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First Appearence of Random Matrices

RBlometvika, 20 . 32-52 (1929

THE GENERALISED PRODUCT MOMENT DISTRIBUTION
IN SAMPLES FROM A NORMAL MULTIVARIATE POPU-
LATION.

By JOHN WISHART, M.A,, B.Sc. S istical Department, d
Experimental Station.

1. Introduction.

For some years prior to 1915, various writers struggled with the problems that
arise when samples are taken from uni-variate and bi-variate populations, assumed
in most cases for simplicity to be normal. Thus “Student,” in 1908 *, by considering
the first four moments, was led by K. Pearson’s methods to infer the distribution
of standard deviations, in samples from a normal population. His results, for com-
parison with others to be deduced later, will be stated in the form

1
dp = —x—<4 - (1),

r(=%)

where XV is the size of the sample, and
A=55, a=s,
o being the standard deviation of the sampled population, and & that estimated
from the sample. Thus, if @, &, --. oy ar the sample valuce,
Nz = 2 (=),

and Nt = ): (e — &)

‘When bi-variate populations were considered, other problems arose, such as the
d.xst.nbumon o{ the correlation coefficient and of the regression coefficient in

taken by , were found to be difficult, and
only sppmx:maﬂve resalts had been reached, when, in 1915, R. A. Fishert gave a
formula for the mmulb&ueous distribution of Lhe Lhree quadramc statistical deriva-
tives, namely the two (squared ) and the product
moment coefficient. Thus, let 2, = zx represent the sample values of the
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Covariance Matrix

phys. math

in general
1 Xi X1 VN
X= 5 |x, X,,
3 X3 X3
in general
t_ X a Xy
X = (NxM)
Xlz X22 X32
2 2 2
W= x'x = | Xt XX Xp1 X0+ Xg Xt X5, X3,

2 2 2
XX, i XooXort X5p Xy Xpp+ X+ X3

(NxN) COVARIANCE MATRIX (unnormalized)
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Covariance Matrix

phys. math

in general
1 X X
(MxN)
X= 5 Xa1 X0
3 X3] XSZ
in general
t X a Xy
X = (NxM)
X Xp Xy
t X XA X2 Xy X+ X Xogt X5 X
W= X X = n+ Xo it X 11Xt X Xt 2383,

XX, i+ X Xort+ X3 X Xpp* X5+ X3
(NxN) COVARIANCE MATRIX (unnormalized)

Null model — random data: X — random (M x N) matrix

— W = X'X — random N x N matrix (Wishart, 1928)
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RMT in Nuclear Physics: Eugene Wigner

SESSION IIB
INTERPRETATION OF LOW ENERGY
NEUTRON SPECTROSCOPY

CHAIRMAN—W. W. Havens, Jr. PO
[IB1. DISTRIBUTION OF NEUTRON
RESONANCE LEVEL SPACING.

E. P. WIGNER, Princeton University
Presented by E. P. Wigner

The problem of the spacing of levels is neither a
terribly important one nor have I solved it. That is
really the point which I want to make very definitely. X
As we go up in the energy scale it is evident that Fig. IB1-1. Probability of a level spacing X.
the detailed analyses which we have seen for low
energy levels is not possible, and we can only make

sur, that is @ much more serious deviation and much
:ss probable statistically.

Let me say only one more word.. It is very likely
1t the curve in Figure I is a universal function.
1 other words, it doesn’t depend on the details of
1e model with which you are working. There is one
articular model in which the probability of the
nergy levels can be written down exactly. I men-
oned this already in It is

bility that two successive roots have a distance X,
then you have to integrate over all of, them except
two. This is very easy to do for the first integration,
possible to do for the second integration, but when
you get to the third, fourth and fifth, etc., integra-
tions you have the same problem as in statistical
mechanics, ‘and presumably the solution of the
problem will be' accomplished by one of the methods
of

alled the Wishart distribution. Consider a set of
ymmetric matrixes in such a way that the diagonal
-ement m, , has a distribution exp (~m,%3/4). In other
ords, the probability that this diagonal element
1all assume the value m,, is proportional to
@ (-m;3/4). Then as I mentioned, and.this was
10wn a long time ago by Wishart, the pxobnbilhy Ecr
1@ characteristic roots to be A1, Az As ...A,,

ds is an n dimensional matrix, is given by e
tpression:

GRS TR E

AD A1 = 22) Qg =23 Qaey = A1

jumdar

p eigenvalue of a random mat

et me only mention that I
did integrate over all of them except one, and the

1
reuult tn o V4n —XZ. This is the probability that
the root shall be A. All I have to do is to integrate
over one less variable than I have integrated over,
but this I have not been able to do so far.
DISCUSSION

W. HAVENS: Where does one find out about a

Wishart distribution?

Large deviations
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the root shall be A. All I have to do is to integrate
over one less variable than I have integrated over,
but this I have not been able to do so far.

DISCUSSION

W. HAVENS: Where does one find out about a
Wishart distribution?

E. WIGNER: A Wishart distribution is given in
S. S. Wilks book about statistics and I found it just
by accident.
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Random Matrices in Nuclear Physics
spectra of heavy nuclei

238 NN
U

E—>

B L L e P
E—»

WIGNER (°50) :replace complex H by random matrix
DYSON, GAUDIN, MEHTA, .....

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Applications of Random Matrices

Physics: nuclear physics, quantum chaos, disorder and localization,
mesoscopic transport, optics/lasers, quantum entanglement, neural
networks, gauge theory, QCD, matrix models, cosmology, string theory,
statistical physics (growth models, interface, directed polymers...), ....

Mathematics: Riemann zeta function (number theory), free probability
theory, combinatorics and knot theory, determinantal points processes,
integrable systems, ...

Statistics: multivariate statistics, principal component analysis (PCA),
image processing, data compression, Bayesian model selection, ...

Information Theory: signal processing, wireless communications, ..
Biology: sequence matching, RNA folding, gene expression network ...

Economics and Finance: time series analysis,....

Recent Ref: The Oxford Handbook of Random Matrix Theory
ed. by G. Akemann, J. Baik and P. Di Francesco (2011)
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Spectral Statistics in Random Matrix Theory (RMT)

Working model: real, symmetric N x N Gaussian random matrix

1 2
R P Prob.[J] «x exp ~3 Z J;
J12 J22 . J2N "

= exp [f% Tr (J2)]

— invariant under rotation
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Spectral Statistics in Random Matrix Theory (RMT)

Working model: real, symmetric N x N Gaussian random matrix

1 2
PR T Prob.[J] «x exp ~3 Z J;
Jio o o o "

= e [T ()]

— invariant under rotation

N real eigenvalues: /\17 )\2, cey )\/\/ — strongly correlated

Spectral statistics in RMT =- statistics of {)\17 )\2, Cee )\N}
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Top Eigenvalue of a random matrix )\, ..

Recent excitements in statistical physics & mathematics on

Amax = the top eigenvalue of a random matrix

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Top Eigenvalue of a random matrix )\, ..

Recent excitements in statistical physics & mathematics on

Amax = the top eigenvalue of a random matrix

Pr( Aanax) typical
TRACY-WIDOM
large
(left)
large
/( right)

A

max

S.N. Majumdar

Typical fluctuations (small)
= Tracy-Widom distribution
— ubiquitous

[directed polymer, random permutation,
growth models, KPZ equation, sequence
alignment, ....]
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Top Eigenvalue of a random matrix )\, ..

Recent excitements in statistical physics & mathematics on

Amax = the top eigenvalue of a random matrix

Pr( xmax) typical . .
RACY-WIDOM Typical fluctuations (small)
= Tracy-Widom distribution
lglcgtf) — ubiquitous
\ /(r]f‘glﬁa [directed polymer, random permutation,
) o gr.owth models, KPZ equation, sequence
N — alignment, ....]

max

This talk = Atypical rare fluctuations = large deviation functions
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Top Eigenvalue of a random matrix )\, ..

Recent excitements in statistical physics & mathematics on

Amax = the top eigenvalue of a random matrix

Pr( xmax) typical . .
RACY-WIDOM Typical fluctuations (small)
= Tracy-Widom distribution
lglcgtf) — ubiquitous
\ /(r]f‘glﬁa [directed polymer, random permutation,
) o gr.owth models, KPZ equation, sequence
N — alignment, ....]

max

This talk = Atypical rare fluctuations = large deviation functions
= 3-rd order phase transition
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e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system

S.N. Majumdar Top eigenvalue of a random mat



e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system

e Prob. distr. of A\,.x <= Coulomb gas with a wall
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e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system

e Prob. distr. of A\,.x <= Coulomb gas with a wall
Limiting distribution: Tracy-Widom

physics of large deviation tails: left tail (pushed Coulomb gas)
right tail (unpushed Coulomb gas)
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e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system

e Prob. distr. of A\,.x <= Coulomb gas with a wall
Limiting distribution: Tracy-Widom

physics of large deviation tails: left tail (pushed Coulomb gas)
right tail (unpushed Coulomb gas)

= 3-rd order phase transition: Pushed <=-Unpushed
(Unstable) <= (Stable)
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e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system
e Prob. distr. of A\,.x <= Coulomb gas with a wall
Limiting distribution: Tracy-Widom

physics of large deviation tails: left tail (pushed Coulomb gas)
right tail (unpushed Coulomb gas)

= 3-rd order phase transition: Pushed <=-Unpushed
(Unstable) <= (Stable)

e Similar 3-rd order phase transition in Yang-Mills gauge theory and
other systems
= ubiquitous
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e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system

e Prob. distr. of A\,.x <= Coulomb gas with a wall
Limiting distribution: Tracy-Widom

physics of large deviation tails: left tail (pushed Coulomb gas)
right tail (unpushed Coulomb gas)

= 3-rd order phase transition: Pushed <=-Unpushed
(Unstable) <= (Stable)

e Similar 3-rd order phase transition in Yang-Mills gauge theory and
other systems
= ubiquitous

e Extension to Wishart matrices

= Recent experiments in coupled fiber lasers system
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e Top eigenvalue A, of a Gaussian random matrix
= stability of a large complex system

e Prob. distr. of A\,.x <= Coulomb gas with a wall
Limiting distribution: Tracy-Widom

physics of large deviation tails: left tail (pushed Coulomb gas)
right tail (unpushed Coulomb gas)

= 3-rd order phase transition: Pushed <=-Unpushed
(Unstable) <= (Stable)

e Similar 3-rd order phase transition in Yang-Mills gauge theory and
other systems
= ubiquitous

e Extension to Wishart matrices
= Recent experiments in coupled fiber lasers system

e Summary and Generalizations
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| Why Apexc ?
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Stability of a Large Complex System

R M. Maﬂ, Nature, 238 . 413 (1332)

GENERAL

Will a Large Complex System

be Stable?

Gardner and Ashby* have suggested that large complex systems
‘which are assembled (connected) at random may be expected
to be stable up to a cerum critical level of connecmnce, and
then, as this becom Their
conclusions were busod on the trend of cmnpuhﬂ' studies of
systems with 4, 7 and 10 variables.

Here I complemen( ‘Gardner and Ashbys work with an
analytical investigation of such systems in the limit when the
number of variables is large. The sharp transition from
smbrl.hty to instability which was the essential feature of their
paper is confirmed, and I go further to see how this critical
transition point scales with the number of vnnablel 7 in the
system, and with the average and
magnitude o between the various variables. The object is
to clarify the relation between stability and complexity in

with many species, and some
conclusions bennng on this question are drawn from the modnl
But, just as in Gardner and Ashby's work, the formal develoj
ment of the problem is a general one, and thus applies to xhe
wide range of contexts spelled out by these authors.

Specifically, consider a system with » variables (in an
ecological appheauon these are the populations of the »n
interacting species) which in general may obey some quite
nonlinear set of first-order d:ﬂ'ermtml equations. The stab:hty
of the possible equilibrium or ti
of such a system may be s&udxed by Taylor-expanding in the

of h poxnt, so that the smhm!y
of the il is by the

dx/dr=Ax [¢))

Here in an ecological context x is the nx 1 column vector of
the isturbed populanons x;, and the 2 x » interaction matrix
ize the effect of species &

whi
oa specles 7 near’ equmbnumz~= A diagram of the trophic
web immediately determines which ay, are zero (no web link),
2ad the type of & der the sign and
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Linear Stability of a Large Complex (Randomly

Connected) System

e Consider a stable non-interacting population of N species with
equlibrium density p;
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Linear Stability of a Large Complex (Randomly

Connected) System

e Consider a stable non-interacting population of N species with
equlibrium density p;

Stable:
xi = pi — p; — small disturbed density

dx;/dt = —x; — relaxes back to 0
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Linear Stability of a Large Complex (Randomly

Connected) System

e Consider a stable non-interacting population of N species with
equlibrium density p;

Stable:
xi = pi — p; — small disturbed density

dx;/dt = —x; — relaxes back to 0

e Now switch on the interaction between species
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Linear Stability of a Large Complex (Randomly

Connected) System

e Consider a stable non-interacting population of N species with
equlibrium density p;

Stable:
xi = pi — p; — small disturbed density

dx;/dt = —x; — relaxes back to 0

e Now switch on the interaction between species
N
dxi/dt = —xi +a iy Jij X

Jij = (N x N) random interaction matrix
« — interaction strength
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Linear Stability of a Large Complex (Randomly

Connected) System

e Consider a stable non-interacting population of N species with
equlibrium density p;

Stable:
xi = pi — p; — small disturbed density

dx;/dt = —x; — relaxes back to 0

e Now switch on the interaction between species
N
dxi/dt = —xi +a iy Jij X

Jij = (N x N) random interaction matrix
« — interaction strength

e Question: What is the probabality that the system remains stable once
the interaction is switched on?
(R.M. May, Nature, 238, 413, 1972)
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Stability Criterion

e linear stability: %[x] = [aJ — /][x] (J — random interaction matrix)

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Stability Criterion

e linear stability: %[x] = [aJ — /][x] (J — random interaction matrix)

Let {\1, Ao, -+, Ay} — eigenvalues of the matrix J
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Stability Criterion

e linear stability: %[x] = [aJ — /][x] (J — random interaction matrix)

Let {\1, Ao, -+, Ay} — eigenvalues of the matrix J

e Stable if a\; < 1forall i=1,2,---,N

1
= )\max < —

= w | — stability criterion
«

w — inverse interaction strength
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Stability Criterion

e linear stability: %[x] = [aJ — /][x] (J — random interaction matrix)

Let {\1, Ao, -+, Ay} — eigenvalues of the matrix J

e Stable if a\; < 1forall i=1,2,---,N

1
= )\max < —

= w | — stability criterion
«

w — inverse interaction strength

e Prob.(the system is stable)=Prob.[A.x < w] =P(w, N)

Cumulative distribution of the top eigenvalue
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Stable-Unstable Phase Transition as N — oo

e Assuming that the interaction matrix J; — Real Symmetric Gaussian

Prob.[Jj] oc exp [—g doij J,ﬂ o exp [~ Tr(J?)]
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Stable-Unstable Phase Transition as N — oo

e Assuming that the interaction matrix J; — Real Symmetric Gaussian
Prob.[Jj] oc exp [—g doij J,ﬂ o exp [~ Tr(J?)]

e May observed a sharp phase transition as N — oo:
w =1 > /2 = Stable (weakly interacting)

[e3

w =1 < /2 = Unstable (strongly interacting)

Prob.(the system is stable)=Prob.[A,.x < w] =P(w, N)

P(W,N)

1 STABLE

UNSTABLE 2 w=1/0 —
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Finite but Large /V:

Prob.(the system is stable)=Prob.[A,ax < w| =P(w, N)
What happens for finite but large N7
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Finite but Large /V:

Prob.(the system is stable)=Prob.[A,ax < w| =P(w, N)
What happens for finite but large N7

PW.N)=Prob.[ L < W]

ax

1 STABLE _

finite but large N

\ ,"

i

NSTABLE 2

e |s there any thermodynamic sense to this phase transition?
e What is the analogue of free energy?

e What is the order of this phase transition?
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. Summary of Results
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For Large but Finite /V: Summary of Results
P(W.N) = Prob.[ kmux < wl
STABLE _

k
. widthof O (N"2?)

finite but large N
~_!

UNSTABLE

Top eigenvalue of a random matrix: Large deviations

S.N. Majumdar




For Large but Finite /V: Summary of Results

PW.N)=Prob.] L, < w ]

max

STABLE

<L widthof O (N~2?)
finite but large N {

UNSTABLE V2

W —

P(w,N) ~ exp[-N°®_(w)+..] for V2 —w~ O(1)
~ R[V2NS (w=v2)|  for |w— 2]~ O(N )
~ 1—exp[-No (w)+..] for w—+v2~ O(1)
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For Large but Finite /V: Summary of Results

PW.N)=Prob.] L, < w ]

max

STABLE

<L widthof O (N~2?)
finite but large N {

UNSTABLE V2

W ——

P(w,N) ~ exp[-N°®_(w)+..] for V2 —w~ O(1)
~ R[V2NS (w=v2)|  for |w— 2]~ O(N )
~ 1—exp[-No (w)+..] for w—+v2~ O(1)

Crossover function: Fy(z) — Tracy-Widom (1994)
Exact tail functions: ®-(w) (Dean & S.M., 2006, S.M. & Vergassola, 2009)

Higher order corrections: (Borot, Eynard, S.M., & Nadal 2011, Nadal & S.M., 2011)
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:
e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2

[D. S. Dean & S.M., PRL, 97, 160201 (2006)]
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2
[D. S. Dean & S.M., PRL, 97, 160201 (2006)]

In particular, as w — /2 (from left), & (w) — W (V2 —w)?
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2
[D. S. Dean & S.M., PRL, 97, 160201 (2006)]

In particular, as w — /2 (from left), & (w) — W (V2 —w)?

e Right large deviation function:

1
:EW\/W2—2+|I’1

_ 2_9
W\;;} where w > /2

[S.M. & M. Vergassola, PRL, 102, 060601 (2009)]
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Exact Left and Right Large Deviation Function

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

1
o_(w) = &= [36W —wh = (15w + w2 + 6

+ 27 (In(18) —2In(w+ v6+ Wz))} where w < /2
[D. S. Dean & S.M., PRL, 97, 160201 (2006)]

In particular, as w — /2 (from left), & (w) — W (V2 —w)?

e Right large deviation function:

1
:EW\/W2—2+|I’1

_ 2_9
W\;;} where w > /2

[S.M. & M. Vergassola, PRL, 102, 060601 (2009)]

As w — /2 (from right), &, (w) — & (w —/2)3/2
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Large Deviation Functions

These large deviation functions ® 1 (w) have been found useful in a large
variety of problems:

[Fyodorov 2004, Fyodorov & Williams 2007, Bray & Dean 2007, Auffinger, Ben Arous & Cerny
2010, Fydorov & Nadal 2012.... stationary points on random Gaussian
surfaces and spin glass landscapes]

[Cavagna, Garrahan, Giardina 2000,... —— Glassy systems]

[Susskind 2003, Douglas et. al. 2004, Aazami & Easther 2006, Marsh et. al. 2011, .../
String theory & Cosmology]

[Beltrani 2007, Dedieu & Malajovich, 2007, Houdre 2011...
Random Words (Young diagrams)

Random Polynomials,
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3-rd Order Phase Transition

exp {=N?*®_(w) + ...} for w <2 (unstable)
P(w, N) ~
1—exp{-No, (w)+...} for w>+2 (stable)
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3-rd Order Phase Transition

exp {=N?*®_(w) + ...} for w <2 (unstable)
P(w, N) ~
1—exp{-No, (w)+...} for w>+2 (stable)
1 d_(w)~(V2-w)® as w— V2
IlﬁmOC — 5 In[P(w, N)] =

0 as W—>\/§Jr

— analogue of the free energy difference
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3-rd Order Phase Transition

exp {=N?*®_(w) + ...} for w <2 (unstable)
P(w, N) ~
1—exp{-No, (w)+...} for w>+2 (stable)
1 d_(w)~(V2-w)® as w— V2
IlﬁmOC — 5 In[P(w, N)] =

0 as W—>\/§Jr

— analogue of the free energy difference

Tracy—Widom

[—In PI/N? /

/7? W —
N — X limit

~ Wz-w)
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3-rd Order Phase Transition

exp {=N?*®_(w) + ...} for w <2 (unstable)
P(w, N) ~
1—exp{-No, (w)+...} for w>+2 (stable)
1 d_(w)~(V2-w)® as w— V2
IlﬁmOC — 5 In[P(w, N)] =

0 as W—>\/§Jr

— analogue of the free energy difference

Tracy—Widom 3-rd derivative — discontinuous
[~In PN’
finite N (large) Crossover: N — 0o, w — /2 keeping
— (w — V/2) N?/3 fixed
/ﬁ\ﬁ W — P(W, N) - F [\@N2/3 (W _ ﬁ)]
N — & limit
- G-y —+ Tracy-Widom
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Large // Phase Transition: Phase Diagram

.
.
1 .
. .
N . .
Al ’

\\\ crossover [’

STABLE "/ UNSTABLE

(weakly interacting ) v (strongly interacting )
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PHYSICAL REVIEW D VOLUME 21, NUMBER 2 15 JANUARY 1980

Possible third-order phase transition in the large-N lattice gauge theory

David J. Gross
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08540

Edward Witten
Lyman Laboratory of Physies, Harvard University, Cambridge, Massachusetts 02138
(Received 10 July 1979)

The large-N limit of the two-dimensional U(N) (Wilson) lattice gauge theory is explicitly evaluated for all
fixed A=g N by steepest-descent methods. The A dependence is discussed and a third-order phase
transition, at A =2, is discovered. The possible existence of such a weak- to strong-coupling third-order
phase transition in the large-N four-dimensional lattice gauge theory is suggested, and its meaning and
implications are discussed.

Volume 93B, number 4 PHYSICS LETTERS 30 June 1980

N =22 PHASE TRANSITION IN A CLASS OF EXACTLY SOLUBLE
MODEL LATTICE GAUGE THEORIES *

Spenta R. WADIA
The Enrico Fermi Institute, University of Chicago, Chicago, 1L 60637, USA

Received 27 March 1980

A nice review of large-N gauge theory: M. Marino, arXiv:1206.6272
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Large // Phase Transition: Phase Diagram

U(N) lattice gauge theory in 2—d
GROSS-WITTEN-WADIA transition (1980)
I/N
crossover
WEAK . {/  STRONG
N
0 g

coupling strength & —
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Large // Phase nsition: Phase Diagram

U(N) lattice gauge theory in 2—d
GROSS-WITTEN-WADIA transition (1980)
N N )
crossover \ crossover
STABLE ' UNSTABLE
WEAK : STRONG (weakly interacting ) (strongly interacting )
N
0 g
coupling strength

0
g —

1/\/7 o=1/w

S.N. Majumdar

Top eigenvalue of a random mat




Large // Phase Transition: Phase Diagram

U(N) lattice gauge theory in 2—d
GROSS-WITTEN-WADIA transition (1980)
I/N - l/N . /]
crossover .* '\, crossover
v STABLE "/ UNSTABLE
WEAK N STRONG (weakly interacting ) / (strongly interacting )
0 N 0 H
o
oS¢ 1 o= I/W —_—
coupling strength & — /\/ 2

Similar 3-rd order phase transition in U(N) lattice-gauge theory in 2-d

Unstable phase = Strong coupling phase of Yang-Mills gauge theory
Stable phase = Weak coupling phase of Yang-Mills gauge theory

Tracy-Widom = crossover function in the double scaling regime
(for finite but large )

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



[1. Coulomb Gas
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Gaussian Random Matrices

e (N x N) Gaussian random matrix: J = [Jj]

e Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE)
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Gaussian Random Matrices

e (N x N) Gaussian random matrix: J = [Jj]

e Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE)

o Prob[J;] o exp {_g N'Tr (JTJ) )}
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Gaussian Random Matrices

e (N x N) Gaussian random matrix: J = [Jj]

e Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE)
e Prob[J;] o exp {—g N Tr (JU))}

o N real eigenvalues {\1, A2, ..., Ay} — correlated random variables
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Gaussian Random Matrices

e (N x N) Gaussian random matrix: J = [Jj]

e Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE)
« Prob[Jj] o exp |5 N'Tr (J1))]

o N real eigenvalues {\1, A2, ..., Ay} — correlated random variables
e Joint distribution of eigenvalues (Wigner, 1951)

B ,
z@ﬂ T~ Al

J<k

1
P(A1, A2, .., Aw) = Zu exp

where the Dyson index 5 =1 (GOE), 8 =2 (GUE) or § = 4 (GSE)
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Gaussian Random Matrices

e (N x N) Gaussian random matrix: J = [Jj]

e Ensembles: Orthogonal (GOE), Unitary (GUE) or Symplectic (GSE)
« Prob[Jj] o exp |5 N'Tr (J1))]

o N real eigenvalues {\1, A2, ..., Ay} — correlated random variables
e Joint distribution of eigenvalues (Wigner, 1951)

/\/ZV] TT = Al?

Jj<k

1
P(A1, A2, ..., An) = — exp

where the Dyson index 5 =1 (GOE), 8 =2 (GUE) or § = 4 (GSE)

e Zy = Partition Function

/ / {Hd/\}exp

v T -

J<k

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Coulomb Gas Interpretation

[ ] ZN:

oo 2] N
/ / {Hd/\,-} exp —g ZN/\,?—Z|0g|/\j—/\k|
— 0 — o0 i i=1

j#k
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Coulomb Gas Interpretation

[ ] ZN:

oo 2] N
/ / {Hd/\,-} exp —g ZN/\,?—Z|0g|/\j—/\k|
— 0 — o0 i i=1

j#k

e 2-d Coulomb gas confined to a line (Dyson) with 5 — inverse temp.

confining
parabolic
potential

Top eigenvalue of a random matrix: Large deviations
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Coulomb Gas Interpretation

[ ] ZN:

oo 2] N
/ / {Hd/\,-} exp —g ZN/\,?—Z|0g|/\j—/\k|
— 0 — o0 i i=1

j#k

e 2-d Coulomb gas confined to a line (Dyson) with 5 — inverse temp.

confining
parabolic
potential

o Balance of energy = N2 )\? ~ N?

o Typical eigenvalue: Ay, ~ O(1) for large N

Top eigenvalue of a random matrix: Large deviations

S.N. Majumdar



Spectral Density: Wigner’'s Semicircle Law

e Av. density of states: p(\, N) 26 A—\)
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Spectral Density: Wigner’'s Semicircle Law

e Av. density of states: p(A\, N) = Zé A—\)

1
o Wigner's Semi-circle: p(\, N) = p(A) = =v2— X2
—00 ™

P(X)

WIGNER SEMI-CIRCLE
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Spectral Density: Wigner’'s Semicircle Law

e Av. density of states: p(A\, N) = Zé A—\)

1
o Wigner's Semi-circle: p(\, N) = p(A) = =v2— X2
—0o0 ™

P(X)

WIGNER SEMI-CIRCLE

® (Amax) = /2 for large N.

® \nax fluctuates from one sample to another. Prob[Apax, N] =7

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Tracy-Widom distribution for

cumulative distribution of A

TRACY-WIDOM e

P(ALN) PW,N)=Prob.[ A < w]

max ™

WIGNER SEMI-CIRCLE

]

- widthof O (N™)
finite but large N H
~ l \Tracy—Widom
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Tracy-Widom distribution for

cumulative distribution of A

TRACY-WIDOM e

P(ALN) PW,N)=Prob.[ A < w]

max ™

WIGNER SEMI-CIRCLE

]

- widthof O (N™)
finite but large N H
~ l \Tracy—Widom

/] 0 A A

e (Anax) = V2 ; typical fluctuation: f;;x p(A\)d\ ~1/N

Using p(\) ~ (V2 = M2 = [Apax — V2| ~ N72/3 — small
[Bowick & Brezin '91, Forrester '93]
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Tracy-Widom distribution for

cumulative distribution of A

TRACY-WIDOM e

P(ALN) PW,N)=Prob.[ A < w]

max ™

WIGNER SEMI-CIRCLE

- widthof O (N

o -23)
finite but large N ~ ]
~. ] Tracy-Widom
) 0 A A
A 7z R

e (Anax) = V2 ; typical fluctuation: f;;x p(A\)d\ ~1/N

Using p(\) ~ (V2 = M2 = [Apax — V2| ~ N72/3 — small
[Bowick & Brezin '91, Forrester '93]

e typical fluctuations are distributed via Tracy-Widom ('94):

o cumulative distribution: Prob[Amax < w, N] — Fg (\@Nz/3 (W — ﬁ))
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Tracy-Widom distribution for

cumulative distribution of A

TRACY-WIDOM
P(W.N)=Prob] L < w]

max ™

pLN)
WIGNER SEMI-CIRCLE

- widthof O (N™)
finite but large N H
~_ ! \Tracy—Widom

]

_\/7 0 \/27 () e ””'/41/7
[/ —

e (Anax) = V2 ; typical fluctuation: f;;x p(A\)d\ ~1/N

Using p(\) ~ (V2 = M2 = [Apax — V2| ~ N72/3 — small
[Bowick & Brezin '91, Forrester '93]

e typical fluctuations are distributed via Tracy-Widom ('94):
o cumulative distribution: Prob[Amax < w, N] — Fg (\@Nz/3 (W — ﬁ))
e Prob. density (pdf): fz(x) = dFg(x)/dx; Fs(x) — Painlevé-ll

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Tracy-Widom Distribution for )\, .

Probability densities f(x)

S.N. Majumdar Top eigenvalue of a random mat



Tracy-Widom Distribution for )\, .

Probability densities f(x)

e Tracy-Widom density f3(x) depends explicitly on £.
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Tracy-Widom Distribution for )\, .

Probability densities f(x)

e Tracy-Widom density f3(x) depends explicitly on £.

e Asymptotics: fg(x) ~ exp {—2%|X‘3} as x — —oo

~ exp [——x3/2} as X — 00
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Tracy-Widom Distribution for ), ..

Probability densities f(x)

e Tracy-Widom density f3(x) depends explicitly on £.
e Asymptotics: fg(x) ~ exp {—%M?’} as x — —oo

~ exp [—%xyﬂ as X — 00

Applications: Growth models, Directed polymer, Sequence Matching

(Baik, Borodin, Calabrese, Comtet, Corwin, Deift, Dotsenko, Dumitriu, Edelman, Ferrari,

Forrester, Johansson, Johnstone, Le doussal, Nadal, Nechaev, O'Connell, Péché, Prahofer,

Quastel, Rains, Rambeau, Rosso, Sano, Sasamoto, Schehr, Spohn, Takeuchi, Virag, ...)

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Probability of Large Deviations of ;

p(.N)  TRACY-WIDOM
WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION
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Probability of Large Deviations of ;

p(.N)  TRACY-WIDOM
WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION

e Tracy-Widom law Prob[Amax < w, N] = F5 (V2 N?/3 (w — /2))

describes the prob. of typical (small) fluctuations of ~ O(N~—2/3)
around the mean /2, i.e., when |\, — /2| ~ N72/3
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Probability of Large Deviations of ;

p(.N)  TRACY-WIDOM
WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION

e Tracy-Widom law Prob[Amax < w, N] = F5 (V2 N?/3 (w — /2))

describes the prob. of typical (small) fluctuations of ~ O(N~—2/3)
around the mean /2, i.e., when |\, — /2| ~ N72/3
e Q: How to describe the prob. of large (atypical) fluctuations when

[Amax — V2| ~ O(1) — Large deviations from mean

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Large Deviation Tails of

p(LN)  TRACY-WIDOM
‘WIGNER SEMI-CIRCLE

RIGHT
LARGE DEVIATION
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Large Deviation Tails of

p(LN)  TRACY-WIDOM
‘WIGNER SEMI-CIRCLE

N3

RIGHT
LARGE DEVIATION

Prob. density of the top eigenvalue: Prob. [Ay,.x = w, N] behaves as:
~ exp [-BN*®_(w)] for V2 —w~ O(1)
~ NP VRN (w=v2)|  for w2~ O(NTP)

~ exp[-BNd L (w)] for w—+v2~ O(1)

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



V. Saddle Point Method

Majumdar p eigenvalue of a random matrix: Large deviations



Distribution of )\ . .: Saddle Point Method

ZN(W)
ZN(OO)

Prob[Amax < w, N] =Prob[A; <w, Ao <w,.... Ay < w] =

i=1 Jj#k

w w N
ZN(W):/_ /_ {Hd)\,-}exp —g NZ)\,?—Zlog|)\j—)\k|}

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Distribution of )\ . .: Saddle Point Method

Prob[Apax < w, N] = Prob[\ < w, X < w,..., Ay < w] = §N((OVZ))
N
Zn(w / / {Hd)\}exp —= NZ)@ Z|0g|)\—)\k|
i=1 7k
denominator numerator

WALL——




Distribution of )\ . .: Saddle Point Method

Prob[Apax < w, N] = Prob[\ < w, X < w,..., Ay < w] = §N((OVZ))
N
Zn(w / / {Hd)\}exp —= NZ)@ Z|0g|)\—)\k|
i=1 7k
denominator numerator

WALL——




Setting up the Saddle Point Method

. Zn(w) o /jv HdA; exp [-BN’E ({Ai})]

1
\2
E({N}) = ZNZ Wzbg\/\j—)ﬂ

#k
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Setting up the Saddle Point Method

. Zn(w) o /jv HdA; exp [-BN’E ({Ai})]

1
22
E({N}) = ZNZ Wzbg\/\j—)ﬂ
J#k
e As N — oo — discrete sum — continuous integral:

EWO = | [ o= [ [ - o) ) dxax
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Setting up the Saddle Point Method

. Zn(w) o /jv HdA; exp [-BN’E ({Ai})]

1
22
E({N}) = ZNZ Wzbg\/\j—)ﬂ
J#k
e As N — oo — discrete sum — continuous integral:

EWO = | [ o= [ [ - o) ) dxax

where the charge density: p(A\) = & >, 6(A — \))
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Setting up the Saddle Point Method

. ZN(W)O(/;W HdA;eXP [—BN?E ({\i})]
E((M) = NZ N - s Slog |y — A
ik

e As N — oo — discrete sum — continuous integral:

E[p()\)]—;[/ A)dA — / / In|A— N| p(\) ()d)\d)\]

where the charge density: p(A\) = & >, 6(A — \))

Zutw) x [ Do) exo |50 {1+ € ([ oar=1) ]+ om)

Top eigenvalue of a random matrix: Large deviations



Setting up the Saddle Point Method

. Zn(w) o /jv HdA; exp [-BN’E ({Ai})]

1
22
E({N}) = ZNZ Wzbg\/\j—)ﬂ
J#k
e As N — oo — discrete sum — continuous integral:

E[p()\)]—;[/ A)d\ — / / In|A— X[ p(A) p(A )d)\d)\]
where the charge density: p(A\) = & >, 6(A — \))

Zutw) x [ Do) exo |50 {1+ € ([ oar=1) ]+ om)

o for large NV, minimize the action S[p(\)] = E[p(N)] + C[[ p(A)dA — 1]
Saddle Point Method: §> =0 = p,,(})
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Setting up the Saddle Point Method

. ZN(W)O(/;W HdA;eXP [—BN?E ({\i})]
E((M) = NZ N - s Slog |y — A
ik

e As N — oo — discrete sum — continuous integral:

E[p()\)]—;[/ A)dA — / / In|A— N| p(\) ()d)\d)\]

where the charge density: p(A\) = & >, 6(A — \))

Zutw) x [ Do) exo |50 {1+ € ([ oar=1) ]+ om)

o for large NV, minimize the action S[p(\)] = E[p(N)] + C[[ p(A)dA — 1]
Saddle Point Method: §> =0 = p,,(})

= | Zn(w) ~ exp [-BN?S [pw(N)]]

Top eigenvalue of a random matrix: Large deviations



Saddle Point Solution

e saddle point %—f =0=

)\2—2/ pwN) In]A=N[dN +C=0

— 00
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Saddle Point Solution

e saddle point % =0=

)\2—2/ pwN) In]A=N[dN +C=0

— 00

e Taking a derivative w.r.t. \ gives a singular integral Eq.

" pw(N) dN
A= 77/ % for A € [—oo, w] — Semi-Hilbert transform

— force balance condition
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Saddle Point Solution

e saddle point % =0=

)\2—2/ pwN) In]A=N[dN +C=0

— 00

e Taking a derivative w.r.t. \ gives a singular integral Eq.

" pw(N) dN
A= 77/ % for A € [—oo, w] — Semi-Hilbert transform

— force balance condition

e When w — oo: solution — Wigner semi-circle law

POO()‘):le_/\Q

™
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Saddle Point Solution

e saddle point % =0=

)\2—2/ pwN) In]A=N[dN +C=0

— 00

e Taking a derivative w.r.t. \ gives a singular integral Eq.

" pw(N) dN
A= 77/ % for A € [—oo, w] — Semi-Hilbert transform

— force balance condition

e When w — oo: solution — Wigner semi-circle law

POO()‘):le_/\Q

™

Exact solution for all w :

[D. S. Dean & S.M., PRL, 97, 160201 (2006); PRE, 77, 041108 (2008)]
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Exact Saddle Point Solution

e Exact solution (D. Dean and S.M., 2006, 2008):

%\/27>\2 for w > 2
pw(N) =

VAH [ + L(w) —2)\] for w <2
where L(w) = [2vw? + 6 — w]/3
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Exact Saddle Point Solution

e Exact solution (D. Dean and S.M., 2006, 2008):

%\/27)\2 for w > 2

pw(A) =
27&\/;(?'{\) [w+ L(w) —2)] for w< 2

where L(w) = [2vw? + 6 — w]/3

charge density pw (A) vs. A for different W

w< J2 wW=2 W > 2
w W w
—IL(w) w V2 —~2 V2 -2 Nz
pushed critical unpushed
(UNSTABLE) (STABLE)
W=.2 CRITICAL POINT
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Exact Saddle Point Solution

e Exact solution (D. Dean and S.M., 2006, 2008):

%\/27)\2 for w > 2

pw(A) =
27&\/;(?'{\) [w+ L(w) —2)] for w< 2

where L(w) = [2vw? + 6 — w]/3

charge density pw (A) vs. A for different W

w< J2 wW=2 W > 2
w W w
—IL(w) w V2 —~2 V2 -2 Nz
pushed critical unpushed
(UNSTABLE) (STABLE)
W=.2 CRITICAL POINT
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Left Large Deviation Function

ZN(W)
Zn(00)

Prob[Amax < w, N] = ~ e [~BN {S[pu(N)] — Slp(N)]}]

~ exp [-B N O_(w)]

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Left Large Deviation Function

Probhnae < N = 5~ exp (<8N (S[pu ()] = Slpc (V)]
~ exp [-B N O_(w)]
lim — = In[P(w, N)] = &_(w) — left large deviation function

N— oo N2

physically ®_(w) — energy cost in pushing the Coulomb gas
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Left Large Deviation Function

Probhnae < N = 5~ exp (<8N (S[pu ()] = Slpc (V)]
~ exp [-B N O_(w)]
lim — = In[P(w, N)] = &_(w) — left large deviation function

N— oo N2

physically ®_(w) — energy cost in pushing the Coulomb gas

1
o_(w) = @[36W27W47(1sw+w3) w2+ 6

+ 27 (In(18) —2In(w+ 6+ WZ))} for w< V2

(Dean & S.M., 2006,2008)
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Left Large Deviation Function

Probhnae < N = 5~ exp (<8N (S[pu ()] = Slpc (V)]
~ exp [-B N O_(w)]
lim — = In[P(w, N)] = &_(w) — left large deviation function

N— oo N2

physically ®_(w) — energy cost in pushing the Coulomb gas

1
d_(w) = 108 {36W —w* — (15w + w?) Vw2 + 6
+ 27 (In(18) —2In(w+ 6+ WZ))} for w< V2
(Dean & S.M., 2006,2008)

Note also that ®_(w) ~ 6\f(\f— w)? as w — /2 from below

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Matching with the left tail of :

p(LN)  TRACY-WIDOM
‘WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION
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Matching with the left tail of :

p(LN)  TRACY-WIDOM
‘WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION

(V2-w)’
As w — /2 from below, d_(w) — 72

— matches with the left tail of the Tracy-Widom distribution

Prob.[Amax = w, N] ~ exp [-3 N? &_(w)]
~exp |~ 5V2 2R (w - V)|

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Matching with the left tail of :

p(LN)  TRACY-WIDOM
‘WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION

(V2-w)’
As w — /2 from below, d_(w) — 72

— matches with the left tail of the Tracy-Widom distribution
Prob.[Amax = w, N] ~ exp [-3 N? &_(w)]
3
~exp |~ 5V2 2R (w - V)|

recovers the left tail of TW:  f3(x) ~ exp[—4; [x[°] as x — —o0

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Right Large Deviation Function: w >

e For w > /2, saddle point solution of the charge density p,,()\) sticks
to the semi-circle form: pe.(\) = /2= )2 for all w > /2

= Prob[Amax < w, N] = ZZ/:/V((OVZ)) ~lasN—
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Right Large Deviation Function: w >

e For w > /2, saddle point solution of the charge density p,,()\) sticks
to the semi-circle form: pe.(\) = /2= )2 for all w > /2

= Prob[Amax < w, N] = ZZ/:/V((OVZ)) ~lasN—

= Need a different strategy
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Right Large Deviation Function: w > /2

e For w > /2, saddle point solution of the charge density p,,()\) sticks
to the semi-circle form: pe.(\) = /2= )2 for all w > /2

= Prob[Apax < w, N] = O"?) ~las N — o

= Need a different strategy

e Prob. density: p(w, N) = -%& P(w, N)

aw
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Right Large Deviation Function: w > /2

e For w > /2, saddle point solution of the charge density p,,(\) sticks
to the semi-circle form: pe.(\) = /2= )2 for all w > /2

= Prob[Amax < w, N] = ZZN"’((O"?) ~lasN—

= Need a different strategy

e Prob. density: p(w, N) = - P(w, N)

p(W,N)ocefﬁ’VWz/2 A BYG " Inlw=X Pn_1 (A1, X2,..., An—1)

e
—00 —00
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Right Large Deviation Function:

e For w > /2, saddle point solution of the charge density pw() sticks
to the semi-circle form: pe.(\) = /2= )2 for all w > /2
= Prob[Apax < w, N] = Z"’(W)) ~las N — o

= Need a different strategy
e Prob. density: p(w, N) = 4 P(w, N)
p(Wa N) o efﬁNwz/2 f,Woo e f,W IBZN Hin Iw=Al 'DN—l ()\17 )\Za AR >\N—1)

— (N — 1)-fold integral
WIGNER SEMI-CIRCLE

A ¥V

max

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Pulled Coulomb gas

p(w, N) o e~ BANw?/2 <eﬂzj|n|w_xj|>

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Pulled Coulomb gas

p(w, N) o e~ BANw?/2 <eﬂzj|n|w_xj|>

Large N limit: p(w, N) o exp {fﬂNW; + BN [In(w — X) pse(N) d)\]
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Pulled Coulomb gas

p(w, N) o e~ BANw?/2 <eﬂzj|n|w_kj|>
Large N limit: p(w. N) oc exp [~ BN + AN [ In(w — A) pec(A) o

~ expl— N .. (w)]

WIGNER SEMI-CIRCLE

N (w)=AE(w)

w2 V2
=% — [ZaIn(w = A) psc(N) dX

= energy cost in pulling a charge out of
the Wigner sea
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Pulled Coulomb gas

p(w, N) o e~ BANw?/2 <eﬂzj|n|w_kj|>
Large N limit: p(w. N) oc exp [~ BN + AN [ In(w — A) pec(A) o

~ expl— N .. (w)]

WIGNER SEMI-CIRCLE

N (w)=AE(w)

w2 V2
=% — [ZaIn(w = A) psc(N) dX

= energy cost in pulling a charge out of
the Wigner sea

= ¢+(W):%W\/W2—2—‘r|n (w > /2)

V2

[S.M. & Vergassola, PRL, 102, 160201 (2009)]

W—\/W2—2‘|
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Matching with the right tail of

p (A, N) TRACY-WIDOM
WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION
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Matching with the right tail of

p (A, N) TRACY-WIDOM
WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION

As w — /2 from above, ¢, (w) — %M(W —/2)3/2
— matches with the right tail of the Tracy-Widom distribution

Prob.[Amax = w, N] ~ exp[—F N &, (w)]
~ o [~ 2|VIN (w - VO]
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Matching with the right tail of

p (A, N) TRACY-WIDOM
WIGNER SEMI-CIRCLE

N—2/3

RIGHT
LARGE DEVIATION

As w — /2 from above, ¢, (w) — %M(W —/2)3/2
— matches with the right tail of the Tracy-Widom distribution

Prob.[Amax = w, N] ~ exp[—F N &, (w)]
~ o [~ 2|VIN (w - VO]

= recovers the right tail of TW:  f3(x) ~ exp[~ 2 [x|*/?] as x — oo
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Comparison with Simulations:

80

=In(P(t))

1
y=N"t-(2N)")

N x N real Gaussian matrix (5 =1): N =10
squares — simulation points

red line — Tracy-Widom

blue line — left large deviation function (x N?)
green line — right large deviation function (xN).

Top eigenvalue of a random matrix: Large deviations
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Summary Generalizatio

p(O.N)  TRACY-WIDOM

WIGNER SEMI-CIRCLE
N72/3

RIGHT
LARGE DEVIATION
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Summary and Generalizations

p(O.N)  TRACY-WIDOM

WIGNER SEMI-CIRCLE

RIGHT
LARGE DEVIATION

Prob. density of the top eigenvalue: Prob. [An.x = w, N| behaves as:
~ exp [-BN*O_(w)] for V2—w~ 0(1)
~ N2/3f5 [\@N2/3 (W - \6)} for |w— \f2| ~ O(N’2/3)

~ exp[-BNdL(w)] for w—v2~ O(1)
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3-rd Order Phase Transition

Cumulative prob. of A\, .x:

exp {=BN*®_(w) + ...} for w < /2
P()\max < w, N) ~
1—Aexp{—BNP (w)+...} for w>+2
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3-rd Order Phase Transition

Cumulative prob. of A\, .x:

exp {=BN*®_(w) + ...} for w < /2

P()\max < w, N) ~
1—Aexp{—BNP (w)+...} for w>+2

d_(w) ~ (\ﬁ—w)3 as w— V2

lim — [P (Amax < w)] =

N— oo N2
- p 0 as W%\@+

3-rd derivative — discontinuous
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3-rd Order Phase Transition

Cumulative prob. of A\, .x:

exp {=BN*®_(w) + ...} for w < /2
P()\max < w, N) ~
1—Aexp{—BNP (w)+...} for w>+2

1 (D_(W)N(ﬁ—w)?) as w— V2
lim ———In[P (Amax < w)] =
Noe BINE 0 as w — \@+

3-rd derivative — discontinuous

e Left — strong-coupling phase — perturbative
higher order corrections (1/N expansion) to free energy
[Borot, Eynard, S.M., & Nadal 2011]

e Right — weak-coupling phase — non-perturbative
higher order corrrections [Nadal & S.M. 2011, Borot & Nadal, 2012]
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3-rd order transition — ubiquitous

® Amax for other matrix ensembles: Wishart: W = XTX — (N x N)
— covariance matrix

TypiCB'I Tracy—Widom [Johansson 2000, Johnstone 2001]

Large deviations: Exact rate functions
[Vivo, S.M., Bohigas 2007, S.M. & Vergassola 2009]
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3-rd order transition — ubiquitous

® Amax for other matrix ensembles: Wishart: W = XTX — (N x N)
— covariance matrix

TypiCB'I Tracy—Widom [Johansson 2000, Johnstone 2001]

Large deviations: Exact rate functions
[Vivo, S.M., Bohigas 2007, S.M. & Vergassola 2009]

° Iarge N gauge theory in 2-d [Gross, Witten, Wadia '80, Douglas & Kazakov '93]

e Distribution of MIMO capacity [Kazakopoulos et. al. 2010]

e Complexity in spin glass models [Fyodorov & Nadal 2013]
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3-rd order transition — ubiquitous

® Amax for other matrix ensembles: Wishart: W = XTX — (N x N)
— covariance matrix

TypiCB'I Tracy—Widom [Johansson 2000, Johnstone 2001]

Large deviations: Exact rate functions
[Vivo, S.M., Bohigas 2007, S.M. & Vergassola 2009]

° Iarge N gauge theory in 2-d [Gross, Witten, Wadia '80, Douglas & Kazakov '93]
e Distribution of MIMO capacity [Kazakopoulos et. al. 2010]
e Complexity in spin glass models [Fyodorov & Nadal 2013]

e Conductance and Shot Noise in Mesoscopic Cavities
e Entanglement entropy of a random pure state in a bipartite system
e Maximum displacement in Vicious walker problem

e Distribution of Wigner time-delay ...

[ Bohigas, Comtet, Forrester, Nadal, Schehr, Texier, Vergassola, Vivo,..+S.M. (2008-2013) ]
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Basic mechanism for 3-rd order transition

strong critical weak
W w w
gap

Gap between the soft edge (square-root signularity) of the Coulomb
droplet and the hard wall vanishes as a control parameter g goes through
a critical value g.:

gap — 0 as g — g
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Experimental Verification with Coupled Lasers

Measuring maximal eigenvalue distribution of Wishart random matrices with coupled

lasers

Moti Fridman, Rami Pugatch, Micha Nixon, Asher A. Friesem, and Nir Davidsor{’|
Weizmann Institute of Science, Dept. of Physics of Complex Systems, Rehovot 76100, Israel
(Dated: May 30, 2011)

‘We determined the probability distribution of the combined output power from twenty five coupled
fiber lasers and show that it agrees well with the Tracy-Widom, Majumdar-Vergassola and Vivo-
Majumdar-Bohigas distributions of the largest eigenvalue of Wishart random matrices with no
IIUUIE Pparameters. 11015 wds acnieved witll ouU, DOU easurerienis O e Comoinea output power
from the fiber lasers, that continuously changes with variations of the fiber lasers lengths. We
show experimentally that for small deviations of the combined output power over its mean value
the Tracy-Widom distribution is correct, while for large deviations the Majumdar-Vergassola and
Vivo-Majumdar-Bohigas distributions are correct.
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Experimental Verification with Coupled Lasers

laser1 gV

Laser2

Detector

Laser 25

combined output power from fiber lasers oc A\ ax
Amax — top eigenvalue of the Wishart matrix W = XX

where X — real symmetric Gaussian matrix (8 = 1)
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Experimental Verification with Coupled Lasers

Probability distribution

-2 0 2
Scaled output power

(@)
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Experimental Verification with coupled lasers

....... ]

| | 9 %905
oRoNONOCRON

v |

1072¢ loecos s |
® D &8 |

Probability distribution

-6 -4 =2 0 2 4 6 8
Scaled output power

(@
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Tracy-Widom density with 7 =1
Fridman et al. @rXiviiol2.1282

Probability density
=) o o
: o = o i
A S

(=

—6 —4 -2 0 2 4 6 3
Scaled output power
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Recent review

Recent review: S.M. & G. Schehr, arXiv: 1311.0580
J. Stat. Mech. P01012 (2014)
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Tracy-Widom distributions (1994)

The scaling function Fz(x) has the expression:

e B=1 F(x)=exp[~5 [ [(¥ = x)a°(y) +a(y)] dy]
o 3=2: R(x)=exp [~ [“(y — x)q*(y) dy]
o B=4 Fy(x)=exp[—3 [ (y — x)q*(y) dy] cosh [5 [ q(y) dy]

jiyg' =24%(y) +yq(y) with g(y) — Ai(y) as y — oo — Painlevé-Il
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Tracy-Widom distributions (1994)

The scaling function Fz(x) has the expression:

o f=1 F(x)=exp[~3 [ [(y = x)a*(y) + a(y)] dy]

o 3=2: R(x)=exp [~ [“(y — x)q*(y) dy]

o B=4 Fy(x)=exp[—3 [ (y — x)q*(y) dy] cosh [5 [ q(y) dy]
d’q

o = 2¢%(y) + y q(y) with g(y) — Ai(y) as y — oo — Painlevé-lI

o Probability density: fz(x) = dFg(x)/dx
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Left Large Deviation: Beyond the Leading Order

e On the left side: A\pax < V2
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Left Large Deviation: Beyond the Leading Order

e On the left side: A\pax < V2

Adapting ‘loop (Pastur) equations’ approach developed by Chekov,
Eynard and collaborators:
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Left Large Deviation: Beyond the Leading Order

e On the left side: A\pax < V2

Adapting ‘loop (Pastur) equations’ approach developed by Chekov,
Eynard and collaborators:

—In[Prob(Apax = w, N)] = B&_(w) N> + (8 —2)dy(w) N +
+ ¢pIn N+ &(B,w) + O(L/N)

where explicit expressions for ®1(w), ¢3 and ®2(3, w) were obtained
recently (Borot, Eynard, S.M., & Nadal, JSTAT, P11024 (2011))
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Left Large Deviation: Beyond the Leading Order

e On the left side: A\pax < V2

Adapting ‘loop (Pastur) equations’ approach developed by Chekov,
Eynard and collaborators:

—In[Prob(Apax = w, N)] = B&_(w) N> + (8 —2)dy(w) N +
+ ¢pIn N+ &(B,w) + O(L/N)

where explicit expressions for ®1(w), ¢3 and ®2(3, w) were obtained
recently (Borot, Eynard, S.M., & Nadal, JSTAT, P11024 (2011))

o Setting w = /2 + 27 /2 N=2/3 x (with x < 0) gives the left tail
(x = —o0) estimate of the TW density for all 8
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Left Large Deviation: Beyond the Leading Order

e On the left side: A\pax < V2

Adapting ‘loop (Pastur) equations’ approach developed by Chekov,
Eynard and collaborators:

—In[Prob(Apax = w, N)] = B&_(w) N> + (8 —2)dy(w) N +
+ ¢pIn N+ &(B,w) + O(L/N)

where explicit expressions for ®1(w), ¢3 and ®2(3, w) were obtained
recently (Borot, Eynard, S.M., & Nadal, JSTAT, P11024 (2011))

o Setting w = /2 + 27 /2 N=2/3 x (with x < 0) gives the left tail
(x = —o0) estimate of the TW density for all 8

Prob. [/\me <24 27Y2N-2/3 X}
7y |x|(BH4-68)/28 ey {_5% + YA5=2) |X|3/2}
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Left Large Deviation: Beyond the Leading Order

e On the left side: A\pax < V2

Adapting ‘loop (Pastur) equations’ approach developed by Chekov,
Eynard and collaborators:

—In[Prob(Apax = w, N)] = B&_(w) N> + (8 —2)dy(w) N +
+ ¢pIn N+ &(B,w) + O(L/N)

where explicit expressions for ®1(w), ¢3 and ®2(3, w) were obtained
recently (Borot, Eynard, S.M., & Nadal, JSTAT, P11024 (2011))

o Setting w = /2 + 27 /2 N=2/3 x (with x < 0) gives the left tail
(x = —o0) estimate of the TW density for all 8
Prob. [/\me <24 27Y2N-2/3 X}

7y |x|(BH4-68)/28 ey {_5% + YA5=2) |X|3/2}

where the constant 75 is —
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The constant 7;

1 2 2 1 2
Intg = <_25<B2;4)> In(2)—4|n(7T§>+
i
2

6 x coth(x/2) — 12 — x?
d
* /0 x [ 12x2(ePx/2 1)

(Borot, Eynard, S.M., & Nadal, 2011)
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The constant 7;

(355 e ()
B
2

8
1 / YE
(L -cn) -

InTg

66

6 x coth(x/2) — 12 — x?
d
* /0 x [ 12x2(ePx/2 1)

(Borot, Eynard, S.M., & Nadal, 2011)

For 0 =1,2and 4

— agrees with Baik, Buckingham and DiFranco (2008)
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2

Using an ‘orthogonal polynomial’ (with an upper cut-off) method (for
[ = 2) and adapting the techniques used by Gross and Matytsin, '94 in
the context of two-dimensional Yang-Mills theory
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2

Using an ‘orthogonal polynomial’ (with an upper cut-off) method (for
[ = 2) and adapting the techniques used by Gross and Matytsin, '94 in
the context of two-dimensional Yang-Mills theory

1 e—2N¢+(W)

Prob(Apax = w, N) =~
( )% 2 (2= 2)
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2

Using an ‘orthogonal polynomial’ (with an upper cut-off) method (for
[ = 2) and adapting the techniques used by Gross and Matytsin, '94 in
the context of two-dimensional Yang-Mills theory

1 e—2N¢+(W)
2mv2 (w2 —2)
where &, (w) — Lwy/iZ =2 + In [ =72

(C. Nadal and S.M., JSTAT, P04001, 2011)

Prob(Amax = w, N) =
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2

Using an ‘orthogonal polynomial’ (with an upper cut-off) method (for
[ = 2) and adapting the techniques used by Gross and Matytsin, '94 in
the context of two-dimensional Yang-Mills theory

1 e—2N¢+(W)
2mv2 (w2 —2)
where &, (w) — Lwy/iZ =2 + In [ =72

(C. Nadal and S.M., JSTAT, P04001, 2011)

Prob(Amax = w, N) =

Close to w — ﬁ+, this gives
Prob. [)\max <V2427V2N2/3 X} — —m e—(4/3)x*?
— precise asymptotics of the right tail of TW for § = 2 (Baik, 2006)
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2

Using an ‘orthogonal polynomial’ (with an upper cut-off) method (for
[ = 2) and adapting the techniques used by Gross and Matytsin, '94 in
the context of two-dimensional Yang-Mills theory

1 e—2N¢+(W)
2mv2 (w2 —2)
where &, (w) — Lwy/iZ =2 + In [ =72

(C. Nadal and S.M., JSTAT, P04001, 2011)

Prob(Amax = w, N) =

Close to w — ﬁ+, this gives

Prob. [)\max <V2427V2N2/3 X} — —m e—(4/3)x*?

— precise asymptotics of the right tail of TW for § = 2 (Baik, 2006)

e For general 3, precise right tail of TW — obtained recently
(Dumaz and Virag, 2011)
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Right Large Deviation: Beyond the Leading Order

e On the right side: A\ > V2

Using an ‘orthogonal polynomial’ (with an upper cut-off) method (for
[ = 2) and adapting the techniques used by Gross and Matytsin, '94 in
the context of two-dimensional Yang-Mills theory

1 e—2N¢+(W)
2mv2 (w2 —2)
where &, (w) — Lwy/iZ =2 + In [ =72

(C. Nadal and S.M., JSTAT, P04001, 2011)

Prob(Amax = w, N) =

Close to w — ﬁ+, this gives

Prob. [)\max <V2427V2N2/3 X} — —m e—(4/3)x*?

— precise asymptotics of the right tail of TW for § = 2 (Baik, 2006)

e For general 3, precise right tail of TW — obtained recently
(Dumaz and Virag, 2011)

e As a bonus, our method also provides a ‘simpler’ derivation of TW
distribution for 5 =2  (Nadal and S.M., 2011)
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A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin
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A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — %)2> =4
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A simple example of large deviation tails

e Let M — no. of heads in N tosses of an unbiased coin
e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = <(M - %)2> =2

o typical fluctuations M — & ~ O(/N) are well described
by the Gaussian form: P(M, N) ~ exp {_% (M — %)2}
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A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — %)2> =4

o typical fluctuations M — & ~ O(/N) are well described
by the Gaussian form: P(M, N) ~ exp {_% (M — %)2}

e Atypical large fluctuations M — % ~ O(N) are not described by
Gaussian form
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A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — %)2> =4

o typical fluctuations M — & ~ O(/N) are well described
by the Gaussian form: P(M, N) ~ exp {—% (M- %)2}

e Atypical large fluctuations M — % ~ O(N) are not described by
Gaussian form

e Setting M/N = x and using Stirling’s formula N! ~ NN+1/2e=N giyes
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A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — %)2> =4

o typical fluctuations M — & ~ O(/N) are well described
by the Gaussian form: P(M, N) ~ exp {—% (M- %)2}
e Atypical large fluctuations M — % ~ O(N) are not described by
Gaussian form
e Setting M/N = x and using Stirling’s formula N! ~ NN+1/2e=N giyes
P(M = Nx, N) ~ exp[-N®(x)]  where
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A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — %)2> =4

o typical fluctuations M — & ~ O(/N) are well described
by the Gaussian form: P(M, N) ~ exp {—% (M- %)2}
e Atypical large fluctuations M — % ~ O(N) are not described by
Gaussian form
e Setting M/N = x and using Stirling’s formula N! ~ NN+1/2e=N giyes
P(M = Nx, N) ~ exp[-N®(x)]  where

’ d(x) = xlog(x) + (1 — x) log(1 — x) + log 2 ‘ — large deviation function

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



A simple example of large deviation tails

o Let M — no. of heads in N tosses of an unbiased coin

e Clearly P(M,N) = (I\A/II) 2N (M =0,1,...,N) — binomial distribution

with mean= (M) = % and variance=0? = ((M — %)2> =4

o typical fluctuations M — & ~ O(/N) are well described
by the Gaussian form: P(M, N) ~ exp {—% (M- %)2}
e Atypical large fluctuations M — % ~ O(N) are not described by
Gaussian form
e Setting M/N = x and using Stirling’s formula N! ~ NN+1/2e=N giyes
P(M = Nx, N) ~ exp[-N®(x)]  where

’ d(x) = xlog(x) + (1 — x) log(1 — x) + log 2 ‘ — large deviation function

e ®(x) — symmetric with a minimum at x = 1/2 and
for small arguments |x — 1/2| << 1, ®(x) ~ 2(x — 1/2)?
— recovers the Gaussian form near the peak
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Covariance Matrix

phys. math
in general
L] Xy X2
(MxN)
X= 5 X5 Xn
3 X3 X3
in general
t X11 le X31
X = (NxM)
Xlz X22 X32
2 2,2
t X+ Xoh X5 XX+ X X+ X5 X,

W= X X =
2 2 2
XX, XX+ XXy Xt X + X3

(NxN) COVARIANCE MATRIX (unnormalized)
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Principal Component Analysis

Consider N students and M = 2 subjects (phys. and math.)
X — (N x 2) matrix and W = X*X — 2 x 2 matrix
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Consider N students and M = 2 subjects (phys. and math.)
X — (N x 2) matrix and W = X*X — 2 x 2 matrix

diagonalize w=x'x —— [A;- 2] diagonalize w=x'x —— [2A;-22]
12> TS o> 2>
X . S /’///
K

‘x If A>> A, If A~ A,

math . strongly correlated gy random
X (weak correlation)
phys. — - phys. — -
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Principal Component Analysis

Consider N students and M = 2 subjects (phys. and math.)
X — (N x 2) matrix and W = X*X — 2 x 2 matrix

diagonalize w=x'x — [2A;-A2] diagonalize w=x'x —— [2A;-22]
12> TS o> 2>
. p
K
Y If A>>2%, If A~ A,
. - x l
math o . strongly correlated ) ’ N x random
Tox T x x N (weak correlation)
X . e .
- P .
K -
phys. — phys. —— -

data compression via ‘Principal Component Analysis’ (PCA)
= practical method for image compression in computer vision
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Principal Component Analysis

Consider N students and M = 2 subjects (phys. and math.)
X — (N x 2) matrix and W = X*X — 2 x 2 matrix

diagonalize w=x'x — [2A;-A2] diagonalize w=x'x —— [2A;-22]

Jh2> o> SR> 2

K
‘:/; If A>> 2, I A~ 2,

|

random
(weak correlation)

strongly correlated
math

phys. — - phys. — -
data compression via ‘Principal Component Analysis’ (PCA)
= practical method for image compression in computer vision
Null model — random data: X — random (M x N) matrix
— W = X*X — random N x N matrix
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Generalization to Wishart Matrices

e W= XX — (N x N) square covariance matrix (Wishart, 1928)
e Entries of X Gaussian: Pr[X] oc exp [—g NTr(XTX)}

[ =1 — Real entries, =2 — Complex
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e W= XX — (N x N) square covariance matrix (Wishart, 1928)
e Entries of X Gaussian: Pr[X] oc exp [—g NTr(XTX)}

[ =1 — Real entries, =2 — Complex

e All eigenvalues of W = XX are non-negative
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Generalization to Wishart Matrices

e W= XX — (N x N) square covariance matrix (Wishart, 1928)
e Entries of X Gaussian: Pr[X] oc exp [—g NTr(XTX)}

[ =1 — Real entries, =2 — Complex
e All eigenvalues of W = XX are non-negative

e Average density of states for large N: Marcenko-Pastur (1967)

1 4 — )\

1 N
pAN) = (& ;m =) o ) = oo
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Generalization to Wishart Matrices

e W= XX — (N x N) square covariance matrix (Wishart, 1928)
e Entries of X Gaussian: Pr[X] oc exp [—g NTr(XTX)}

[ =1 — Real entries, =2 — Complex
e All eigenvalues of W = XX are non-negative

e Average density of states for large N: Marcenko-Pastur (1967)

1 4 — )\

1 N
pAN) = (& ;m =) o ) = oo

p(}t) MARCENKO-PASTUR
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Distribution of )\ ..

MARCENKO-PASTUR

P |,
/ OWIN e (A) = 4 (as N — o0)
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Distribution of )\ ..

P(L)

: / TRACY-WIDOM

MARCENKO-PASTUR

-3
N

RIGHT

e (A\nax) =4 (as N — o0)

e typical fluctuations:
>\max -4~ O(N2/3)

distributed via — Tracy-Widom
(Johansson 2000, Johnstone 2001)
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Distribution of )\ ..

MARCENKO-PASTUR

P |,
/ OWIN e (A) = 4 (as N — o0)

=213

N e typical fluctuations:
>\max -4~ O(N2/3)

distributed via — Tracy-Widom
(Johansson 2000, Johnstone 2001)

e For large deviations: A\j.x — 4 ~ O(1)

exp {—BN*W_(w)} for w<4
P (Amax = w, N) =
exp{—pNV, (w)} for w>4
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Distribution of )\ ..

MARCENKO-PASTUR

P |,
/ OWIN e (A) = 4 (as N — o0)

=213

N e typical fluctuations:
>\max -4~ O(N2/3)

distributed via — Tracy-Widom
(Johansson 2000, Johnstone 2001)

e For large deviations: A\j.x — 4 ~ O(1)

exp {—BN*W_(w)} for w<4
P (Amax = w, N) =
exp{—pNV, (w)} for w>4

e V_(w) and W (w) — computed exactly
(Vivo, S.M. & Bohigas 2007, S.M. & Vergassola 2009)
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Exact Left and Right Large Deviation Functions

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

vow)=in| 2] - 222 W<

w

(Vivo, S.M. and Bohigas, 2007)
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Exact Left and Right Large Deviation Functions

Using Coulomb gas + Saddle point method for large N:

e Left large deviation function:

vow)=in| 2] - 222 W<

w

(Vivo, S.M. and Bohigas, 2007)

e Right large deviation function:

Vi (w) = W(W4_ 4) +In

2

W_Z_ml Ve

(S.M. and Vergassola, 2009)

S.N. Majumdar Top eigenvalue of a random matrix: Large deviations



Other Problems with 3-rd Order Phase Transitions
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Other Problems with 3-rd Order Phase Transitions

e Bipartite Entanglement of a Random Pure State

Probability distribution of entanglement entropy

Nadal, S.M. & Vergassola, PRL, 110501 (2010); J. Stat. Phys. 142, 403 (2011)
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Other Problems with 3-rd Order Phase Transitions

e Bipartite Entanglement of a Random Pure State

Probability distribution of entanglement entropy

Nadal, S.M. & Vergassola, PRL, 110501 (2010); J. Stat. Phys. 142, 403 (2011)

e Conductance and Shot Noise in Mesoscopic Cavities
Random S-matrix: Distribution of Conductance and Shot Noise

Vivo, S.M. & Bohigas, PRL, 101, 216809 (2008), PRB, 81, 104202 (2010)
Damle, S.M., Tripathy, & Vivo, PRL, 107, 177206 (2011)
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Other Problems with 3-rd Order Phase Transitio

e Bipartite Entanglement of a Random Pure State

Probability distribution of entanglement entropy

Nadal, S.M. & Vergassola, PRL, 110501 (2010); J. Stat. Phys. 142, 403 (2011)

e Conductance and Shot Noise in Mesoscopic Cavities
Random S-matrix: Distribution of Conductance and Shot Noise

Vivo, S.M. & Bohigas, PRL, 101, 216809 (2008), PRB, 81, 104202 (2010)
Damle, S.M., Tripathy, & Vivo, PRL, 107, 177206 (2011)

e Non-Intersecting Brownian Motions and Random Matrices
— relation to 2-d Yang-Mills gauge theory

Schehr, S.M., Comtet, Randon-Furling, PRL, 101, 150601 (2008)
Forrester, S.M. & Schehr, Nucl. Phys. B 844, 500 (2011), J. Stat. Phys. (2013)
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