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P and NP

A (yes-no) decision problem is in complexity class P if there is a
algorithm (Turing machine) to solve it and a polynomial p such
that for all n and all input of bit-length n, the algorithm terminates
correctly in at most p(n) steps.
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A (yes-no) decision problem is in complexity class P if there is a
algorithm (Turing machine) to solve it and a polynomial p such
that for all n and all input of bit-length n, the algorithm terminates
correctly in at most p(n) steps.

A decision problem is in class NP if a ’yes’ answer can always be
verified in polynomial time with the aid of an appropriate
certificate. A problem is in co-NP if a ’no’ answer can be similarly
verified.

Note that P ⊆ NP ∩ co-NP.

Million-dollar question: Does P equal NP?



Graph problems in P

A graph is a finite set V of vertices and a set E of edges, given as
pairs of vertices.

The following graph theoretic problems are in P :

◮ Connected: Given a graph Γ, is there a path between every
pair of vertices?

◮ Bipartite: Given a graph Γ, can its vertices be partitioned into
two sets A and B such that every edge has one end in A and
the other in B?

◮ Eulerian circuit: Given a graph Γ, does Γ contain a (closed)
circuit that includes each edge of Γ exactly once?
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◮ Connected: Given a graph Γ, is there a path between every
pair of vertices?

◮ Bipartite: Given a graph Γ, can its vertices be partitioned into
two sets A and B such that every edge has one end in A and
the other in B?

◮ Eulerian circuit: Given a graph Γ, does Γ contain a (closed)
circuit that includes each edge of Γ exactly once?

A graph has an Eulerian circuit if and only if every vertex has even
degree.



Graph problems in NP

◮ k-Clique: Given a graph Γ and a number k , does Γ contain a
complete subgraph with k vertices?

◮ k-Chromatic: Given a graph Γ and a number k , can the
vertices of Γ be colored with k colors such that no two
adjacent vertices have the same color?

◮ Hamiltonian: Given a graph Γ, does Γ contain a cycle that
passes through each vertex exactly once?

◮ Graph Isomorphism: Given graphs Γ1 and Γ2, is there a
bijection f from the vertices of Γ1 to the vertices of Γ2 such
that {u, v} is an edge of Γ1 if and only if {f (u), f (v)} is an
edge of Γ2?
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bijection f from the vertices of Γ1 to the vertices of Γ2 such
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In each case, the desired object is itself a certificate whenever the
answer is YES. None of the problems are known to be in co-NP.
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◮ NP-hard if every problem in NP can be reduced to X in
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◮ NP-complete if it is both in NP and NP-hard.

◮ NP-intermediate if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in
polynomial-time, then P=NP.
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NP-completeness

A problem X is

◮ NP-hard if every problem in NP can be reduced to X in
polynomial time.

◮ NP-complete if it is both in NP and NP-hard.

◮ NP-intermediate if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in
polynomial-time, then P=NP.

Theorem (Cook, ’71) The problem SAT (satisfiability of Boolean
functions) is NP-complete.
Theorem (Karp, ’72) The problems k-Clique, k-Chromatic,
Hamiltonian (and several others) are NP-complete.

In fact most problems in NP are either known to be in P or are
NP-complete. Graph Isomorphism is an exception, as is factoring.



Friendliness of Graph Isomorphism

◮ There are polynomial-time algorithms for important special
cases such as planar graphs, graphs of bounded vertex degree,
and graphs whose adjacency matrices have bounded
eigenvalue multiplicity.

◮ Non-isomorphic graphs usually can be easily distinguished by
degree sequence, counting small subgraphs, or eigenvalues of
the adjacency matrix

◮ There are algorithms that usually run in polynomial time in
practice, though take exponential time in the worst case.

◮ The problem of counting isomorphisms reduces in polynomial
time to the decision problem, unlike for many NP-hard
problems.



Isomorphisms and automorphisms

Let Γ1 and Γ2 be graphs on n vertices and Γ be their disjoint
union. An isomorphism between Γ1 and Γ2 is an automorphism σ
of Γ that interchanges V (Γ1) with V (Γ2).



Isomorphisms and automorphisms

Let Γ1 and Γ2 be graphs on n vertices and Γ be their disjoint
union. An isomorphism between Γ1 and Γ2 is an automorphism σ
of Γ that interchanges V (Γ1) with V (Γ2).

Given generators of Aut(Γ), we can check in polynomial time if any
automorphism has the interchange property. So Graph
Isomorphism reduces to finding generators for Aut(Γ) ≤ S2n, a
special case of ...
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The hidden subgroup problem

Given a finite group G , find generators of an unknown subgroup H.
We are allowed to call a function f on G that satisfies:

f (x) = f (y) ⇔ x , y are in the same coset of H.

Example: Let G = Z
3
2 = 〈y1, y2, y3〉 and H = 〈y1 + y2〉, a

two-element subgroup. Define f : G → Z
2
2 by

f (a, b, c) = (a+ b, c). Then f is constant on the cosets of H and
distinguishes them.

To solve the hidden subgroup problem, we will study
representations of the group G : homomorphisms ρ from G to
GLn(C). The number dρ := n is the dimension of the
representation. The character χρ(g) is the trace of the matrix
ρ(g).
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irreducible representation ρ and each matrix entry (i , j)



A quantum algorithm for the HSP

Define a state |g〉 for each g ∈ G . Define states |(ρ, i , j)〉 for each
irreducible representation ρ and each matrix entry (i , j)

Define the following operators:

◮ An operator S that superposes the elements of G .

◮ An operator Uf that evaluates f ; that is,

Uf (|g〉 ⊗ |00 . . . 0〉) = |g〉 ⊗ |f (g)〉

◮ The quantum Fourier transform F that superposes all possible
irreducible representations of a given element of G .

For appropriate groups G , each can be implemented with
polynomially many basic quantum operations.



A quantum algorithm for the HSP, continued

◮ Initialize two quantum registers, one for elements of G and
another for values of f .

◮ Apply S to the first register to get

1
√

|G |

∑

g∈G

|g〉 ⊗ |00 . . . 0〉 .

◮ Apply Uf to get

1
√

|G |

∑

g∈G

|g〉 ⊗ |f (g)〉 .

◮ Measure the second register. The result is f (c) for some
random c ∈ G , giving

1
√

|H|

∑

h∈H

|hc〉 ⊗ |f (c)〉 .



A quantum algorithm for the HSP, continued

◮ Ignore the second register and apply F to the first, giving

∑

ρ irrep of G

dρ
∑

i ,j=1

√

dρ
√

|G | |H|

(

∑

h∈H

ρ(ch)i ,j |ρ, i , j〉

)

.

◮ Measure the representation ρ. The probability of a given ρ is

dρ
∑

h∈H χρ(h)

|G |
.

◮ Repeat enough times to effectively sample H.



Representations of abelian groups

The representations of a cyclic group Zn = 〈y〉 are all

one-dimensional, given by y 7→ e
2πik
n , 0 ≤ k ≤ n − 1. The

quantum Fourier transform in this case is the regular Fourier
transform.

In particular, for Z2, we have the trivial representation given by
y 7→ 1 and the sign representation given by y 7→ −1.
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The representations of a cyclic group Zn = 〈y〉 are all

one-dimensional, given by y 7→ e
2πik
n , 0 ≤ k ≤ n − 1. The

quantum Fourier transform in this case is the regular Fourier
transform.

In particular, for Z2, we have the trivial representation given by
y 7→ 1 and the sign representation given by y 7→ −1.

For Zn
2 = 〈y1, y2, . . . , yn〉 we have 2n representations given by

yi 7→ ±1 for each i . Given such a ρ,

ρ

(

∑

i∈I

yi

)

= −1#{i∈I : ρ(yi )=−1}.

That is, the representations give the (vector space) dual to Z
n
2.



An abelian example

Let G = Z
3
2 = 〈y1, y2, y3〉 and H = 〈y1 + y2〉 ≃ Z2.

ρ ρ(e) ρ(y1 + y2) Prob(ρ)

(+,+,+) 1 1 2/8
(+,+,-) 1 1 2/8
(+,-,+) 1 -1 0
(+,-,-) 1 -1 0
(-,+,+) 1 -1 0
(-,+,-) 1 -1 0
(-,-,+) 1 1 2/8
(-,-,-) 1 1 2/8
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3
2 = 〈y1, y2, y3〉 and H = 〈y1 + y2〉 ≃ Z2.

ρ ρ(e) ρ(y1 + y2) Prob(ρ)

(+,+,+) 1 1 2/8
(+,+,-) 1 1 2/8
(+,-,+) 1 -1 0
(+,-,-) 1 -1 0
(-,+,+) 1 -1 0
(-,+,-) 1 -1 0
(-,-,+) 1 1 2/8
(-,-,-) 1 1 2/8

Thus the algorithm gives a random representation dual to H. The
same holds for any subgroup K of Zn

2. With high probability, K ∗ is
generated by 2n random elements of it. Finally, K ∗ determines K .



Irreducible representations of the symmetric group S3

◮ Trivial representation: ρtriv(σ) = 1 for all permutations σ.

◮ Sign representation: ρsign(σ) =

{

1 if σ is even

−1 if σ is odd

◮ Standard representation ρstd: let S3 act on C
3 by permuting

coordinates. Restrict the action to the plane given by
x1 + x2 + x3 = 0. Choose a basis for the plane: say
{e1 − e2, e2 − e3}.



Irreducible representations of the symmetric group S3

◮ Trivial representation: ρtriv(σ) = 1 for all permutations σ.

◮ Sign representation: ρsign(σ) =

{

1 if σ is even

−1 if σ is odd

◮ Standard representation ρstd: let S3 act on C
3 by permuting

coordinates. Restrict the action to the plane given by
x1 + x2 + x3 = 0. Choose a basis for the plane: say
{e1 − e2, e2 − e3}.

The respective dimensions are 1, 1, and 2. Since
12 + 12 + 22 = 6 = |S3|, Matschke’s theorem guarantees that they
are the only irreducible representations of S3 over C



Sampling subgroups of S3

σ ∈ S3 ρtriv(σ) ρsgn(σ) ρstd(σ) χstd(σ)

e 1 1

(

1 0
0 1

)

2

(12) 1 -1

(

−1 1
0 1

)

0

(23) 1 -1

(

1 0
1 −1

)

0

(13) 1 -1

(

0 −1
−1 0

)

0

(123) 1 1

(

0 −1
1 −1

)

-1

(132) 1 1

(

−1 1
−1 0

)

2



Sampling subgroups of S3, continued

For the trivial group {e}:

Pr(ρtriv) = 1 · χtriv(e)
6 = 1/6

Pr(ρsgn) = 1 ·
χsgn(e)

6 = 1/6

Pr(ρstd) = 2 · χstd(e)
6 = 4/6
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For the group H = 〈(12)〉 = {e, (12)} ≃ Z/2:

Pr(ρtriv) = 1 · χtriv(e)+χtriv((12))
6 = (1 + 1)/6 = 2/6

Pr(ρsgn) = 1 ·
χsgn(e)+χsgn((12))

6 = (1− 1)/6 = 0

Pr(ρstd) = 2 ·
χstd(e)+χρ((12))

6 = 2 · (2 + 0)/6 = 4/6



Sampling subgroups of S3, continued

For the trivial group {e}:

Pr(ρtriv) = 1 · χtriv(e)
6 = 1/6

Pr(ρsgn) = 1 ·
χsgn(e)

6 = 1/6

Pr(ρstd) = 2 · χstd(e)
6 = 4/6

For the group H = 〈(12)〉 = {e, (12)} ≃ Z/2:

Pr(ρtriv) = 1 · χtriv(e)+χtriv((12))
6 = (1 + 1)/6 = 2/6

Pr(ρsgn) = 1 ·
χsgn(e)+χsgn((12))

6 = (1− 1)/6 = 0

Pr(ρstd) = 2 ·
χstd(e)+χρ((12))

6 = 2 · (2 + 0)/6 = 4/6

To distinguish 〈(12)〉 from the trivial group, we need to know with
high probability that ρsgn does not show up.
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Negative results for Sn

Theorem (Hallgren-Russell-Ta-Shma, ’00) Fourier sampling cannot
distinguish the trivial subgroup of Sn from certain subgroups of
order two in polynomial time with high probability.

In particular, if Γ1 and Γ2 are two rigid graphs, then the
isomorphism problem reduces to this case of the hidden subgroup
problem.

Strong Fourier sampling is a variant of the algorithm where we
keep track of not just the character of a representation ρ), but the
whole matrix.

Theorem (Moore-Russell-Schulman, ’08 Strong Fourier sampling
also cannot distinguish hidden subgroups of Sn in polynomial time
with high probability.

Question: Can more intricate quantum algorithms efficiently solve
the hidden subgroup problem for Sn?
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