NP-Intermediate Problems and Quantum Algorithms

Tristram Bogart

Universidad de los Andes
31 May 2013

Outline

- Complexity classes and graph theory
- The graph isomorphism problem
- The hidden subgroup problem and quantum algorithms
- The abelian case
- The symmetric group case and graph isomorphisms

P and NP

A (yes-no) decision problem is in complexity class P if there is a algorithm (Turing machine) to solve it and a polynomial p such that for all n and all input of bit-length n, the algorithm terminates correctly in at most $p(n)$ steps.

P and NP

A (yes-no) decision problem is in complexity class P if there is a algorithm (Turing machine) to solve it and a polynomial p such that for all n and all input of bit-length n, the algorithm terminates correctly in at most $p(n)$ steps.

A decision problem is in class NP if a 'yes' answer can always be verified in polynomial time with the aid of an appropriate certificate. A problem is in co-NP if a 'no' answer can be similarly verified.

P and NP

A (yes-no) decision problem is in complexity class P if there is a algorithm (Turing machine) to solve it and a polynomial p such that for all n and all input of bit-length n, the algorithm terminates correctly in at most $p(n)$ steps.

A decision problem is in class NP if a 'yes' answer can always be verified in polynomial time with the aid of an appropriate certificate. A problem is in co-NP if a 'no' answer can be similarly verified.

Note that $\mathrm{P} \subseteq \mathrm{NP} \cap$ co-NP.

Million-dollar question: Does P equal NP?

Graph problems in P

A graph is a finite set V of vertices and a set E of edges, given as pairs of vertices.

The following graph theoretic problems are in P :

- Connected: Given a graph Γ, is there a path between every pair of vertices?
- Bipartite: Given a graph Г, can its vertices be partitioned into two sets A and B such that every edge has one end in A and the other in B ?
- Eulerian circuit: Given a graph Г, does Г contain a (closed) circuit that includes each edge of Γ exactly once?

Graph problems in P

A graph is a finite set V of vertices and a set E of edges, given as pairs of vertices.

The following graph theoretic problems are in P :

- Connected: Given a graph Γ, is there a path between every pair of vertices?
- Bipartite: Given a graph Г, can its vertices be partitioned into two sets A and B such that every edge has one end in A and the other in B ?
- Eulerian circuit: Given a graph Γ, does Γ contain a (closed) circuit that includes each edge of Γ exactly once?

A graph has an Eulerian circuit if and only if every vertex has even degree.

Graph problems in NP

- k-Clique: Given a graph Γ and a number k, does Γ contain a complete subgraph with k vertices?
- k-Chromatic: Given a graph 「 and a number k, can the vertices of Γ be colored with k colors such that no two adjacent vertices have the same color?
- Hamiltonian: Given a graph Г, does Γ contain a cycle that passes through each vertex exactly once?
- Graph Isomorphism: Given graphs Γ_{1} and Γ_{2}, is there a bijection f from the vertices of Γ_{1} to the vertices of Γ_{2} such that $\{u, v\}$ is an edge of Γ_{1} if and only if $\{f(u), f(v)\}$ is an edge of Γ_{2} ?

Graph problems in NP

- k-Clique: Given a graph 「 and a number k, does Γ contain a complete subgraph with k vertices?
- k-Chromatic: Given a graph 「 and a number k, can the vertices of Γ be colored with k colors such that no two adjacent vertices have the same color?
- Hamiltonian: Given a graph Г, does Γ contain a cycle that passes through each vertex exactly once?
- Graph Isomorphism: Given graphs Γ_{1} and Γ_{2}, is there a bijection f from the vertices of Γ_{1} to the vertices of Γ_{2} such that $\{u, v\}$ is an edge of Γ_{1} if and only if $\{f(u), f(v)\}$ is an edge of Γ_{2} ?

In each case, the desired object is itself a certificate whenever the answer is YES. None of the problems are known to be in co-NP.

NP-completeness

A problem X is

- NP-hard if every problem in NP can be reduced to X in polynomial time.
- NP-complete if it is both in NP and NP-hard.
- NP-intermediate if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in polynomial-time, then $\mathrm{P}=\mathrm{NP}$.

NP-completeness

A problem X is

- NP-hard if every problem in NP can be reduced to X in polynomial time.
- NP-complete if it is both in NP and NP-hard.
- NP-intermediate if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in polynomial-time, then $\mathrm{P}=\mathrm{NP}$.

Theorem (Cook, '71) The problem SAT (satisfiability of Boolean functions) is NP-complete.
Theorem (Karp, '72) The problems k-Clique, k-Chromatic, Hamiltonian (and several others) are NP-complete.

NP-completeness

A problem X is

- NP-hard if every problem in NP can be reduced to X in polynomial time.
- NP-complete if it is both in NP and NP-hard.
- NP-intermediate if it is NP, but neither in P nor NP-Hard.

By definition, if some NP-complete problem can be solved in polynomial-time, then $\mathrm{P}=\mathrm{NP}$.

Theorem (Cook, '71) The problem SAT (satisfiability of Boolean functions) is NP-complete.
Theorem (Karp, '72) The problems k-Clique, k-Chromatic, Hamiltonian (and several others) are NP-complete.

In fact most problems in NP are either known to be in P or are NP-complete. Graph Isomorphism is an exception, as is factoring.

Friendliness of Graph Isomorphism

- There are polynomial-time algorithms for important special cases such as planar graphs, graphs of bounded vertex degree, and graphs whose adjacency matrices have bounded eigenvalue multiplicity.
- Non-isomorphic graphs usually can be easily distinguished by degree sequence, counting small subgraphs, or eigenvalues of the adjacency matrix
- There are algorithms that usually run in polynomial time in practice, though take exponential time in the worst case.
- The problem of counting isomorphisms reduces in polynomial time to the decision problem, unlike for many NP-hard problems.

Isomorphisms and automorphisms

Let Γ_{1} and Γ_{2} be graphs on n vertices and Γ be their disjoint union. An isomorphism between Γ_{1} and Γ_{2} is an automorphism σ of Γ that interchanges $V\left(\Gamma_{1}\right)$ with $V\left(\Gamma_{2}\right)$.

Isomorphisms and automorphisms

Let Γ_{1} and Γ_{2} be graphs on n vertices and Γ be their disjoint union. An isomorphism between Γ_{1} and Γ_{2} is an automorphism σ of Γ that interchanges $V\left(\Gamma_{1}\right)$ with $V\left(\Gamma_{2}\right)$.

Given generators of Aut(Γ), we can check in polynomial time if any automorphism has the interchange property. So Graph Isomorphism reduces to finding generators for $\operatorname{Aut}(\Gamma) \leq S_{2 n}$, a special case of ...

The hidden subgroup problem

Given a finite group G, find generators of an unknown subgroup H. We are allowed to call a function f on G that satisfies:

$$
f(x)=f(y) \Leftrightarrow x, y \text { are in the same coset of } H .
$$

The hidden subgroup problem

Given a finite group G, find generators of an unknown subgroup H. We are allowed to call a function f on G that satisfies:

$$
f(x)=f(y) \Leftrightarrow x, y \text { are in the same coset of } H .
$$

Example: Let $G=\mathbb{Z}_{2}^{3}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ and $H=\left\langle y_{1}+y_{2}\right\rangle$, a two-element subgroup. Define $f: G \rightarrow \mathbb{Z}_{2}^{2}$ by $f(a, b, c)=(a+b, c)$. Then f is constant on the cosets of H and distinguishes them.

The hidden subgroup problem

Given a finite group G, find generators of an unknown subgroup H. We are allowed to call a function f on G that satisfies:

$$
f(x)=f(y) \Leftrightarrow x, y \text { are in the same coset of } H .
$$

Example: Let $G=\mathbb{Z}_{2}^{3}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ and $H=\left\langle y_{1}+y_{2}\right\rangle$, a two-element subgroup. Define $f: G \rightarrow \mathbb{Z}_{2}^{2}$ by $f(a, b, c)=(a+b, c)$. Then f is constant on the cosets of H and distinguishes them.

To solve the hidden subgroup problem, we will study representations of the group G : homomorphisms ρ from G to $G L_{n}(\mathbb{C})$. The number $d_{\rho}:=n$ is the dimension of the representation. The character $\chi_{\rho}(g)$ is the trace of the matrix $\rho(g)$.

A quantum algorithm for the HSP

Define a state $|g\rangle$ for each $g \in G$. Define states $|(\rho, i, j)\rangle$ for each irreducible representation ρ and each matrix entry (i, j)

A quantum algorithm for the HSP

Define a state $|g\rangle$ for each $g \in G$. Define states $|(\rho, i, j)\rangle$ for each irreducible representation ρ and each matrix entry (i, j)

Define the following operators:

- An operator S that superposes the elements of G.
- An operator U_{f} that evaluates f; that is,

$$
U_{f}(|g\rangle \otimes|00 \ldots 0\rangle)=|g\rangle \otimes|f(g)\rangle
$$

- The quantum Fourier transform \mathcal{F} that superposes all possible irreducible representations of a given element of G.
For appropriate groups G, each can be implemented with polynomially many basic quantum operations.

A quantum algorithm for the HSP, continued

- Initialize two quantum registers, one for elements of G and another for values of f.
- Apply S to the first register to get

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \otimes|00 \ldots 0\rangle
$$

- Apply U_{f} to get

$$
\frac{1}{\sqrt{|G|}} \sum_{g \in G}|g\rangle \otimes|f(g)\rangle
$$

- Measure the second register. The result is $f(c)$ for some random $c \in G$, giving

$$
\frac{1}{\sqrt{|H|}} \sum_{h \in H}|h c\rangle \otimes|f(c)\rangle
$$

A quantum algorithm for the HSP, continued

- Ignore the second register and apply \mathcal{F} to the first, giving

$$
\sum_{\rho \text { irrep of } G} \sum_{i, j=1}^{d_{\rho}} \frac{\sqrt{d_{\rho}}}{\sqrt{|G||H|}}\left(\sum_{h \in H} \rho(c h)_{i, j}|\rho, i, j\rangle\right) .
$$

- Measure the representation ρ. The probability of a given ρ is

$$
\frac{d_{\rho} \sum_{h \in H} \chi_{\rho}(h)}{|G|} .
$$

- Repeat enough times to effectively sample H.

Representations of abelian groups

The representations of a cyclic group $\mathbb{Z}_{n}=\langle y\rangle$ are all one-dimensional, given by $y \mapsto e^{\frac{2 \pi i k}{n}}, \quad 0 \leq k \leq n-1$. The quantum Fourier transform in this case is the regular Fourier transform.

In particular, for \mathbb{Z}_{2}, we have the trivial representation given by $y \mapsto 1$ and the sign representation given by $y \mapsto-1$.

Representations of abelian groups

The representations of a cyclic group $\mathbb{Z}_{n}=\langle y\rangle$ are all one-dimensional, given by $y \mapsto e^{\frac{2 \pi i k}{n}}, \quad 0 \leq k \leq n-1$. The quantum Fourier transform in this case is the regular Fourier transform.

In particular, for \mathbb{Z}_{2}, we have the trivial representation given by $y \mapsto 1$ and the sign representation given by $y \mapsto-1$.

For $\mathbb{Z}_{2}^{n}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ we have 2^{n} representations given by $y_{i} \mapsto \pm 1$ for each i. Given such a ρ,

$$
\rho\left(\sum_{i \in I} y_{i}\right)=-1^{\#\left\{i \in I: \rho\left(y_{i}\right)=-1\right\}}
$$

That is, the representations give the (vector space) dual to \mathbb{Z}_{2}^{n}.

An abelian example

$$
\text { Let } G=\mathbb{Z}_{2}^{3}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle \text { and } H=\left\langle y_{1}+y_{2}\right\rangle \simeq \mathbb{Z}_{2} \text {. }
$$

ρ	$\rho(e)$	$\rho\left(y_{1}+y_{2}\right)$	$\operatorname{Prob}(\rho)$
$(+,+,+)$	1	1	$2 / 8$
$(+,+,-)$	1	1	$2 / 8$
$(+,-,+)$	1	-1	0
$(+,-,-)$	1	-1	0
$(-,+,+)$	1	-1	0
$(-,+,-)$	1	-1	0
$(-,-,+)$	1	1	$2 / 8$
$(-,-,-)$	1	1	$2 / 8$

An abelian example

$$
\text { Let } G=\mathbb{Z}_{2}^{3}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle \text { and } H=\left\langle y_{1}+y_{2}\right\rangle \simeq \mathbb{Z}_{2} \text {. }
$$

ρ	$\rho(e)$	$\rho\left(y_{1}+y_{2}\right)$	$\operatorname{Prob}(\rho)$
$(+,+,+)$	1	1	$2 / 8$
$(+,+,-)$	1	1	$2 / 8$
$(+,-,+)$	1	-1	0
$(+,-,-)$	1	-1	0
$(-,+,+)$	1	-1	0
$(-,+,-)$	1	-1	0
$(-,-,+)$	1	1	$2 / 8$
$(-,-,-)$	1	1	$2 / 8$

Thus the algorithm gives a random representation dual to H. The same holds for any subgroup K of \mathbb{Z}_{2}^{n}. With high probability, K^{*} is generated by $2 n$ random elements of it. Finally, K^{*} determines K.

Irreducible representations of the symmetric group S_{3}

- Trivial representation: $\rho_{\text {triv }}(\sigma)=1$ for all permutations σ.
- Sign representation: $\rho_{\text {sign }}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd }\end{cases}$
- Standard representation $\rho_{\text {std }}$: let S_{3} act on \mathbb{C}^{3} by permuting coordinates. Restrict the action to the plane given by $x_{1}+x_{2}+x_{3}=0$. Choose a basis for the plane: say $\left\{e_{1}-e_{2}, e_{2}-e_{3}\right\}$.

Irreducible representations of the symmetric group S_{3}

- Trivial representation: $\rho_{\text {triv }}(\sigma)=1$ for all permutations σ.
- Sign representation: $\rho_{\text {sign }}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd }\end{cases}$
- Standard representation $\rho_{\text {std }}$: let S_{3} act on \mathbb{C}^{3} by permuting coordinates. Restrict the action to the plane given by $x_{1}+x_{2}+x_{3}=0$. Choose a basis for the plane: say $\left\{e_{1}-e_{2}, e_{2}-e_{3}\right\}$.

The respective dimensions are 1, 1, and 2. Since $1^{2}+1^{2}+2^{2}=6=\left|S_{3}\right|$, Matschke's theorem guarantees that they are the only irreducible representations of S_{3} over \mathbb{C}

Sampling subgroups of S_{3}

$\sigma \in S_{3}$	$\rho_{\text {triv }}(\sigma)$	$\rho_{\text {sgn }}(\sigma)$	$\rho_{\text {std }}(\sigma)$	$\chi_{\text {std }}(\sigma)$
e	1	1	$\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$	2
(12)	1	-1	$\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$	0
(23)	1	-1	$\left(\begin{array}{cc}1 & 0 \\ 1 & -1\end{array}\right)$	0
(13)	1	-1	$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$	0
(123)	1	1	$\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right)$	-1
(132)	1	1	$\left(\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right)$	2

Sampling subgroups of S_{3}, continued

For the trivial group $\{e\}$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\rho_{\text {triv }}\right)=1 \cdot \frac{\chi_{\text {triv }}(e)}{6}=1 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {sgn }}\right)=1 \cdot \frac{\chi_{\text {sgn }}^{6}(e)}{6}=1 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {std }}\right)=2 \cdot \frac{\chi_{\text {std }}(e)}{6}=4 / 6
\end{aligned}
$$

Sampling subgroups of S_{3}, continued

For the trivial group $\{e\}$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\rho_{\text {triv }}\right)=1 \cdot \frac{\chi_{\text {triv }}(e)}{6}=1 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {sgn }}\right)=1 \cdot \frac{\chi_{\text {sgn }}^{6}(e)}{6}=1 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {std }}\right)=2 \cdot \frac{\chi_{\text {std }}(e)}{6}=4 / 6
\end{aligned}
$$

For the group $H=\langle(12)\rangle=\{e,(12)\} \simeq \mathbb{Z} / 2$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\rho_{\text {triv }}\right)=1 \cdot \frac{\chi_{\text {triv }}(e)+\chi_{\text {triv }}((12))}{\chi_{\operatorname{tg}}(e)+\chi_{\operatorname{sgn} n}((12))}=(1+1) / 6=2 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {sgn }}\right)=1 \cdot \frac{\chi_{\operatorname{sgn}}}{6}(1-1) / 6=0 \\
& \operatorname{Pr}\left(\rho_{\text {std }}\right)=2 \cdot \frac{\chi_{\text {std }}(e)+\chi_{\rho}((12))}{6}=2 \cdot(2+0) / 6=4 / 6
\end{aligned}
$$

Sampling subgroups of S_{3}, continued

For the trivial group $\{e\}$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\rho_{\text {triv }}\right)=1 \cdot \frac{\chi_{\text {triv }}(e)}{6}=1 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {sgn }}\right)=1 \cdot \frac{\chi_{\text {sge }}(e)}{6}=1 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {std }}\right)=2 \cdot \frac{\chi_{\text {std }}(e)}{6}=4 / 6
\end{aligned}
$$

For the group $H=\langle(12)\rangle=\{e,(12)\} \simeq \mathbb{Z} / 2$:

$$
\begin{aligned}
& \operatorname{Pr}\left(\rho_{\text {triv }}\right)=1 \cdot \frac{\chi_{\text {triv }}(e)+\chi_{\text {triv }}((12))}{6}=(1+1) / 6=2 / 6 \\
& \operatorname{Pr}\left(\rho_{\text {sgn }}\right)=1 \cdot \frac{\chi_{\operatorname{sgn}}(e)+\chi_{\operatorname{sgn}}((12))}{6}=(1-1) / 6=0 \\
& \operatorname{Pr}\left(\rho_{\text {std }}\right)=2 \cdot \frac{\chi_{\text {std }}(e)+\chi_{\rho}((12))}{6}=2 \cdot(2+0) / 6=4 / 6
\end{aligned}
$$

To distinguish $\langle(12)\rangle$ from the trivial group, we need to know with high probability that $\rho_{\text {sgn }}$ does not show up.

Negative results for S_{n}

Theorem (Hallgren-Russell-Ta-Shma, '00) Fourier sampling cannot distinguish the trivial subgroup of S_{n} from certain subgroups of order two in polynomial time with high probability.

Negative results for S_{n}

Theorem (Hallgren-Russell-Ta-Shma, '00) Fourier sampling cannot distinguish the trivial subgroup of S_{n} from certain subgroups of order two in polynomial time with high probability.

In particular, if Γ_{1} and Γ_{2} are two rigid graphs, then the isomorphism problem reduces to this case of the hidden subgroup problem.

Negative results for S_{n}

Theorem (Hallgren-Russell-Ta-Shma, '00) Fourier sampling cannot distinguish the trivial subgroup of S_{n} from certain subgroups of order two in polynomial time with high probability.

In particular, if Γ_{1} and Γ_{2} are two rigid graphs, then the isomorphism problem reduces to this case of the hidden subgroup problem.

Strong Fourier sampling is a variant of the algorithm where we keep track of not just the character of a representation ρ), but the whole matrix.

Negative results for S_{n}

Theorem (Hallgren-Russell-Ta-Shma, '00) Fourier sampling cannot distinguish the trivial subgroup of S_{n} from certain subgroups of order two in polynomial time with high probability.

In particular, if Γ_{1} and Γ_{2} are two rigid graphs, then the isomorphism problem reduces to this case of the hidden subgroup problem.

Strong Fourier sampling is a variant of the algorithm where we keep track of not just the character of a representation ρ), but the whole matrix.

Theorem (Moore-Russell-Schulman, '08 Strong Fourier sampling also cannot distinguish hidden subgroups of S_{n} in polynomial time with high probability.

Question: Can more intricate quantum algorithms efficiently solve the hidden subgroup problem for S_{n} ?

References

- Scott Aaronson: BQP and the polynomial hierarchy, Proceedings of the 42nd ACM symposium on theory of computing (2010) 141-150.
- Jörg Bühler: Quantum approaches to the graph isomorphism problem, Diplomarbeit, Universität Karlsruhe (2006).
- M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Co. (1979). Alisa Bokulich and Gregg Jaeger (eds.): Philosophy of Quantum Information and Entanglement, Cambridge University Press (2010).
- A.Yu. Kitaev, A.H. Shen, and M.N.Vyalyi: Classical and Quantum Computation, Graduate Studies in Mathematics 47 (2002)
- Cristopher Moore, Alexander Russell, and Leonard J. Schulman: The symmetric group defies strong Fourier sampling, SIAM J. Comput. 37(6) (2008), 1842-1864.

