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Abstract
It is strongly believed that solutions to Navier-Stokes equations are unique. Uniqueness of solutions to these equations

is closely related to their regularity. One way to prove regularity is give a characterization of singular solutions and show
that one of these conditions fails to be true. A characterization of these singular solutions can be formulated in the following
statement:
Let u be a weak solution to the Navier-Stokes equations with maximal time of regularity T < ∞ there exist some constants
cs, s = 3/2, 5/2 and some ρ > 0 such that

sup
t∈[T−ρ,T )

‖u(·, t)‖Ḣs(T3) ≥
cs

| log(T − t)|2s−14 (T − t)2s−14

.

These are rates at which Sobolev spaces norms must blow-up.

Introduction
The Navier-Stokes equations model the evolution of the velocity field of an incompressible fluid. The take the
form

∂u

∂t
+ (u · ∇)u = −∇p + ν4u + f, ∇ · u = 0, (NS)

where u is a velocity field in Rn, p is the fluid’s pressure and ν the kinematic viscosity.

These equations were written in the 19th Century, however many natural questions about their solutions
remain open. It is not known whether any physically reasonable initial state always leads, under this system,
to a physically reasonable solution (state). The two dimensional case R2 was solved by O. Ladyzhenskaya
in [5]. The case of R3 remains open, it is one of the Millenium prize problems. This problem can also be
formulated for periodic functions in which the domain of the velocity field u can be taken as T3 = [0, 1]3

(which will be our case).

Partial Results(Towards regularity)

• In the seminal paper ‘Sur le mouvement d’un liquide visqueux emplissant l’espace’[6] Leray proved the
existence of an initial interval of regularity: Given some initial data φ ∈ (C∞(R3) ∩ L2(R3))3, there exists
η > 0, and a weak solution u(x, t) ∈ (C∞(R3) ∩ L2(R3))3, for all t ∈ [0, η).
• In the same paper Leray states without a proof the follwing blow-up rates, if T the maximal time of regu-

larity for a weak solution u, there exist some universal constants, cp > 0 for p > 3 such that

‖u(·, t)‖Lp(R3) ≥
cp

(T − t)
p−3
2p

, (1)

• In 1984 Kato [4] extends these results to p = 3: there exists ε3 such that if

‖u(·, t)‖L3(R3) ≤ ε3 ∀t > 0, (2)

then u remains regular at all times.
• In 2003 Escauriaza, Seregin and Šverák [3] greatly improve Kato’s result to any constant ε3.

• The continuous embeddings in Sobolev spaces Ḣs ↪→ L
3

6−2s imply by (1) the blow-up rates

‖u(·, t)‖Ḣs(R3) ≥
cs

(T − t)
2s−1
4

, (3)

for 1/2 < s < 3/2 and Kato’s result implies s = 1/2.
• Robinson, Sadowski and Silva extend (3) in [7] for the range 3/2 < s < 5/2.
• It is proven in [2] the extrapolation for the cases s = 3/2, 5/2, where a logarithmic correction had to be

added,
‖u(·, t)‖Ḣs(R3) ≥

cs

| log(T − t)|
2s−1
4 (T − t)

2s−1
4

, (4)

• The weakest formulation of (4): Let T be the maximal time of existence of a weak solution u then there
exist a sequence of times tj → T and some bounds cs, such that

‖u(·, tj)‖Ḣs(T3) ≥
cs

| log(T − tj)|
2s−1
4 (T − tj)

2s−1
4

,

was the first result, which gave the right exponent to (4).

Framework
The problem fits nicely in Sobolev spaces. Namely in Ḣs, they are Hilbert spaces, here one can take limits.
And the Fourier series are used, they translate the problem into frequency modes. Here one has an integral
formulation which is the starting point for the proof of the blow-up rates.

Sobolev spaces
We define weak derivatives
Definition 1. g is the weak derivative of f if it satisfies∫

Ω
fφdx = −

∫
Ω
gφ′dx, ∀φ ∈ C∞0 (Ω).

For α ∈ Nn a multinidex we call Dαf = ∂|α|f
∂α1x1∂α2x2...∂αnxn

, |α| = α1 + α2 + ... + αn.

Definition 2. The Sobolev Hs(T3) is the vector space

Hs(Tn) := {f ∈ L2(Tn)|Dαf ∈ L2(Tn), |α| ≤ s}.
Hs(Tn) is a Hilbert space.

Fourier Series
Definition 3. The Fourier transform F , is the linear map

F : L2(Tn) → L2(Zn),

f (x) 7−→ f̂ξ := 1
(2π)n/2

∫
Tn f (x)e−i〈x,ξ〉dx, ξ ∈ Zn.

F is an isometry, with inverse F−1:

F−1(f̂ξ)(x) :=
1

(2π)n/2

∑
ξ∈Zn

f̂ξe
i〈ξ,x〉 x ∈ Tn.

Derivation translates into multiplication, in Fourier space
∂f

∂xj
=
∑
ξ∈Zn

∂

∂xj
f̂ξe

i〈ξ,x〉 = i
∑
ξ∈Zn

ξjf̂ξe
i〈ξ,x〉.

And so we can defineHs(Tn) = {f ∈ L2(Tn)| |ξ|s(Ff )ξ ∈ L2(Tn)}, and obtain continuity from integrability
in Fourier space.

Proposition 0.1. Let f ∈ L2(Tn) if f ∈ Hs+k(Tn) for s > n/2 or if |ξ|kFf ∈ L1(Zn) then the k-order
derivatives of f exist and are continuous.

Therefore we can show regularity if we prove certain decay rates for Fu, with u a solution to (NS).By
applying F to our solution (NS), we obtain the following equation

∂

∂t
û
j
ξ = −|ξ|2ûjξ + i

∑
α∈Zn

n∑
l,k=1

ûkξ−αû
l
αξk(

ξlξj

|ξ|2
− δl,j), (5)

where ûξ are the Fourier modes of u,

uj(x, t) =
∑
ξ∈Zn

û
j
ξ(t)e

i〈x,ξ〉.

And if we integrate with φ(x) = u(x, 0), some given initial data, we obtain

û
j
ξ(t) = e−|ξ|

2tφ̂
j
ξ + i

t∫
0

∑
α∈Zn

n∑
k,l=1

ûkα(s)ûlξ−α(s)ξk

(
ξlξj

|ξ|2
− δj,l

)
e−|ξ|

2(t−s)ds, (I-NS)

The Main Result
Theorem 0.1. Let u be a weak solution of (NS) whose maximal interval regularity is (0, T ), T < ∞. Then,
there are absolute constants cs > 0, s = 3/2, 5/2, such that there is a sequence tj → T along which the
following estimate holds

‖u(·, tj)‖Ḣs(T3) ≥
cs

| log(T − tj)|
2s−1
4 (T − tj)

2s−1
4

. (6)

Sketch of the Proof
The idea is to assume that we have a weak solution u, whose Fourier modes (ûξ) satisfy (I-NS) and the inverted inequality stated in
the theorem (≤ instead of ≥) call it (6)∗. Then we take an increasing sequence of times tn → t∗ < T , which lies inside the interval
of regularity.
We start with t ≥ t1, and by

∣∣ûmξ (t)
∣∣ ≤ e−|ξ|

2(t−t0)
∣∣ûmξ (t0)

∣∣ +

∣∣∣∣∣∣∣
t∫

t0

e−|ξ|
2(t−s)

∑
α j,l

ûjα(s)ûlξ−α(s)ξj(
ξlξm

|ξ|2
− δl,m)ds

∣∣∣∣∣∣∣ ,
≤ e−|ξ|

2(t1−t0)
∣∣ûmξ (t0)

∣∣ + sup
t0<s<t

|
∑
α j,l

ûjαû
l
ξ−α(s)ξj(

ξlξm

|ξ|2
− δl,m)|

t∫
t0

e−|ξ|
2(t−s)ds,

≤ e−|ξ|
2(t1−t0)

∣∣ûmξ (t0)
∣∣ +

1

|ξ|2
sup
t0<s<t

|
∑
α j,l

ûjαû
l
ξ−α(s)ξj(

ξlξm

|ξ|2
− δl,m)|.

Now we to bound the non-linear term, applying (6)∗ to the Fourier modes inside this sum, then we get a particular bound, something
alike

|
∑
α∈Zn

ûξ−αûαξ| ≤ K(ξ),

and overall ∣∣ûmξ (t)
∣∣ ≤ e−|ξ|

2(t−t0)M(ξ) +
K(ξ)

|ξ|2
≤ D1(ξ), ∀t ≥ t1,

where we applied (6)∗ again. We obtain the base case for an inductive process, then we assume some bound for tn:

|ûξ(t)| ≤ Dn(ξ), ∀t ≥ tn,

and to do the inductive step, take t ≥ tn+1. It holds

∣∣ûmξ (t)
∣∣ ≤ e−|ξ|

2(t−tn)
∣∣ûmξ (tn)

∣∣ +

∣∣∣∣∣∣
t∫

tn

e−|ξ|
2(t−s)

∑
α j,l

ûjαû
l
ξ−αξj(

ξlξm

|ξ|2
− δl,m)ds

∣∣∣∣∣∣ ,
we use the Dn bound for the non-linear term and we obtain a better bound, for t ∈ [tn+1, T )

|
∑
α∈Zn

ûξ−αûαξ| ≤ Kn(ξ).

With these considerations ∣∣ûmξ (t)
∣∣ ≤ e−|ξ|

2(tn+1−tn)Dn(ξ) +
Kn(ξ)

|ξ|2
≤ Dn+1(ξ), ∀t ≥ tn+1,

therefore if tn → t∗ ∈ [T − ρ, T ], we conclude

|uξ(t)| ≤ D(ξ) = lim
n→∞

Dn(ξ) ≤ Ccs
|ξ|2

, ∀t ∈ [t∗, T ].

Given that the above limit exists and is finite. C is a universal constant, then by Theorem 2 in [1] if cs is small enough, u can be
extended to a smooth solution in (T − ρ, T ], applying Leray’s results with our initial data as u(·, T ) we can extend the solution to
some interval (T − ρ, T + η) , η > 0, where it is regular.
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