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PHYSICAL SYSTEM AND THEORETICAL FRAMEWORK

The atomic systems of two-electrons may be described by the following Hamiltonian (in
atomic units a.u.) :

H = h(1) + h(2) +
1

r12
, (1)

where h(i) =−∇i
2 −

Z
ri

, with Z the nuclear charge. For the two-femions case the total wave
function can be factorized in orbital part (symmetric or antisymetric), and spin part (singlet or
triplet, respectively)

|Ψ(1,2)〉= |ΦS,A(r1,r2)〉⊗ |χS,T(σ1,σ2)〉 . (2)
We use a configuration interaction (CI) scheme to solve the Schrödinger equation by means
of the following highly correlated function

|ψ;2S+1 Lπ〉CI
= ∑

n1l1;n2l2

Cn1l1;n2l2Â
[
Pn1,l1(r1)Pn2,l2(r2)Y L,ML

l1,l2
(Ω1,Ω2)χ

MS
S (1,2)

]
, (3)

where we have used decoupled one-electron functions |nlmlms〉= 1
rPnl(r)Yl

ml(θ ,φ)χms. We
calculate the radial functions Pnl(r) using a variational method with B-splines bases.
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Fig. 1. Energy spectrum
of Helium atom. Below
the first ionization thresh-
old (E = −2.0 a.u.) we
find the ground state (1s)2

and the single excited
states (1l1,n2l2). Above
this threshold and below
E = −0.5 a.u. we can find
the double excited states
in the resonant manifold.
This states may be denoted
as n1(K,T)A

n2
following

the Herrick-Sinanoğlu
scheme [1].

The Feshbach formalism is one of the most rigorous many-body theories to deal with doubly
excited states immersed in an electronic continuum [2]. In Feshbach theory the wave function
is splitted into two orthogonal spaces Q resonant, and P non-resonant:

Ψ = PΨ +QΨ, (4)
where P and Q are the projection operators associated with each subspace. The projectors
obey the following properties P +Q = 1, P2=P , Q2=Q . By replacing the splitting form
of the total wave function into the time independent Schrödinger equation HΨ=EΨ, it is
straightforward to obtain the following equations for the bound-like and the non-resonant
scattering-like parts [2]

(QHQ−En)QΦn = 0 (5a)
(PH′P−E)PΨ0 = 0, (5b)

where H′ is the operator containing the atomic Hamiltonian plus an optical potential.
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Topological analysis of wave function and electronic densities

The localized part of the
resonances carries most
of the topological di�erential
information about double
excited states.  
Our goal is  to analyze
whether this topological
di�erences discriminates
the resonances 
in sets or series (K,T).

Typical wave function of a double excited state

Fig. 2.This is a typical wave function of a resonance where the local-
ized part carries most of the topological differential information about
doubly excited states. Our goal is to analyze whether these topological
differences discriminates the resonances in sets or series (K,T).

DENSITY FUNCTION

The two-electron density function or distribution function ρ(r1,r2) is defined as the probability
of finding one electron at point r1 and the second electron at point r2. This density function
carries almost all the information about quantum correlations of a compound system. The two-
electron distribution function ρ(r1,r2) is the expectation value of the operator Ĝ(r1,r2) which
has the following form in the position representation for an atom or ion with N electrons [3]:

Ĝ2(r1,r2,θ) = ∑
j<i

1
2
[
δ(ui− r1)δ(uj− r2) + δ(ui− r2)δ(uj− r1)

]
(6)

× δ(cosθij− cosθ).

ρ(r1,r2,θ) = G2(r1,r2,θ) = 〈Ψ|Ĝ2(r1,r2,θ)|Ψ〉 . (7)

ρ(r1) =
∫

∞

0
dr2

∫ 1

−1
r2

2d(cosθ)ρ(r1,r2,θ). (8)

In this form, we have rotational-invariant two-electron and one-electron densities that have no
dependence on the magnetic quantum number m.

Fig. 3. Electronic density ρ(r1,r2)r2
1r2

2 for a few resonances belonging to symmetry 1Po

MEASURES IN INFORMATION THEORY [4]

Shannon Entropy

S[ρ] =−
∫

δ

ρ(~r)lnρ(~r)d~r. (9)

It is a measure of the uncertainty of
a probability distribution, i.e., it is a
measure of how compact or spread is a
probability distribution. The Shannon
entropy is also a measure of informa-
tion.

Fisher Information

I[ρ] =
∫

δ

∣∣∣~∇ρ(~r)
∣∣∣2

ρ(~r)
d~r. (10)

The Fisher Information is a local measure,
i.e., it does not have a global character. This
measure is very sensitive to strong changes
on the distribution over a small-sized re-
gion.

ENTANGLEMENT FOR SINGLY EXCITED STATES OF HELIUM: SYMMETRIES 1Se AND 3Se

The entanglement information for a bipartite system can be
found in the reduced density operator ρ̂1 = Tr2ρ̂ . This means
that we must average over all relevant coordinates of subsys-
tem 2. Now, we can use the following two quantities to mea-
sure the amount of entanglement between the particles of a
two-electron system:

Linear entropy SL

SL = 1−Tr[ρ̂(~r1)]2. (11)

Von Neumann entropy SVN

SVN =−Tr[ρ̂(~r1)Log2ρ̂(~r1)]. (12)

Since the expansion (3) is performed using an orthonormal
set of symmetry-adapted two-electron configurations, the re-
duced density matrix can be straightforwardly calculated by
using a partial trace over the second electron in the full den-
sity matrix

ρ̂(~r1) = Tr2ρ̂(~r1,~r2), (13)

Table: Linear Entropy and Von Neumann Entropy for bound
states of Helium: Symmetries 1Se and 3Se.

State Dehesa et al [5] Benenti et al [6] Restrepo & Sanz
SL SL SVN SL SVN

|(1s)2;1 S〉 0.015914 0.01606 0.0785 0.011460 0.066475
|1s2s;1 S〉 0.48866 0.48871 0.991099 0.487222 0.988964
|1s3s;1 S〉 0.49857 0.49724 0.998513 0.497154 0.998530
|1s4s;1 S〉 0.49892 0.49892 0.999577 0.498909 0.999631
|1s5s;1 S〉 0.4993 0.499565 0.999838 0.499468 0.999881
|1s2s;3 S〉 0.47778 0.500378 1.00494 0.500375 1.004924
|1s3s;3 S〉 0.49342 0.5000736 1.00114 0.500073 1.001136
|1s4s;3 S〉 0.49746 0.5000267 1.000453 0.500026 1.000450
|1s5s;3 S〉 0.49955 0.5000125 1.000091 0.500012 1.000227

where

ρ̂(~r1,~r2) = Cn1l1;n2l2C
∗
n′1l′1;n′2l′2

. (14)

Thus the configuration interaction method enables us to cal-
culate this trace in a simple algebraic way, then avoiding the
very demanding numerical integration of multidimensional in-
tegrals of the density matrix [5]. Now, the partial trace takes
the following form in terms of the configuration interaction co-
efficients

ρ̂(~r1)n1l1;n′1l′1
= ∑

nl
Cn1l1;nlC∗n′1l′1;nl. (15)

SHANNON ENTROPY, FISHER INFORMATION AND LINEAR ENTROPY. SINGLY AND DOUBLY EXCITED
STATES - SYMMETRIES 1Po AND 3Po.
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In numerical calculations for symmetries 1,3Po and 1,3De we used
the following scheme to obtain the wave function, the electronic
density, and the density matrix.
I 1Po Bound states Number of configurations 2500
I 1Po Resonances: Number of configurations 2475
I 3Po Bound states: Number of configurations 2500
I 3Po Resonances: Number of configurations 2475
I 1De Bound states: Number of configurations 3175

I 1De Resonances: Number of configurations 3150
I 3De Bound states: Number of configurations 3075
I 3De Resonances: Number of configurations 3050
I All calculations were made using configurations with lmax = 4

and nmax = 25.
I We used an exponential grid of knot points in B-splines set for

both singly and doubly excited states.

FISHER INFORMATION AND LINEAR ENTROPY.
SINGLY AND DOUBLY EXCITED STATES - SYMMETRIES 1De AND 3De.

1. The Shannon entropy increases monoton-
ically for both bound states and resonances.
This quantity is not able to separate the dif-
ferent (K,T) series in the resonant manifold..
The global characteristics of the density func-
tion can not be used to classify the doubly ex-
cited states.

2. The Fisher information seems to have a
trend towards a constant value in each case.
Because this quantity is sensitive to strong
changes on the density function over a small-
sized region, these local strong variations al-
low to classify each resonance in each differ-
ent (K,T) series by means of Fisher Informa-
tion.

3. Linear entropy measures the amount of en-
tanglement between the two electrons in our
system. It is a measure of quantum correla-
tions which exist in the system and these cor-
relations can distinguish the resonances within
the Rydberg series.
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The Linear entropy reaches an almost constant value at the ionization threshold energy (different for bound states and resonances),
precluding further distinctions due to the complexity that makes any classification useless.
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