 2D — 1D.

* y- suggests arrangement

Departing from the base order, denoted by [BO], y1 < y2 < - - -
mapped entirely from permutations of such arrangement.
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< yn, the N-dimensional phase space is
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Partition function

Weak coupling Z

Written in terms of the {y;, } variables,
N
27 R? _ 29N
Z(E,&,N,A) = < “_R ) deye PHY £ X515 @)
transforms to,
_ on R? N =A y y2
Z(2,6,N.A) = P (%) I R T ®
= 0 0 0
with
206 -1) & N2 -1 )
H=%Zyj*2 D yk=2[%*2(171)]yj 9
= j=1 1<j<k<N j=1 -
May 27,2014  6/18
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Weak coupling Z

Written in terms of the {y;, } variables,

(1

2arr2\ Y _ 2 ¢N
Z(E,&NA):( ; ) [EATRE

transforms to,

with
N
H = a;(yj+1 — y;) — anEA,
i=0

choosing yo = 0 and yn+1 = ZA, and,

aj:[j—(i“r%)r: {j_ <1ngfN+;)r

v2 _
dyi e
0

[i — vao]®

H

Rationale: Use the Laplace transformation to find the partition function Burak and Orland (2006).
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Weak coupling Z

a;x

Using the notation f;(z) = e~ *37,

N
27 R? EA_F =A YN y2 N
Z(E,§,N,A) =(T) N1e*N=A~EB XJ‘ dyNJ dyN—1-~-f dyr [] f5 (w1 —w5)-
0 0 o j=0

[fN®FN-1®®F1®f0](EA)

(11
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Weak coupling Z

Using the notation f; (z) = e~ 3%,

2w R? N AanEA_B =A YN v2 &
Z(E,6N,1) :< ) MW= Fe s [Fayy [Ny [T [] 6 e - w)-
0 0 0 j—o0

[fN®FN-1®®F1Rf0|(EA)
(11)

1

s+ aj

_ N
Tiree o @ =11 (2

j=0
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Weak coupling Z

—a;x

Using the notation f;(z) = e~ “97,

N —
27TR2 =SA_FE =A YN y2 N
Z(2,6,N,A) :< & ) N1erw=EEe s [Fayy [Ny [T [] 8 e - w0
= 0 0 0 j=0

[fN®FN-1®®F1®f0](EA)
(11)

T () = (12)

Leading to the inverse

> Anticipating, Z oc Zj e~ % EA
> A needs to be large

> Z o~ e—aj*:A

> {a;}'s may be degenerate
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Partition function

2 o
Who is j
4 ’,‘
j* is the integer closes to ,/ao. \ !
E-1 1 fum 1 \ pi ¥ N
+5_71+%BN+2 J
— ;

Vao =

Figure : Artistic representation of a; as a function
of 5 with 5* the location of the minimum

May 27, 2014 8/18

Weak couplings in 2D




o
Who is j

j* is the integer closes to /ay.

<
*
I
—_
o
[y
—
_
|
A
Tl
1z
| =
—_—
=

Notice how .
J PEYS
L o
N

in the thermodynamic limit

| A\

Transitions

Since 2 ~ e “*=% thenata change in j*
the behavior of the system will change!
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Figure : The value for j* as a function of

fMN/(1+€B/8).
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Partition function

Who is j*

j* is the integer closes to /ag.

[r

j*z[g:ﬂ _ Lff%w 3

Degeneracy

Depends if

(1+¢&B) €N,

]

which will be even or odd
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Partition function

Who is j*

is the integer closes to /ao.

} . (13)

fu N
B
T+

Degeneracy

Depends if
(1+¢B)€N,

[ v

which will be even or odd

Non-degenerate case

4
/
/

\ /
\ i
\ /
\ /
/ g m
/ o
)

\
\
/
J

j

Figure : Artistic representation of a; as a function
of 5 with 5* the location of the minimum

EIN L
T (s) = —_—
{fN@"'@fo} j=o s+ aj
N
2m R? EA_Fgp © N 1 =
Z<E,§,N,A>=< = ) netw=REE L I o= T (14)
=) 20 | k=0,knj OF — @5
Defined as CO,N;j
May 27, 2014 8/18
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Partition function

Who is j*

j* is the integer closes to \/ay.

SR

Degeneracy
Depends if

(1+¢p) €N,

[ v

which will be even or odd

JP Mallarino (U Andes)

Even degenerate case

N

\

%
@

Figure : Artistic representation of a; as a function

\\\‘

i

of 5 with j* the location of the minimum with
2(1 + £p)/= an even number.
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Odd degenerate cases

. o,
Who is j
j* is the integer closes to \/ag. a ;
A |
/
) §—1 fuN |
Jt — ’V = “ — ’V M£B . (13) ,/
= T+
\\\ I’/
Degeneracy 5\ /
Depends if . /!
\.\ /./
2 e ral
= (1+&B) €N, = ; >
= Lk
J ]
which will be even or odd Figure : Artistic representation of a; as a function
of 5 with 5* the location of the minimum with
2(1 + £5)/E an odd number
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o
Who is j

j* is the integer closes to ,/ag.

j*:[»s;ﬂ _ Lff%;w 3

Degeneracy

Degenerate cases Due to the
continuity of the free energy — the
partition function, they are a
limiting behavior of the
non-degenerate scenario.

Depends if

[ e

(1+¢B) €N,

which will be even or odd
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The free energy

The excess free energy is,

1
BFeac(N.2,63) = —log | L 2E 6V 8,
keeping in mind,
N N
2r R? SA_E =
Z(5,¢,N,A) = ( ”_R ) N1eNZATEE N0y e 58
= j=o
-
1 2
Dominant behavior Subdominant behavior

Figure : The excess free energy dominant term Figure : The excess free energy sub-dominant
coming from 1 for N = 10and (g =0 term coming from2for N = 10and £€g = 0

(14)

(15)



Density profile

As for the profile,

N
p=— JdNr(s(r —ry) e 7

Z(=.6, N, &) (19

= 2rRze2vE Y

with
py =N —y1))yy,, - "

Since the average must be consistent with the [BO]. Hence,
py =<8 (y — y1)>{Tyj} + 6 (y— y2)>{Tyj} +o 40y - yN)>{Tyj) , (18)

and,

o R"‘)N e FB NI

T _ N _ —H!
G W=y, = ( = ZEEN.A) f[BOId yd(y—uk)e (19)
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Density profile

As for the profile,

p:m‘[dl\]ré(r—rl) eiﬁH:mpy, (16)

with
py =<8 (y — y1)>{Tyj} + 6 (y— y2)>{Tyj} +oo+ 0y — yN)>{Tyj}7 (17)

and,

{Z;I;V:k Crnej 67“_,«5@.—;/)} {Zf;é Con—1yy (ajy}

—=A (18)

< T
0 (Y — Yk oy =
G =gy SN Gy e
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Density profile

As for the profile,

N N _pm =
=———— [d"rs(r - = ——=py 16
L Z(E,§,N,A) J. ré(r—re 2w R2e2V/E Py (16)
with - - -
py =<0 (y— y1)>{yj} + {6 (y — .7!2)>{yj} +o (Y — yN)>{yj} B (17)
and,
Sk Cronig e 9 ESTVIITETS Cok-nyg efa"y}
Gy =i, = { H (18)

N —a;EA
Ym0 Cie

Characteristics

x Upfront decay of 1/r2 (MF)
* Behavior near R

*= Behavior near D

» Condensation = j*
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Density profile

i _ _ ]

0.8f% o £=3, A=20 1

g - £=6, A=20

E‘\\ s &=9, A=20]| 1

0.6F ¢ =

% £=3, A=10| -

SRR 3

DO - =6, A=10 -

04f 4N 6 =

[ AN E:9, A=1 ]

[ NN ]

r N b

r ANIANCIY 1

= - ~N 4

02p RN N ;

F R ]

g \\4&\_:&,@‘_&‘&-0__@__@__&_ ]

F A TR e e e g
s b by by ST ATTRT

0 11 12 13 14 L5

r/R

Figure : The density profile 5 = 2w R? p/(N¢) near the charged disk for different values of the Manning
parameter for N = 10 and £g = 0.
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Density profile at infinite dilution

Near R, (k < j*)

k—1

Co,k—1;5 —(a;—a.x)y _=A
Gy, > D e 75 L 0 (e : (19)
{uj} j;o Cok1:j* ( )
and for the exterior shell (¢ > j*),
T S CrNij  —(aj—a,x)(EA—y) —=A
Gu—vDf,, = ), oole +0(e754). (20)

=k Cr,Nij*
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Density profile

Density profiles near mean field

At infinite dilution, using 5 = 2w R?p/(N¢),

~\ 2
. i3\ gmlajmapy f12v1 <R> 1 @1
=0 Cok—15+ 1+ éTB T (1 + (& —1)log )

™
m
="
mE
<
[0}
D1
“
—
>
L
Q
[=]
ES
\
L
:

s

"
, Y)
10" o 64 E
i
10°F
10°F
. . .
O'q.() 1.1 1.2 1.3 1.4 1 ‘2 ‘3 L‘l % ‘6 ‘7
r/R r/R

Figure : Density profile 5 = 27 R? p/(N¢) for Figure : Same as the figure to the left with
£ =3and A = 100.

logarithmic scales on both axis.
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Contact densities

As for the value of the densities at contact, at R it gives

3 -k
~ -~ J J 1
Ply=0 = <fM [fI\/I ND (fM+|:f1W N]-‘r N)’
and for D,
285 L (- P D (O R
=A = ——(any —a;x) =< — - === = =1,
€ Ply=Aa Ne N j* ‘ M N N ¢ M
1 ] 15t [ A‘Z o]
° A5
= A10
0.8 1
N ]
04 A2 |
@ AS 1
02F ~A10]]
i — - S
Figure : The density p at contact in » = R for Figure : The density p at contactin » = D for
N =10and &g = 0. N =10and &g = 0.

(22)

(23)
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Integrated charge

» Mean field behavior at large
distances?

» Condensation
» Linear form at the transitions

Full condensation for = > 1 = " log(r/R)
Strong couplings

v

Figure : The integrated charge N (1 — Q(r)) as a
function of the logarithmic distance for A = 102,
¢ = 0and N = 10 for various Z. The plots read
for the coupling parameter from top to bottom

=2 10 1 10 2 10
== 572172’1973711717 and 2.
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Integrated charge

v

Mean field behavior at large
distances?

» Condensation
» Linear form at the transitions

» Full condensation for= > 1 = E “
Strong couplings 10 By % 0 50
j* log(r/R)
fap = N (24) Figure : The integrated charge N (1 — Q(r)) as a
function of the logarithmic distance for A = 102,

¢ = 0and N = 10 for various Z. The plots read
for the coupling parameter from top to bottom

=2 10 1 10 2 10
== 572172’1973711717 and 2.
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Integrated charge

» Mean field behavior at large
distances?

» Condensation
» Linear form at the transitions
» Full condensation for = > 1 =

Strong couplings log(r/R)
At the transition the j*® particle is Figure : The integrated charge N (1 — Q(r)) as a
not condensed function of the logarithmic distance for A = 102,

¢ = 0and N = 10 for various Z. The plots read
for the coupling parameter from top to bottom

=2 10 1 10 2 10
== 572172’1973711717 and 2.
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Integrated charge

» Mean field behavior at large
distances?

» Condensation

» Linear form at the transitions

» Full condensation for= > 1 =
Strong couplings

» Mean field result is recovered
in the thermodynamic limit

log(r/R)

Figure : The integrated charge N (1 — Q(r)) as a
function of the logarithmic distance for A = 102,
¢ = 0and N = 10 for various Z. The plots read
for the coupling parameter from top to bottom

=2 10 1 10 2 10
== 572172’1973711717 and 2.
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Integrated charge

» Mean field behavior at large
distances?

» Condensation
» Linear form at the transitions
» Full condensation for 2 > 1 =

Strong couplings log(r/R)
| Figure : The integrated charge N(1 — Q(r)) as a
sz - fM (24) function of the logarithmic distance for A = 102,

¢ = 0and N = 10 for various Z. The plots read
for the coupling parameter from top to bottom

=2 10 1 10 2 10
== 572172’1973711717 and 2.
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Conclusions

v

Showed an equivalent 1D problem of the 2D system
With some effort we computed Z and p

Recovered mean field results from our assumptions
Determined condensation

v

v

v
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