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The Fractional Quantum Hall Effect (FQHE)

The Fractional Quantum Hall Effect (FQHE)

First observed in pure low
disordered samples of GaAs
[10], this is a characteristic
phenomenon of interacting
electron systems in 2D
subject to the following
conditions:

e Strong magnetic fields

(IB| > 1T).
10 o o Very low temperatures
2510° l 23 1o (T ~1K).
e v 1 o o Experimentally the Hall
75 % .
gﬂ.smt l l = conductivity is
O P quantized:
11071 4l l
50001 l 05
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A Poy =OH =55 V=)
B(T)

(b)Experimental results [12]
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The Fractional Quantum Hall Effect (FQHE)

o In presence of a uniform magnetic field the electrons occupy Landau levels
with the gauge independent energies:

1
FE, = hwe (nJri)

@ The energy difference between to successive Landau levels scales linearly with
|B|, thus, at zero temperature we can focus our attention on the lowest
Landau level only (n = 0).

o To explain the appearance of the several of the filling factors it suffices to
obtain the ground state of the following Hamiltonian:

N ‘7r'|2 N
Hy =30 220 43 offr; = re) + 3 V() (1)
=1 e J=1

i<k
o Them main objective is to focus only in filling factors of the form:

1

v= ——| m €N
2m + 1



Preliminaries

[e]e] le]e}

The Fractional Quantum Hall Effect (FQHE)

The Lowest Landau Level (LLL)

o LLL in R2: In the symmetric gauge the lowest Landau level is infinitely
degenerate and spanned by the following wave functions:

zm |2 ; 2 h
dm(r) = ——exp|——5 ], meEN, z=z+1iy, {3=—
(r) /2ﬂ€§m+1)2mm! 4[23 B~ B

o In particular these states satisfy the following:

2% (m 4 1),
hmem (r).

m(121*) g,
LZ¢m(r)
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The Fractional Quantum Hall Effect (FQHE)

o LLL in T2: Consider a L1 x Lo rectangle with periodic boundary conditions.
In the Landau gauge the Lowest landau level is finitely degenerate and

spanned by the following wave functions:
N, | 2m0%, N? _ )2
wie () = e | N | (ZR| TR ) o (20
VegLiym | 0 Ly | L2 402,
where K € {0,...,Ngy — 1}, z=x + iy and Ny = Lils ¢ N. This states are

2742
B
located around the directions y = — IJ<VL2 and are eigenstates of the magnetic

translation operators, which let us interpret K as the eigenvalue of the
momentum (generalized) operator.
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The Fractional Quantum Hall Effect (FQHE)

o LLL in S?: Consider a sphere of radius R and a monopole in the center of
the sphere. In the symmetric gauge, the lowest Landau level is finitely
degenerated and spanned by the following wave functions:

25+1 (28 v\m
S = 25 (2 < <
W (u,v) g ( )u <u) , 0<m<2SeN,

where u and v are spinorial coordinates over the sphere. This states satisfy
the following relations:

)

4] -
fosdlus = 513

szi(uvv) = (S - m)wfn(uvv)
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Laughlin’s z and CFT

Laughlin’s Ansatz

o In R2?: In the infinite plane, the Laughlin wave function is given by [4]:

1 1
\I/(”)(rl,...,rN):exp _Wzlsz H(zi—zj)“, K= —.
B j=

o Since the area of the sample is infinite, here the filling fraction must be
interpreted as the following ratio:

L _ NN 1)

2L%‘ot

e This wave function represents a quantum incompressible fluid with uniform
density o, = (2mkf%)~1 which adopts the form of a droplet with effective

radius R = v2kN{lpg.
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Laughlin’s satz and CFT

o In T?: In the torus, the Laughlin wave function is given by [5]:

b Ny—kr
F=9 E+N 2r (%
,be“ L

N

L2>K ! E ( 55)?
— ) exp| — zj — %5 ,
I Pl T

j=1

Lo Zj — 2
=2 94 [ L2k
KL1>H 1( Ly

i<k

where b € {0,...,x — 1}, Z =37, z; and ¥1(z|r) is the first Jacobi function.
It is worth pointing out that there are x different wave functions, thus, the
ground state of the Hamiltonian is finitely degenerate. In this case the filling
fraction adopts its usual form:

N 273N
wlopy= 2 B

Ny LiLs



Laughlin’s Ansatz and CFT

o In S?: In the sphere, the Laughlin wave function is given by [2]:

e (re,..orn) = [ ] (o — wpvy)”™
j<k
o Note that this wave function is essentially the same one on the plane up to
some factors. There is a one to one correspondence between Laughlin’s ansatz
in the infinite plane and Laughlin’s ansatz in the sphere, which resembles an
stereographic projection.

o The filling fraction in this case takes the usual form:
1 N-—-1
K =V =
28
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Laughlin’s Ansatz and CFT

Elementary Excitations and Conformal Field Theory (CFT)

o The elementary low energy excitations of Lauhglin’s wave function are
quasi-holes and quasi-electrons which obey fractional statistics. In the plane,
quasi-holes can be created adiabatically by piercing the droplet with magnetic
flux quanta. This modifies the geometry of a disk shaped droplet to that of a
ring. Introduction of a great number quasi-holes in the center of the disk is
known as the conformal limit where the droplet becomes a thin ring whose

width is %ZE where h is the number of quasi-holes [4].

o More important than this excitations are those produced by continuous
deformations of the droplet’s surface. This deformations must be area
preserving and the corresponding excitations are gapless. This type of
excitations correspond to the edge states of Laughlin’s wave function and
they are described by an effective edge theory, namely, the U(1) chiral
Conformal Field Theory ( U(1) chiral CFT) [1].

o For this edge states the number of states with momentum k& € N is given by
the partition function p(k).



Motivation
L]
Motivation

What is 'unique’ in the FQHE?

o Two dimensional strongly correlated systems present different properties at
zero temperature than almost any other system in condensed matter physics.
In particular the FQHE exhibits a new type of order different from the
classical or quantum orders that can be described by the paradigm of
Landau’s symmetry breaking theory.

o This new type of order is robust upon local perturbations and cannot be
described by a symmetry or a broken symmetry. In particular, this order is
characteristic of ground state wave functions and can be characterized by the
way the topology of the real space affects these ground states (For example,
on a Riemannian surface with genus g, the Laughlin wave function is v~9-fold
degenerate). What is 'unique’ in the FQHE is the fact that different trial
wave functions (Laughlin, Moor-Read, Pffafian, Composite fermions, etc..)
have different orders [11].

This new order has received the name of Topological Order.

o It is worth to point out that this type of order appears in Quantum Dimmer
Models, Kitaev’s Toric Code and Kitaev’s Honeycomb model, within a large
set of other strongly correlated 2D systems.



Motiva

o Classical Orders: Internal structures associated to classical states of matter
that are completely described by Landau’s theory of symmetries or Landau’s
theory of symmetry breaking. They characterize universality classes at finite
temperature classical states (Probability distributions).

e Topological Orders: Internal structures associated to quantum ground
states at zero temperature which cannot be described by Landau’s theory of
symmetries or Landau’s theory of symmetry breaking. Moreover this orders
depend strongly on the topology of the space where the physical system takes
place [11].
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Topol al Order and Entanglement

Short range and long range Entanglement

Consider a physical system whose ground state is gapped.

e Short range Entanglement The ground state of the system has short
range entanglement if and only if it can be transformed into a separable state
by means of local unitary evolutions.

o Long range Entanglement If the ground state of the system cannot be
transformed into a separable state by means of local unitary evolutions, ti is
said that the state has long range entanglement.

According to this definitions, topological order is a pattern of long range
entanglement, that is, it characterizes the equivalence classes defined by local
unitary evolutions. This is the key that relates entanglement to topological order:
By studying the ground state’s entanglement properties, its topological order can
be characterize [11].
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How can we detect topological order?

e Study of the ground state in non trivial manifolds = Often very difficult.

e Topological Entanglement Entropy: For a given bipartition the von
Neumman entropy of the reduced density matrix scales as [3, 6]:

S(pa) =aLl —y+O(L™),

where v = log D is the topological entanglement entropy. Here D is the total
quantum dimension (accessible form the underlying Topological Quantum
Field Theory (TQFT)). Problem!!

e Entanglement Spectrum Gives more information as it is a set of numbers.
The counting structure of ’energy’ levels identify directly the CFT and hence,
the TQFT. Appearance of an entanglement gap allows to characterize the
underlying topological order [7].



Entanglement Spectrum

Entanglement Spectrum [7]

o Given a pure many particle state |¥) € H, its associated density operator
matrix can be written always as:

p= |\I/><\I’| = exp (—HEnt) )

where Hgyy is the entanglement Hamiltonian. In this picture the
entanglement entropy is equivalent to the thermodynamic entropy of a
physical system at temperature T = kgl described by a Hamiltonian Hgpg-

o The ’energy’ spectrum of Hgy, is gapped, that is, there is a finite ’energy’ gap
between the ground state’s ’energy’ and the ’energy’ of the excited states. In
particular, when the pure state is separable, this ’energy’ gap becomes
infinite. This ’energy’ gap is known as the entanglement gap and the ’energy’
spectrum of Hgyt is known as the entanglement spectrum.

o The entanglement Hamiltonian corresponds to an effective 1D edge
Hamiltonian of the corresponding CFT. [8]



Consider a bipartition of the Hilbert space H4 ® Hp and the Schmidt
decomposition of the pure state |¥) € H:

)= Sew (=5 ) a6

where &; are the eigenvalues of Hgy, and exp (—§;) are the eigenvalues of the
reduced density matrix p4 = Tr|¥)(¥| subject to the constraint:

> exp(=&) = 1.

Observe that if |¥) is separable, all the &; are infinite except for one of them
whose value is zero. This shows why the entanglement gap is infinite when
dealing with separable states.
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slement Spectrum and Top al Order

Signs of Topological Order in the Entanglement Spectrum

o Finite entanglement gap in the thermodynamic limit. This feature is more
prominent on non-abelian trial wave functions.

e Counting structure in the low lying part of the spectrum. Counting of
independent levels in each Virasoro level defines the conformal anomaly ¢ of
the CFT and hence, it identifies the underlying TQFT which characterizes
the topological order.

For Laughlin states we will focus only in the second feature since Laughlin’s wave
functions correspond to the FQHE abelian states, where the entanglement gap is
not prominent at accessible values of the number of electrons in the system.
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Entanglement Spectrum in the FQHE

Entanglement Spectrum in the FQHE

o In relatively simple geometries the trial wave functions approximating the
ground state of the Hamiltonian associated to the FQHE exhibit the system’s
rotational and translational symmetry. This allows to find well defined
quantum numbers that are conserved upon the bipartition of the Hilbert
space. In particular, upon the bipartition of the system, the following
identities must be satisfied:

Number of Electrons: Nao+ N = Nag,
L35, (Infinite Plane & Sphere)
Kap, (Torus)

Angular Momentum: A+ L%
Momentum: Kia+ Kp
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Entanglement Spectrum in the FQHE

Let {|i)}ieq1,...,dim(H 4)} an orthonormal base for H4 and
{l#i)}icq1,....dim(# g)} an orthonormal base for Hp. A general many particle pure
state |¥) can be written as:

W) = uijli)a ®lé5)m, D |ugl> =1
i i,j

It follows that:

Trp|¥) (Y|
D wiuh i) A ® Ok (thn]a © k-

i,J,m,n,k

PA

This is, the reduced density matrix will have a nonzero contribution on the terms
[1i){(¢n]| if and only if both of them share the same counterpart on subsystem B.
This implies that the states |1;) and |1 ) must have the same quantum numbers
for momentum and electron number. Thus, the reduced density matrix splits into
sectors of Ny and L% (K4).
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Bipartitions of the Hilbert Space

Bipartitions on the Hilbert Space

There are three main bipartitions that can be made on the Hilbert space:

o Particle Partition (PP): Both subsystems are chosen such that H 4 has N4
electrons and Hp has Np electrons.

e Orbital Partition (OP): The most natural way of making a bipartition on this
system. Subsystem H 4 is chosen so that it has the first [ 4 orbitals and Hp
has the rest Ip orbitals. [7]

e Real Space Partition (RSP): Although no the most natural since electrons are
not fixed in a position, is the one that offers more information on how
topology affects the states. Consists on dividing the manifold into two
complementary regions. [9]
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Bipartitions of the Hilbert Space

OP and RSP in R?

Since there are infinite magnetic p
orbitals in the infinite plane, it is

more convenient to develop a RSP of .
the Hilbert space. In order to

conserve the gauge symmetry and the q
rotational symmetry of the system,

this partition is chosen as: -

A = {(r0),0<r <R},
B = {(r0),R<r}

E] El 3 7 O

Figure: RSP in R2
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Bipartitions of the Hilber

OP and RSP in T2

For the Torus, in order to conserve the gauge symmetry of the system and its
translational invariance, the OP is chosen such that H 4 consists of the first [ 4
orbitals and Hp consists of Ig = Ny — l4. Note that since states are localized
along the lines y = — Klf , an OP resembles a RSP. On the Torus, this OP looks

N
like:

() (b)

Figure: OP in T2. (a) In the finite plane with periodic boundary conditions

L; = 2v2nlp and Ly = 6v27fp. (Blue) Magnetic orbitals locations. (Yellow) Spatial
region corresponding to H 4 with l4 = 4 orbitals. (Gray) Spatial region corresponding
to Hp with Ip = Ny — la = 8 orbitals. (b) The same as before but viewed in the torus
embedded in R3.
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Bipartitions of the Hilbert Space

OP and RSP in S?

The OP on the sphere is similar to
the one on the Torus and looking for
conservation of gauge an rotational

symmetry:
x

Figure: OP in §2. (Blue) Localization of
the magnetic orbitals for S = 5/2.
(Yellow) Spatial region corresponding to
Ha choosing l4 = 3 orbitals. (Gray)
Spatial region corresponding to Hp
with Ip = Ny — la = 4 orbitals.

The RSP is done in such a way that
H 4 corresponds to an upper cup of
the sphere and Hp corresponds to its
complement. The partition is done
with a polar angle 0 < 6 < © that
divides both regions:

Figure: RSP in S2.
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Numerical Results

o Numerical results for the entanglement spectrum will be presented for OP
and RSP. In particular, the OP case will be presented only on the Torus,
while the RSP will be presented on the Infinite Plane and the Sphere.

o Let L*™a* and (K™a*) be the maximum value of the angular (linear)
momentum on the entanglement spectrum. Define AL = L*™aX — [,

(AK = K™ax — K) for given values of L (K). Then, the counting structure
that the entanglement spectrum shall present corresponds to:

p(|AL])
p(|AK])

1,1,2,3,5,7,11,.. .,
1,1,2,3,5,7,11,.. .,

which accounts for the Virasoro counting associated to the U(1) chiral CFT
that describes effectively the edge modes of Laughlin’s wave function [7, 8].



Results

Orbital Ent ment Spectrum (OES)

OESin T2 for v =3

[010010010010010010], [001001001001001001],
T T

Q@& ® @
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0 6 12 18

0
18 12 6 0 6 12 18 18 12 6
K K

A

Figure: OP for Nap = 12, Ny = 36 and L; = 10€p. The partition is such that
la = 18. Inset: Counting structure of the states evidencing the Virasoro counting

(U(1) x U(1) chiral CFT) [5]
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Real Space Entanglemen ectrum (RES)

RES in S2 for v = 1

Figure: (a) RES for Nap = 14, Na = 7, and choosing the partition at © = 7 Inset:
Low energy spectrum that evidences the Virasoro counting (U(1) chiral CFT). (b) RES
for Nap = 16, N4 = 8, and choosing the partition at © = 7 Inset: Low energy
spectrum that evidences the Virasoro counting (U(1) chiral CFT).
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Real Space Entanglemen ctrum (RES)

RES in S2 for v~1 =3

201

104

N oW os o

Figure: (a) RES for Nap = 7, Na = 3, and choosing the partition at © ~ % Inset:
Low energy spectrum that evidences the Virasoro counting (U(1) chiral CFT). (b) RES
for Nap = 8, Na = 4, and choosing the partition at © = 7 Inset: Low energy
spectrum that evidences the Virasoro counting (U(1) chiral CFT).
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slement Spectrum (RES)

RES inS2forv1=5

3
wof =
30l
L 8.
[ 7
of g
s
g
10l
L3
i e it=—201
15 16 17 18 19 20 21 22 -

T T S S S R L:

L L
-20 -10 0 10 20

Figure: (a) RES for Nap =6, Na =3 and © = 5. Inset: Lower part of the spectrum
showing the Virasoro counting structure (U(1) chiral CFT).
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Real Space Entanglemen ectrum (RES)

RES in R? for v = 1

65 66 67 68 69 70

20 30 40 50 60

(a) (0)

Figure: ((a) Real entanglement spectrum of a ¥ = 1 Laughlin state in the infinite plane
with Nap = 14 electrons. The partition is such that Ny =7 and R = V13¢g. Inset:
Lower part of the spectrum which evidences the Virasoro counting (U (1) chiral CFT).
(b) Real entanglement spectrum of a v = 1 Laughlin state in the infinite plane with
Nap = 16 electrons. The partition is such that Ny = 8 and R = v/15¢5. Inset: Lower
part of the spectrum which evidences the Virasoro counting (U (1) chiral CFT).
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Real Space Entanglement Spectrum (RES)

RES in R2 for v~ =3

200 - -

Figure: (a) RES for Nap = 6, Na = 3, and choosing the partition at R = v/15¢p Inset:
Low energy spectrum that evidences the Virasoro counting (U(1) chiral CFT). (b) RES
with Nap = 8 electrons. The partition is such that N4 =4 and R = v/21¢p. Inset:

Low lying region of the spectrum which evidences the Virasoro counting (U(1) chiral
CFT).
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Real Space Entanglemen

RES in R2 for v~ =5

Figure: (a) Real entanglement spectrum of a v = % Laughlin state in the infinite plane
with N = 6. The partition is such that N4 =3y R ={p . (b) Low lying region of the
spectrum which evidences the Virasoro counting (U(1) chiral CFT)
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Introduction of Quasi-holes and the Conformal Limit

50

30

20

10

————— e

Figure: RES for a v~ 1=3 Laughlin state for Nap = 8 electrons, N4 = 4 and
R = V414p after adding 20 quasi-holes to the system.
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Figure: (Right) RES for the conformal limit with Nap =8 y Ny = 4. (Up Left) Low
part of the spectrum that evidences the mode propagating on the inner ring. (Down
Left) Low part of the spectrum that evidences the mode propagating on the outer ring.
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Conclusions and Perspectives

o FQHE states, in particular, Laughlin’s trial wave function presents a new
kind of order: Topological Order. In particular this order can be characterized
by studying the entanglement properties of the many wave function. In few
words, topological order is a pattern of long range entanglement.

o Identification of topological order by means of the Entanglement Spectrum
approach allows to extract more information of the ground state wave
function than other approaches. However, since the entanglement
Hamiltonian corresponds to an effective 1D edge Hamiltonian, this approach
is limited (7) to only topological ordered states that present edge states.

e The properties of a topological ordered ground state not only depend on the
topology where the physical system is embedded, but depend as well on the
topology of the bipartition. ((!)).

o Although the geometries employed have no boundary, the study of the
system’s Entanglement and Entanglement Spectrum provide information on
the effective edge theory. That is, the imposition of a bipartition on the
system somehow enforces a virtual edge where chiral modes propagate.



Conclusions and

o The calculation of the Entanglement Spectrum for the RSP offers more
information that that of a OP. In particular, the results presented show that
the counting structure characteristic of a U(1) chiral CFT is present in the
Entanglement Spectrum up to some point that increases with the size of the
system. This determines directly the CFT, its conformal anomaly ¢ and
hence, the underlying TQFT that characterizes the topological order.

e Analysis of Laughlin’s wave function in the Conformal Limit is a key stone in
realizing that the Entanglement Hamiltonian is indeed (up to some
normalization constants) the effective Hamiltonian of an effective edge theory.

e General Topological Order Theory: String-net theory and Tensor Category
Theory, TQFT, Chern Simons Theories.
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