Logic Gates in Topological Quantum Computing

*Daniel Marín A., *Camilo Estrada G., *Jorge Mahecha G.
*Grupo de Física Atómica y Molecular, Instituto de Física, Universidad de Antioquia, Medellín, Colombia.

ABSTRAC

 these elements can be created in the real world using semiconductors made of gallium arsenide near absolute cero and subject to strong magnetic field.

Topology and Quantum Computing

Topology study the properties of geometric objects that remaining unchanged for continues transformation. In our study can be said that the aim is focus in the features of the geometry that are robust to local perturbations small. This properties are invariants under a homeomorphism. Describes the TQC in terms of Temperley-Lieb Recoupling Theory (TLTR). In quantum computing, the application of topology is most interesting because the simplest nontrivial example of the Temperley-Lieb recoupling theory gives the so-called Fibonacci model. This theory allows to construct certain transfer matrices through a given algebra. This algebra is related to knot theory and the Braid group. The recoupling theory yields representations of the Artin braid group into unitary groups $U(n)$, where n is a Fibonacci number. With the unit operation $U(n)$ will have operators that can be used for universal quantum computing modeling in terms of representations of braid group.

Grupo Braid $\boldsymbol{B}_{\boldsymbol{n}}$

$\boldsymbol{B}_{\boldsymbol{n}}$ group can be presented as a set of generators that obey certain relations.

$$
\sigma_{j} \sigma_{k}=\sigma_{k} \sigma_{j},|j-k| \geq 2 ;
$$

$\sigma_{j+1} \sigma_{j}=\sigma_{j+1} \sigma_{j} \sigma_{j+1}, \mathrm{j}=1,2,3, \ldots, \mathrm{n}-2$
Yang-Baxter Relation

Labels (Charges)

We use latin letters $\{a, b, c, \ldots\}$ for the labels that distinguish different types of particles, and we assume that the set of possible labels is finite. The symbol a represents the value of the conserved charge carried by the particle. -Labels: $\{\mathbf{1} \rightarrow$ Identity (trivial particle);
$\tau \rightarrow$ nontrivial particle;
$a \rightarrow$ generic particle (can be $\mathbf{1}$ o a) \}
$1 \times a=a$
$\exists \bar{a}: \bar{a} \times a=\mathbf{1} ;(\bar{a} \rightarrow$ conjugate or antiparticle $)$
$\overline{1}=1$

QUANTUM GATES

Fibonacci Anyon Models (qubits)

In the Fibonacci's model there are only two charges: the trivial 1 and the nontrivial τ that represents a non-Abelian quasiparticle.

-The dimension of the Hilbert's space of n anyons is the $(n-1)-$ th -The dimenacci number
The Fibonacci's number grows with n as $0,447214 \phi^{n}$ for large n,
--The Fibonacci's number grows with n as $0,447214 \phi^{n}$ for lar
where ϕ phi is the golden mean $\phi=(1 / 2)(1+\sqrt{5}) \approx 1.618$ -Three Fibonacci's anyons with total charge equals to τ are enough to encode a qubit.

Spin in $2 D$ and $3 D \longrightarrow$ ANYONS

Just as fermions are spin half integer $(1 / 2,3 / 2, \ldots)$ particles obeying Fermi-Dirac statistics and bosons are spin integer ($0,1,2, \ldots$) particles obeying Bose-Einstein statistics, 'anyons' (from any) are, particles with any spin obeying any statistics. The difference is that anyons can only exist in two space dimensions.

3D: The spatial components of the spin operators satisfy the commutation relation $\left[\hat{S}_{i}, \hat{S}_{j}\right]=\hbar i \epsilon_{i j k} S_{k}$. In quantum mechanic we have $\hat{S}^{2}|s\rangle=\hbar^{2} s(s+1)|s\rangle$ where s can only be an integer (bosons) or half integer $(2 k+1) / 2$ (fermions). 2D: There is only one axis of rotation (\perp to the plane) only \hat{S}_{z} matter y no satisface relaciones de conmutación. and does not satisfy commutation relation. Any value of \hat{S}_{z} is possible $\hat{S}_{z}|s\rangle=s \hbar|s\rangle, s \in \mathbb{R}$. These particles are called ANYONS. When one particle is exchanged in a counterclockwise manner with the other, the wave function can change by an arbitrary phase $\psi \rightarrow e^{i \theta} \psi$, in a second counterclockwise exchange $\psi \rightarrow e^{i 2 \theta} \psi \quad$ (not lead back to the initial state). $\theta=0$ (bosons), $\theta=\pi$ (fermions) ,other values of θ (anyons).

Rules for fusing and splitting

When two particles are combined together, the composite object also has a charge. The fusion rules of the model specify the possible values of the total charge c when the constituents have charges a y b.
$a \times b=\sum_{c} N_{a b}^{c}{ }^{c} \quad N_{a b}^{c}$: Non-negative integer.
The sum is over all the possible values of the charges. If $N_{a b}^{c}=0 c$ can not be obtained. Si $N_{a b}^{c}=1 c$ can be obtained in a unique way. Si $N_{a b}^{c}>1 c$ can be obtained in $N_{a b}^{c}$ distinguishable ways, each denoted by μ or v.
The $N_{a b}^{c}$ distinguishable ways that c can arise by fusing a and b can be regarded as the orthonormal basis states of a Hilbert space $V_{a b}^{c}$.

Braid Group $\boldsymbol{B}_{\boldsymbol{n}}$

The braid group $\boldsymbol{B}_{\boldsymbol{n}}$ (of infinite order) of n strands generalizes the permutation group P_{n} (of order $n!$).
-Each element of the group is displayed as a braid of n strands. All strands are trajectories' particle as world lines in space-time $2+1$ dimensional.
-When considering N anyons, the topological classes of trajectories which take these particles from initial positions $R_{1}, R_{2}, \ldots, R_{N}$ at time t to final positions $R^{\prime}{ }_{1}, R_{2}^{\prime}, \ldots, R_{N}^{\prime}$ at time t^{\prime} are in one-to-one correspondence with the elements of the braid group $\boldsymbol{B}_{\boldsymbol{n}}$ (called generators σ_{i}).

Rules for braiding

When two particles with labels a and b undergo a counterclockwise exchange, their total charge c is unchanged. Therefore, since the two particles swap positions on the line, the swap induces a natural isomorphism mapping the Hilbert space $V_{b a}^{c}$ to $V_{a b}^{c} ; R: V_{b a}^{c} \rightarrow V_{a b}^{c}$. If we choose the canonical basis $\left\{|b a ; c, \mu\rangle,\left|a b ; c, \mu^{\prime}\right\rangle\right\}$ for these two spaces, R can be expressed as a unitary matrix.

Gate on 1 qubit

To process a qubit we must find the σ operators that define the braids

Using the R and F matrix, we can find the unitary operations that results of the realizations of braids at any number of particles.

Consider three anions in the two-dimensional representation. The Braid group it is generated by σ_{1} and σ_{2}

Time

Using matrix R we can determine that the unitary operation for the generator σ_{1} is given by

$$
\sigma_{1}=\left(\begin{array}{cc}
e^{-4 \pi i / 5} & 0 \\
0 & e^{-2 \pi i / 5}
\end{array}\right)
$$

To determine the unitary operation for the generator σ_{2}, it is necessary to use the change-ofbase matrix F along with the matrix R in the form base matrix
$F^{-1} R F$:
$\sigma_{2}=\left(\begin{array}{cc}-e^{-\pi i / 5} / \phi & -i e^{-\pi i / 10} / \sqrt{\phi} \\ -i e^{-\pi i / 10} / \sqrt{\phi} & -1 / \phi\end{array}\right)$
σ_{1} and σ_{2} generates all the possibles braids over all the strands. We can use the last
matrices to determine the matrices to determine the unitary
representations.

With products of powers (positive or
negative) of the generators σ_{1} and σ_{2}
can approximate any gate of a qubit
with a pre-established error ϵ. In the
example, the sequence shown

approximates the gate $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$ with
$\epsilon=8.5 \times 10^{-3}$

Controled NOT gate (CNOT)

The upper qubit represented by the three blue strands, it is the control qubit. The lower qubit, three green strands, it is the target qubit. If the state for the target qubit is $|0\rangle$, then this state it is not affected by the braiding. If the control qubit it is in the state |1), the target is reversed. This can be reached with a pre-established error ϵ, braiding two of the particles in the lower qubit..

CONCLUSIONS

The charge a is a property of a localized object that can't be changed by any local physical process. Local interactions between the particle and its environment may jostle the particle, but will not alter the charge. This local conservation of charge is the essential reason that anyons are amenable to fault-tolerant conservation of charge is
quantum information processing.
quantum information processing.
The one-dimensional representation of Braid group does not allow the construction of quantum logic gates.
The two-dimensional representation of the Braid group allowed build simple quantum logic gates. Require at least three strands.
The computational base is: $\left\{|0\rangle=\left|\left((\mathbf{\square}, \mathbf{\square})_{\mathbf{1}}, \boldsymbol{\square}\right)_{\tau}\right\rangle,|1\rangle=\left|\left((\mathbf{\square}, \mathbf{\square})_{\tau}, \llbracket\right)_{\tau}\right\rangle\right\}$
The states of the computational base allow the construction of a universal set of quantum logical gates (components of a quantum computer).

References

[1] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons, arXiv:quant-ph/9707021 (1997)
[2] J. Preskill, "Lecture Notes for Physics 219, Quantum Computation -Part III: Topological Quantum Computation," (http://www.theory.caltech.edu/~preskill/ph219/topological.pdf),
[3] N. E. Bonesteel, L. Hormozi, G. Zikos, S. H. Simon, Braid Topologies for Quantum Computation, Phys. Rev. Lett. 95, 140503 (2005). [4]. Trebst, M. Troyer,
arXiv:0902.3275 (2009)

