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 Logic Gates in Topological Quantum Computing 

CONCLUSIONS  
• The charge a is a property of a localized object that can’t be changed by any local physical process. Local interactions 

between the particle and its environment may jostle the particle, but will not alter the charge. This local 
conservation of charge is the essential reason that anyons are amenable to fault-tolerant                                                                                                                                             
quantum information processing. 

• The one-dimensional representation of Braid group does not allow the construction of quantum logic gates. 
• The two-dimensional representation of the Braid group allowed build simple quantum logic gates. Require at least 

three strands. 

• The computational base is:  {|0 =  ∎,∎ 𝟏, ∎
𝝉
  , |1 =  ∎, ∎ 𝜏, ∎ 𝜏

 } 

• The states of the computational base allow the construction of a universal set of quantum logical gates (components 
of a quantum computer).  

• Three fluxons allow physical implementation of the above computational base. 

Just as fermions are spin half integer (1/2, 3/2,…) particles obeying 
Fermi-Dirac statistics and bosons are spin integer (0, 1, 2,…) particles 
obeying Bose-Einstein statistics, ‘anyons’ (from any) are, particles 
with any spin obeying any statistics. The difference is that anyons can 
only exist in two space dimensions. 

Topology study the properties of geometric objects that 
remaining unchanged for continues transformation. In our 
study can be said that the aim is focus in the features of the 
geometry that are robust to local perturbations small. This 
properties are invariants under a homeomorphism. 
Describes the TQC in terms of Temperley–Lieb Recoupling 
Theory (TLTR). In quantum computing, the application of 
topology is most interesting because the simplest non-
trivial example of the Temperley–Lieb recoupling theory 
gives the so-called Fibonacci model. This theory allows to 
construct certain transfer matrices through a given algebra. 
This algebra is related to knot theory and the Braid group. 
The recoupling theory yields representations of the Artin 
braid group into unitary groups U (n), where n is a 
Fibonacci number. With the unit operation U(n) will have 
operators that can be used for universal quantum 
computing modeling in terms of representations of braid 
group.. 
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ABSTRAC 
The quantum computing based in anyons is a new type of computing characterized to be very robust with respect to environment perturbations. The proposal is based on the existence the topologic states 
of the matter whose quasiparticle excited are neither bosons and fermions, but rather particles called anyons. In the Topological Quantum Computation (TQC), the quantum information is stored in two-
dimensional trajectories of the quasiparticle, which can be described in a space-time 2+1 dimensional. The world lines of the quasiparticle cross over each other to form the braids in that three-
dimensional space. The quantum logic gates depend only from topologic of braiding. In this work, of pedagogical type, shown as finding braids leading to a universal set of quantum gates to quantum bits 
encoded in a kind of quasiparticle that, according literature consulted, will lead to promising implementations of quantum computing. Experiment with Fractional Quantum Hall Effect (FQHE) indicate that 
these elements can be created in the real world using semiconductors made of gallium arsenide near absolute cero and subject to strong magnetic field. 

 

                      Spin in 2D and 3D            ANYONS 

QUANTUM GATES 

Topology and Quantum Computing 

3D: The spatial components of the spin operators satisfy the 

commutation relation 𝑆 𝑖 , 𝑆 𝑗 = ℎ𝑖𝜖𝑖𝑗𝑘𝑆𝑘 . In quantum 

mechanic we have 𝑆 2 𝑠 = ℎ2𝑠 𝑠 + 1 𝑠  where s can only be 
an integer (bosons) or half integer (2𝑘 + 1) 2   (fermions).  
2D: There is only one axis of rotation (⊥ to the plane) only 𝑆 𝑧 
matter y no satisface relaciones de conmutación. and does not 
satisfy  commutation relation. Any value of 𝑆 𝑧  is possible 
𝑆 𝑧|𝑠 = 𝑠ℎ|𝑠 , 𝑠 ∈ ℝ. These particles are called ANYONS.  
When one particle is exchanged in a  counterclockwise manner 
with the other, the wave function can change by an arbitrary 

phase 𝜓 → 𝑒𝑖𝜃𝜓 , in a second counterclockwise exchange 

𝜓 → 𝑒𝑖2𝜃𝜓  (not lead back to the initial state). 
𝜃 = 0 𝑏𝑜𝑠𝑜𝑛𝑠 , 𝜃 = 𝜋 (𝑓𝑒𝑟𝑚𝑖𝑜𝑛𝑠) ,other values of 
𝜃 (𝑎𝑛𝑦𝑜𝑛𝑠).                                        
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Braid Group 𝑩𝒏  

Labels (Charges) 

Rules for fusing and splitting Rules for braiding 
 

The braid group 𝑩𝒏 (of infinite order) of 𝑛 strands generalizes the 
permutation group 𝑃𝑛 (of order 𝑛!). 
-Each element of the group is displayed as a braid of 𝑛 strands. 
All strands are trajectories' particle as world lines in space-time 
2+1 dimensional.  
-When considering 𝑁 anyons, the topological classes of 
trajectories which take these particles from initial positions 
𝑅1, 𝑅2,…, 𝑅𝑁 at time 𝑡 to final positions 𝑅′1, 𝑅′2,…, 𝑅′𝑁   at time 𝑡′ 
are in one-to-one correspondence with the elements of the braid 
group 𝑩𝒏 (called generators 𝜎𝑖). 

Time 

𝑩𝒏 group can be presented as a set of generators that obey 
certain relations.  

𝜎𝑗 𝜎𝑘= 𝜎𝑘 𝜎𝑗,  |𝑗 − 𝑘| ≥ 2  ;  

𝜎𝑗 𝜎𝑗+1 𝜎𝑗= 𝜎𝑗+1 𝜎𝑗 𝜎𝑗+1,  j=1,2,3,…,n-2 

Yang-Baxter Relation 

 
We use latin letters {a, b, c, ...} for the labels that distinguish 
different types of particles, and we assume that the set of 
possible labels is finite. The symbol a represents the value of the 
conserved charge carried by the particle. 
-Labels: {1→ 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 (trivial particle); 
           𝜏 → 𝑛𝑜𝑛𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒; 
           𝑎 → 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 (𝑐𝑎𝑛 𝑏𝑒 𝟏 𝑜 𝑎)}  
 𝟏 × 𝑎 = 𝑎  
 ∃ 𝑎: 𝑎 × 𝑎 = 𝟏 ; (𝑎 → conjugate or antiparticle) 

 𝟏 = 𝟏 
 

Grupo Braid 𝑩𝒏  

𝑎1 𝑎2 𝑎𝑛 

When two particles are combined together, the composite 
object also has a charge. The fusion rules of the model specify 
the possible values of the total charge c when the constituents 
have charges a y b.  

𝑎 × 𝑏 =  𝑁𝑎𝑏
𝑐

𝑐 c 𝑁𝑎𝑏
𝑐 : Non-negative integer. 

The sum is over all the possible values of the charges. 

. If 𝑁𝑎𝑏
𝑐 =0 c can not be obtained. Si 𝑁𝑎𝑏

𝑐 =1 c can be obtained in a 
unique way. Si 𝑁𝑎𝑏

𝑐 > 1 c can be obtained in 𝑁𝑎𝑏
𝑐  distinguishable 

ways, each denoted by 𝜇 or 𝜈.  

The 𝑁𝑎𝑏
𝑐  distinguishable ways that c can arise by fusing a and b 

can be regarded as the orthonormal basis states of a Hilbert 
space 𝑉𝑎𝑏

𝑐 .  

𝑉𝑎𝑏
𝑐 → Fusion space, being its states the fusion states {|𝑎𝑏; 𝑐, 𝜇 , 𝜇 = 1, 2, … ,𝑁𝑎𝑏

𝑐 } 

The spaces 𝑉𝑎𝑏
𝑐

 with 

differents c are orthogonal 

𝑎𝑏; 𝑐′, 𝜇′ 𝑎𝑏; 𝑐, 𝜇 = 𝛿𝑐
𝑐′𝛿𝜇

𝜇′
 

Completeness relation 

 |𝑎𝑏; 𝑐, 𝜇 

𝑐,𝜇

 𝑎𝑏; 𝑐, 𝜇| = 𝐼𝑎𝑏 

𝐼𝑎𝑏:  Projector in the 
space           (full 
Hilbert space for the 
anyon pair ab.)  

⊕𝑐 𝑉𝑎𝑏
𝑐   

When two particles with labels a and b undergo a 
counterclockwise exchange, their total charge c is unchanged. 
Therefore, since the two particles swap positions on the line, 
the swap induces a natural isomorphism mapping the Hilbert 
space 𝑉𝑏𝑎

𝑐  to 𝑉𝑎𝑏
𝑐 ; 𝑅: 𝑉𝑏𝑎

𝑐 → 𝑉𝑎𝑏
𝑐 . If we choose the canonical 

basis |𝑏𝑎; 𝑐, 𝜇 , |𝑎𝑏; 𝑐, 𝜇′  for these two spaces, 𝑅 can be 
expressed as a unitary matrix. 

𝑅: |𝑏𝑎; 𝑐, 𝜇 →  |𝑎𝑏; 𝑐, 𝜇′ 𝑅𝑎𝑏
𝑐

𝜇
𝜇′

𝜇′
 

The fusion is associative: 
𝑎 × 𝑏 × 𝑐 = 𝑎 × 𝑏 × 𝑐  

(the total charge is an 
intrinsic property).  

Consider orthogonal basis for 𝑉𝑎𝑏𝑐
𝑑   

 
| 𝑎𝑏 𝑐; 𝑑: 𝑒, 𝜇𝜈 = |𝑎𝑏; 𝑒, 𝜇 × |𝑒𝑐; 𝑑, 𝜈  

|𝑎(𝑏𝑐); 𝑑: 𝑒′, 𝜇′𝜈′ = |𝑎𝑒′; 𝑑, 𝜈′ × |𝑏𝑐; 𝑒′, 𝜇′  

The basis are related by unitary transformation  𝐹  
 

| 𝑎𝑏 𝑐; 𝑑: 𝑒, 𝜇𝜈 =  |𝑎 𝑏𝑐 ; 𝑑: 𝑒′, 𝜇′𝜈′ 𝐹𝑎𝑏𝑐
𝑑

𝑒𝜇𝜈

𝑒′𝜇′𝜈′

𝑒′𝜇′𝜈′

 

Gate on 1 qubit 

In the Fibonacci's model there are only two charges: the trivial 𝟏 
and the nontrivial  𝜏 that represents a non-Abelian quasiparticle. 

𝟏 × 𝜏 = 𝜏  ;   𝜏 × 𝟏 = 𝜏  ;   𝜏 × 𝜏 = 𝟏 + 𝜏  

|0 =  ∎,∎ 𝟏, ∎
𝝉
 = ∎ ∎ ∎ 

𝟏 𝜏 

|1 =  ∎,∎ 𝜏, ∎ 𝜏
 = ∎ ∎ ∎ 

𝜏 𝜏 

|𝑁 =  ∎,∎ 𝜏, ∎ 𝟏
 = ∎ ∎ ∎ 

𝜏 
𝟏 

 𝑁𝑎𝑏
𝑐

𝑐 = 2 →Non abelian 

-The dimension of the Hilbert's space of 𝑛 anyons is the 𝑛 − 1 − th 
fibonacci number. 
-The Fibonacci's number grows with  𝑛 as 0,447214𝜙𝑛 for large 𝑛, 

where 𝜙 phi is the golden mean 𝜙 = 1 2 1 + 5 ≈ 1.618  

-Three Fibonacci's anyons with total charge equals to 𝜏  are 
enough to encode a qubit. 

Using the 𝑅 and 𝐹 matrix, we can find the 
unitary operations that results of the 
realizations of braids at any number of 
particles. 

To process a qubit we must find the 𝜎 
operators that define the braids .  

𝑎3 

Consider three anions in the two-dimensional 

representation. The Braid group it is generated by 

𝜎1 and 𝜎2 

Using matrix 𝑅 we can determine that the unitary  

operation for the generator 𝜎1 is given by: 

𝜎1 𝜎2 

𝜎1 = 𝑒−4𝜋𝑖 5 0
0 𝑒−2𝜋𝑖 5 

 

To determine the unitary operation for the 

generator 𝜎2, it is necessary to use the change-of-

base matrix 𝐹 along with the matrix  𝑅 in the form  

𝐹−1𝑅𝐹: 
 

𝜎2 =
−𝑒−𝜋𝑖 5 /𝜙 −𝑖𝑒−𝜋𝑖 10 / 𝜙

−𝑖𝑒−𝜋𝑖 10 / 𝜙 −1 𝜙 
 

Controled NOT gate (CNOT) 

Fibonacci Anyon Models (qubits) 

𝜎1  and 𝜎2  generates all the possibles braids 

over all the strands. We can use the last 

matrices to determine the unitary 

representations. 

The upper qubit represented by the three 
blue strands, it is the control qubit. The 
lower qubit, three green strands, it is the 
target qubit. If the state for the target qubit 
is |0 , then this state it is not affected by 
the braiding. If the control qubit it is in the 
state |1 , the target is reversed. This can be 
reached with a pre-established error 
𝜖, braiding two of the particles in the lower 
qubit..    

 
With products of powers (positive or 
negative) of the generators 𝜎1 and 𝜎2 
can approximate any gate of a qubit 
with a pre-established error 𝜖. In the 
example, the sequence shown 

approximates the gate 
0 𝑖
𝑖 0

 with 

𝜖 = 8.5 × 10−3 
  

-1 

= × = 

𝜱 

𝑞 

Fluxon 

𝜎1 

𝜎2 

𝜎1 

     𝜎2 

     𝜎1 

    𝜎2 

= 

𝜏 

𝟏 

𝜏 𝜏 

𝜏 

𝜏 

𝜏 𝜏 𝜏 

= 

= 

= 

𝜏 

𝜏 𝜏 𝜏 

𝜏 

Time 

a b 

c 

µ 

= |𝑎𝑏; 𝑐, 𝜇  

c 

µ 

 𝑎𝑏; 𝑐, 𝜇| = 

b a 

a b c 

µ 

c’ 

µ’ 

a b 

𝛿𝑐
𝑐′𝛿𝜇

𝜇′
= 

a b 

c 

µ 

µ 

a b 

= 

a b 

c 

µ 

a b 

c 

µ’ 
=  𝑅𝑎𝑏

𝑐
𝜇

𝜇′

𝜇′
 

e 

a b 

d 

µ 

c 

𝜈 =  𝐹𝑎𝑏𝑐
𝑑

𝑒𝜇𝜈

𝑒′𝜇′𝜈′

𝑒′𝜇′𝜈′

 

e’ 

a b 

d 

µ’ 

c 

𝜈′ 


