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The atomic systems of two-electrons may be described by the following Hamiltonian (in Table: Linear Entropy and Von Neumann Entropy for bound
atomic units a.u.) : states of Helium: Symmetries 1S¢ and 3S¢.

The entanglement information for a bipartite system can be
(1) found in the reduced density operator p; = Tr»p. This means State  Dehesa et al [5] Benenti ef al[6] | Restrepo & Sanz
12 that we must average over all relevant coordinates of subsys- St SL Svn SL Svn
where h(i) = —% - ,%.» with Z the nuclear charge. For the two-femions case the total wave tem 2. Now, we can use the following two quantities to mea-  |(1s)*'S) 0.015914 0.01606  0.0785 0.011460 0.066475
function can be factorized in orbital part (symmetric or antisymetric), and spin part (singlet or sure the amount of entanglement between the particles of a  |1s2s;1S) 0.48866 0.48871 0.991099 0.487222 0.988964
triplet, respectively) two-electron system: : 0.49857 0.49724 0.998513 0.497154 0.998530
0.49892 0.49892 0.999577 0.498909 0.999631

W(1,2)) = |Psa(r1,r2)) @[xs,7(01,02)). ()W Linear entropy S; - 0.4993 0.499565 0.999838 0.499468 0.999881

We use a configuration interaction (CI) scheme to solve the Schrodinger equation by means 0.47778 0.500378 1.00494 0.500375 1.004924

JISure . A (= V12
of the following highly correlated function St =1-—-Tr[p(r1)]". - 0.49342  0.5000736 1.00114 0.500073 1.001136

25+1 7 myCT _ C %A{P P LML, ) M5(1 2 3 - 049746  0.5000267 1.000453 0.500026 1.000450
: = I1:n5] L\ L\I"2 1,382) X : ; (3)
v > nlzlz;;izzz dinly | Pyt r1) Py (r2) 91 )75 (1.2) Von Neumann entropy Sy - 0.49955  0.5000125 1.000091 0.500012 1.000227

H=h(1)+h(2)+

where we have used decoupled one-electron functions |nlm'm*) = 1P,,(r) Y,’n (0,0)xms. We
calculate the radial functions P,;(r) using a variational method with B-splines bases.

E(a.u.) Svnv = —Tr|p(71)Log,0 (71)]. 12 Af2 2 — *
' = TAPEOBPEDL 0D B = Cotint ;04
Fig. 1. Energy spectrum

He*(n=3)+e .
of Helium atom. Below

Since the expansion (3) i1s performed using an orthonormal

t of trv-adapted t lect fourat h Thus the configuration interaction method enables us to cal-
| He+(n:2)+e- the ﬁrst i()nizati()n thresh— SELO Symme ry_a ap © Wo-electron con gura lOIlS, © re- CUlate thlS tI‘aCG iIl d Simple algébraic WaY9 then aVOidiIlg the

—(2s,nl) old (K = —2.0 au.) we du.ced denstl.tyl Itnatrlx cant‘;)le Stralggtf?r\iardly ctaﬁcuflaltle ((11 by very demanding numerical integration of multidimensional 1n-
gzltjgg”?z'cr:;id\ find the ground state (1s)? LSS @ pattial tact OVEL Tt ScCONG SIeCtion 1 The T et tegrals of the density matrix [S]. Now, the partial trace takes

states of helium R and the single excited Sity matrix the tollowing form in terms of the configuration interaction co-
(K, T),, states (1y,maly).  Above efficients

this threshold and below ﬁ (?1) — Tr2 ﬁ (?171_"\2)7 (13)

FE = —0.5 a.u. we can find

the double excited states 2 71 ) = ZC” 1l */ - (15)
(1s,el) - in the resonant manifold. P( )nlll’nlll oy 171 nlll’nl

(1s,nl) This states may be denoted
He(2'S) as  n,(K,T),, following

Singly excited states the Herrick-Sinanoglu
scheme [1].

He(1'S) (1s)?
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The Feshbach formalism is one of the most rigorous many-body theories to deal with doubly T —— - o Doubly excited sies 1 TP Bound staes] T Dovbly exciied staes
eXCited states immﬁr Sed in an eleCtI‘ODiC Continuum [2] In F@ShbaCh theOl‘y the wave funCtion :—Shannon Entropy % [ | e—e Series ,(0,1)] o _ Fisher Information % " Fisher Information
. . . - = - |m—a Series ,(1,0) y - A = i
is splitted into two orthogonal spaces .2 resonant, and .2 non-resonant:

T T | L | L | L = T | T | T | T =
~ |~ IP° Bound states | £ 8|~ ['P° Doubly excited states| E

- | o—o Series ,(-10),

- Shannon Entropy

V=2V 4+ 9V (4)

where &2 and 2 are the projection operators associated with each subspace. The projectors : : : [ Seren 0.1 i 05 | erien (107
obey the following properties &2 + 2 =1, Pi=P D=9 By replacing the splitting form : p I b = - Chl)

= A SE 4 = - | e—o Series ,(-10),

of the total wave function into the time independent Schrodinger equation HW=EW, it is < - E B osES . E g
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straightforward to obtain the following equations for the bound-like and the non-resonant E (au) E (au) E(au)
scattering-like parts [2] e

" |~ 3P° Bound states E 3P° Doubly excited states

e—e Series 2(0,1):;
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| |e—e Series (1.0),
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where H' is the operator containing the atomic Hamiltonian plus an optical potential. 0.6

| | e—e Series ,(1,0)" I = | | e—o Series ,(-1,0)

=—a Series 2(O,l)r'1

0.55

Typical wave function of a double excited state
J |

o—o Series ,(-1,0).

i = - Shannon Entro 1/ g A % I % _ g
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o Boundlike (L?) | Scatteri Fig. 2.This 1s a typical wave function of a resonance where the local-
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ized part carries most of the topological differential information about F (a) M By S R e E (au) E(uu)

doubly excited states. Our goal 1s to analyze whether these topological
Po= QY differences discriminates the resonances 1n sets or series (K,T).

In numerical calculations for symmetries "*P° and '°D¢ we used
the following scheme to obtain the wave function, the electronic
density, and the density matrix.

» LD¢ Resonances: Number of configurations 3150

» °D¢ Bound states: Number of configurations 3075

3ne : -
» LP° Bound states Number of configurations 2500 > “1" Resonances: Number ot configurations 3050

» All calculations were made using configurations with I, = 4

» LP° Resonances: Number of configurations 2475
and n,,,,, = 25.

» 3P Bound states: Number of configurations 2500 , , o ,
» We used an exponential grid of knot points in B-splines set for

both singly and doubly excited states.

The two-electron density function or distribution function p(ry, ;) is defined as the probability
of finding one electron at point r; and the second electron at point r;. This density function
carries almost all the information about quantum correlations of a compound system. The two-
electron distribution function p(ry,r3) is the expectation value of the operator G(ry,r;) which
has the following form in the position representation for an atom or 1on with N electrons [3]:

R 1
Gy(r1,r2,0) = Zi O(ui—r1)6(uj—r2) + 6 (wi —r2)6(u;j—ry)| (6)
Jj<i
X 0(cos6; —cos0). 1. The Shannon entropy increases monoton-
ically for both bound states and resonances. e Bomdemel B o4l [DF Doubly exciied sates 7 D Do s

. ; This quantity is not able to separate the dif- 3 i "4 Linear Entropy
p(r1,r2,0) = Galry,rz, 0) = (W|Ga(ry,r2,0)|V) . (7) M ferent (K,T) series in the resonant manifold.. : _ Tl

00 1
, . . )
p(r1) = / dr / r2d(cos0)p(ri.r2,0). (8) The global characteristics of the density func
0 —1 tion can not be used to classity the doubly ex-
In this form, we have rotational-invariant two-electron and one-electron densities that have no cited states.

dependence on the magnetic quantum number 71.

» 3P° Resonances: Number of configurations 2475
» LD Bound states: Number of configurations 3175
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4 . - i 1es 0y
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changes on the density function over a small-

sized region, these local strong variations al- R e —— T > e L N N
low to classify each resonance in each differ- - [+—=3D° Bound states *DF Doubly excited states - (== °D" Bound states D Doubly excited states
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Fig. 3. Electronic density p(rq,r)rirs for a few resonances belonging to symmetry 'P° 3. Linear entropy measures the amount of en-
tanglement between the two electrons in our
system. It 1s a measure of quantum correla-
tions which exist 1n the system and these cor- :
relations can distinguish the resonances within 16, 1, I
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" The Linear entropy reaches an almost constant value at the 1onization threshold energy (different for bound states and resonances),
S[p] = — /5 p(AInpFdr.  (9) o] — / \V o (7) precluding further distinctions due to the complexity that makes any classification useless.
0

gz (10)
p(r)

It 1s a measure of the uncertainty of

a probability distribution, i.e., it is a The Fisher Information 1s a local measure,
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