Expanded Vandermonde powers: applications to the two-dimensional one-component plasma

Gabriel Téllez

Departamento de Física Bogotá, Colombia gtellez@uniandes.edu.co

In collaboration with Peter J. Forrester The University of Melbourne, Australia

Escuela de Física Matemática, 28 mayo - 1 junio 2012, Bogotá, Colombia

Contents

1 The two-dimensional one-component plasma

- Definition
- Analogy with the quantum Hall effect
- Exact solution for $\Gamma=2$

2 Beyond $\Gamma = 2$

- Definitions
- Estrategy

3 Applications

- Some applications
- Density profile in the soft edge disk
- Numerical results

Definition Analogy with the quantum Hall effect Exact solution for $\Gamma = 2$

Contents

1 The two-dimensional one-component plasma

- Definition
- Analogy with the quantum Hall effect
- Exact solution for $\Gamma = 2$

2 Beyond Γ = 2

- Definitions
- Estrategy

3 Applications

- Some applications
- Density profile in the soft edge disk
- Numerical results

Definition Analogy with the quantum Hall effect Exact solution for $\Gamma=2$

The two-dimensional one-component plasma

• System of *N* particles with charge *q* in a plane, interacting with the 2D Coulomb potential:

$$v(r) = -\ln\frac{r}{L} \tag{1}$$

- Neutralizing background with charge density $-qn_b$.
- Coulomb coupling $\Gamma = q^2/(k_B T) =$ ratio between the electrostatic energy and the thermal energy.

Gabriel Téllez OCP and Vandermonde powers

Hamiltonian

Definition Analogy with the quantum Hall effect Exact solution for $\Gamma\,=\,2$

$$H = -q^2 \sum_{i < j} \ln |z_i - z_j| + q^2 \sum_i v_b(\mathbf{r}_i) + V_0$$
(2)

- Particle-background potential interaction $v_b(\mathbf{r}) = \pi n_b r^2/2 + \text{cst}$ (plasma in a disk).
- V₀ background-background interaction (constant).

< A >

Definition Analogy with the quantum Hall effect Exact solution for $\Gamma=2$

The Boltzmann factor as a Vandermonde determinant

$$e^{-\beta H} = \prod_{k < j} |z_k - z_j|^{\Gamma} \prod_i e^{-\Gamma v_b(\mathbf{r}_i)} e^{-\beta V_0}$$
(3)

$$= |\det(z_j^{k-1})|^{\Gamma} \prod_i e^{-\Gamma v_b(\mathbf{r}_i)} e^{-\beta V_0}$$
(4)

$$= |\det(\psi_{k-1}(\mathbf{r}_j))|^{\Gamma} e^{-\beta V_0}$$
(5)

with

$$\psi_k(\mathbf{r}) = z^k e^{-v_b(\mathbf{r})} \tag{6}$$

Definition Analogy with the quantum Hall effect Exact solution for $\Gamma\,=\,2$

Analogy with the quantum Hall effect

The functions

$$\psi_l(\mathbf{r}) = z^l e^{-v_b(\mathbf{r})} \tag{7}$$

are orthogonal between them. They also are the wave function of an electron in the plane O_{XY} with a magnetic field in the perpendicular direction z. The angular momentum L_z of this electron is *I*. The Slater determinant

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \det(\psi_{k-1}(\mathbf{r}_j)) \tag{8}$$

is the wave function of N independent electrons in the lowest energy level.

Definition Analogy with the quantum Hall effect Exact solution for $\Gamma\,=\,2$

Partition function $\Gamma = 2$

If
$$\Gamma = 2$$
 then
 $e^{-\beta H} = e^{-\beta V_0} |\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N)|^2$. (9)

To compute the partition function is the same as normalizing the wave function $\boldsymbol{\Psi}$

$$Z = e^{-\beta V_0} N! \prod_{k=0}^{N-1} ||\psi_k||^2$$
(10)

with

$$||\psi_k||^2 = \int |\psi_k(\mathbf{r})|^2 \, d\mathbf{r} \tag{11}$$

< 17 ▶

∃ → < ∃ →</p>

э

Contents

1 The two-dimensional one-component plasma

- Definition
- Analogy with the quantum Hall effect
- Exact solution for $\Gamma=2$

2 Beyond $\Gamma = 2$

- Definitions
- Estrategy

3 Applications

- Some applications
- Density profile in the soft edge disk
- Numerical results

Partitions

Let $\mu = (\mu_1, \ldots, \mu_N)$ be a partition of non negative integers such that $\mu_1 \ge \mu_2 \ge \ldots \ge \mu_N \ge 0$. We define $|\mu| = \sum_j \mu_j$. A partition μ also be represented by the occupation numbers $n(\mu) = (n_0, n_1, \ldots, n_l, \ldots)$, where n_l is the frequency of the integer l in the partition (μ_1, \ldots, μ_N) .

Symmetric polynomials

Let

$$m_{\mu}(z) = \frac{1}{\prod_{i} n_{i}!} \sum_{\sigma \in S_{N}} z_{\sigma(1)}^{\mu_{1}} \dots z_{\sigma(N)}^{\mu_{N}}$$
(12)

They are an orthogonal basis of the space of symmetric polynomials of N variables.

The wave function of an state of N free bosons occupying the Landau levels of angular momentum μ_1, \ldots, μ_N is proportional to $m_\mu(z)$.

Antisymmetric polynomials

Let

$$A_{\mu}(z) = \sum_{\sigma \in S_{N}} \epsilon(\sigma) z_{\sigma(1)}^{\mu_{1}} \dots z_{\sigma(N)}^{\mu_{N}} = \prod_{i < j} (z_{j} - z_{i}) s_{\mu - \delta_{N}}(z)$$
(13)

with $\delta_N = (N - 1, N - 2, ..., 0)$ and s_μ the Schur polynomials. The $\{A_\mu\}$ form an orthogonal basis of the space of antisymmetric polynomials of N variables.

The wave function of an state of N free fermions occupying the Landau levels of angular momentum μ_1, \ldots, μ_N is proportional to $m_\mu(z)$.

A partial order is defined on partitions of the same length: $\mu < \kappa$ if

$$\sum_{j=1}^{p} \mu_i \leq \sum_{j=1}^{p} \kappa_j \qquad (p = 1, \dots, N)$$
(14)

Property: $\mu < \kappa$ if μ can be constructed from κ by a sequence of *squeezing* operations:

• It is an operation between two particles that moves up one particle from the orbital m_1 to m'_1 and moves down the other particle from the orbital m_2 to m'_2 with $m_1 < m_1 \le m'_2 < m_2$, conserving the total angular momentum $m_1 + m_2 = m'_1 + m'_2$.

Example: $m_1 = 2$, $m'_1 = 3$ and $m'_2 = 6$, $m_2 = 7$:

occupation: $[02 \underline{4} 2430 \underline{2} 13] \rightarrow [0233431113]$ partition:(9,9,9,8,7,7,5,5,5,4,4,4,4,3,3,2,2,2,2,1,1) \rightarrow (9,9,9,8,7,6,5,5,5,4,4,4,4,3,3,3,2,2,2,1,1)

Estrategy

Let
$$r = \Gamma/2$$
, $z = (z_1, ..., z_N)$, and
 $\Psi(z) = \prod_{k < j} (z_k - z_j)^r$. (15)

The Boltzmann factor of the 2dOCP is proportional to $|\Psi(z)|^2$. In the analogy with the quantum Hall effect, $\Psi(z_1, \ldots, z_N)$ is the Laughlin trial wave function for filling fraction 1/r.

 The two-dimensional one-component plasma Beyond $\Gamma = 2$ Applications Definitions Estrategy

To compute the partition function it is convenient to expand $\Psi(z)$ in the basis of the $\{m_{\mu}\}$ (if r is even) or $\{A_{\mu}\}$ (if r is odd)

$$\Psi(z) = \prod_{k < j} (z_k - z_j)^r = \sum_{\mu} c_{\mu} m_{\mu}(z)$$
(16)

with $|\mu| = N(N-1)r$. The Boltzmann factor of the 2dOCP is

$$e^{-\beta H} = e^{-\beta V_0} \left| \sum_{\mu} c_{\mu} m_{\mu}(z) \prod_{k=1}^{N} e^{-r v_b(r_k)} \right|^2$$
(17)

and the partition function is

$$Z = e^{-\beta V_0} \sum_{\mu} c_{\mu}^2 \prod_{k=1}^{N} ||\psi_{\mu_k}||^2$$
(18)

A B + A B +

Definitions Estrategy

Jack polynomials

The symmetric Jack polynomial $J^{lpha}_{\mu}(z)$ is an eigenfunction of the operator

$$\mathcal{H} = \sum_{j=1}^{N} \left(z_j \frac{\partial}{\partial z_j} \right)^2 + \frac{2}{\alpha} \sum_{j < k} \frac{z_j + z_k}{z_j - z_k} \left(\frac{\partial}{\partial z_j} - \frac{\partial}{\partial z_k} \right)$$
(19)

with eigenvalue

$$\sum_{j=1}^{N} \mu_j (\mu_j - 1) + (\alpha (N - 1) + 1) |\mu| - 2\alpha \sum_{j=1}^{N} (j - 1) \mu_j$$
 (20)

A 10

∃ → < ∃ →</p>

One can show that

$$\Psi(z) = \prod_{k < j} (z_k - z_j)^r = J_\lambda^\alpha(z)$$
(21)

with $\alpha = -1/(r-1),$ and λ is the partition with occupation numbers

$$\begin{bmatrix} 1 \underbrace{0 \dots 0}_{r-1 \text{ times}} 10^{r-1} 1 \dots \end{bmatrix}$$
(22)

- 4 同 2 4 回 2 4 U

3

with $|\lambda| = rN(N-1)$.

Furthermore

$$J_{\lambda}^{\alpha} = m_{\lambda} + \sum_{\mu < \lambda} c_{\mu} m_{\mu}$$
 (23)

Applying \mathcal{H} to (23), one obtains a recurrence relation between the coefficients c_{μ} that allows its calculation:

$$c_{\rho} = \frac{1}{e_{\lambda}(\alpha) - e_{\rho}(\alpha)} \frac{2}{\alpha} \sum_{\rho < \mu \le \lambda} ((\rho_{i} + r) - (\rho_{j} - r))c_{\mu}(\alpha)$$
(24)

where

$$e_{\lambda}(\alpha) := \sum_{i=1}^{N} \lambda_i (\lambda_i - 1 - \frac{2}{\alpha}(i-1)).$$

The two-dimensional one-component plasma	Some applications
Beyond $\Gamma = 2$	Density profile in the soft edge disk
Applications	

Contents

The two-dimensional one-component plasma

- Definition
- Analogy with the quantum Hall effect
- Exact solution for $\Gamma=2$

2 Beyond Γ = 2

- Definitions
- Estrategy

3 Applications

- Some applications
- Density profile in the soft edge disk
- Numerical results

Some applications Density profile in the soft edge disk Numerical results

Some applications to the 2dOCP

- Pair correlation function at $\Gamma = 4$, Šamaj, Percus, Kolesik, PRE 49:5623 (1994)
- Finite size corrections to the free energy, density and correlation in the disk and in the sphere for $\Gamma = 4$ and $\Gamma = 6$, Téllez, Forrester, J. Stat. Phys 97:489 (1999)
- Sum rules and fluctuation of linear statistics, Téllez, Forrester, arXiv:1204.6003 (2012)

Some applications Density profile in the soft edge disk Numerical results

Density profile in the soft edge disk

Sum rules for the density: second moment

A simple scaling argument shows that

$$\iint_{\mathbb{R}^2} r^2 \rho(r) \, d^2 \vec{r} = \frac{N}{2} + \frac{2}{\Gamma} \left(1 - \frac{\Gamma}{4} \right) \tag{25}$$

The O(1) term gives information about the structure of the density profile at the edge, by writting $\rho(r) = \rho_b \chi_{0 < r < 1} + \kappa(r)$,

$$\iint_{\mathbb{R}^2} r^2 \kappa(r) \, d^2 \vec{r} = \frac{2}{\Gamma} \left(1 - \frac{\Gamma}{4} \right) \tag{26}$$

Sum rules for the density

The above argument can be generalized

$$\iint_{\mathbb{R}^2} r^m \rho(r) \, d^2 \vec{r} = \frac{2N}{m+2} + \frac{m}{\Gamma} \left(1 - \frac{\Gamma}{4} \right) + O(N^{-1/2}) \qquad (27)$$

Again, the O(1) term gives more information about the structure of the density profile at the edge

$$\iint_{\mathbb{R}^2} r^m \kappa(r) \, d^2 \vec{r} = \frac{m}{\Gamma} \left(1 - \frac{\Gamma}{4} \right) \tag{28}$$

This means that, as $N o \infty$, $\kappa(r)$ converges to the distribution

$$\kappa(r) = \frac{1}{2\pi\Gamma} \left(1 - \frac{\Gamma}{4} \right) \frac{1}{r} \,\delta'(r-1) \tag{29}$$

Exact numerical evaluation of the density moments

The 2*n*-moment of the density can be expressed as

$$\mathcal{M}_{N} = \frac{(N\Gamma/2)^{-n}}{Z_{\text{soft}}} \sum_{\mu} \frac{c_{\mu}^{2}}{\prod_{i} m_{i}!} \prod_{\ell=1}^{N} \mu_{\ell}! \sum_{k=1}^{N} \frac{(\mu_{k} + n)!}{\mu_{k}!}, \qquad (30)$$

with

$$Z_{\text{soft}} = \sum_{\mu} \frac{c_{\mu}^2}{\prod_i m_i!} \prod_{\ell=1}^{N} \mu_{\ell}! , \qquad (31)$$

which is the partition function of the 2dOCP in the soft disk, up to a multiplicative constant.

Numerical test of the sum rules

N	\mathcal{M}_N	=	aN +	b +	c/\sqrt{N} +	d/N
			а	b	с	d
2		0.8125				
3	1	.126262				
4	1.4456374	3218807				
5	1.7689110	9591098	0.336437	-0.0742714	0.458953	-0.221263
6	2.0945489	0418255	0.333419	-0.00242266	0.269645	-0.0817588
7	2.4217181	4295119	0.332974	0.0108746	0.230301	-0.0491322
8	2.7499685	6529295	0.33338	-0.003688474	0.277614	-0.0922608
9	3.0790195	5876735	0.333458	-0.00698637	0.289203	-0.103695
10	3.4086811	8671838	0.333396	-0.00397741	0.277889	-0.0917455
11	3.7388202	5776555	0.333353	-0.00169446	0.268779	-0.0815306
12	4.0693408	9384864	0.333341	-0.000983289	0.265786	-0.0779911
13	4.400172	2794716	0.333341	-0.000982974	0.265784	-0.0779894
14	4.7312608	1887937	0.333342	-0.00105077	0.266097	-0.0783948
∞			1/3	0		

Table: Fourth moment (n = 2) of the density when $\Gamma = 4$.

< 日 > < 同 > < 三 > < 三 >

э

The two-dimensional one-component plasma	Some applications
Beyond $\Gamma = 2$	Density profile in the soft edge disk
Applications	Numerical results

N	\mathcal{M}_N	=	aN +	b +	c/\sqrt{N} +	d/N
			а	Ь	с	d
2	0.89	0625				
3	1.0833333333	3333				
4	1.2979204339	9638				
5	1.5231893028	1443	0.249835	0.0492187	0.53598	-0.0745192
6	1.7543207520	8484	0.246695	0.123999	0.338947	0.0706775
7	1.9891625500	5449	0.248062	0.0831756	0.459736	-0.0294887
8	2.2266001472	1048	0.249434	0.0339754	0.619579	-0.175195
9	2.4659515619	7257	0.249738	0.021223	0.664392	-0.219408
10	2.7067630842	5724	0.249748	0.0207354	0.666226	-0.221345
11	2.9487198478	0432	0.249774	0.0193389	0.671799	-0.227593
12	3.1915960149	2947	0.249824	0.0163325	0.684451	-0.242556
13	3.4352246954	9061	0.249871	0.0132299	0.69815	-0.259556
14	3.6794792659	3368	0.249905	0.0108374	0.709186	-0.273865
∞			0.25	0		

Table: Sixth moment (n = 3) of the density when $\Gamma = 4$.

∃ >

э

The two-dimensional one-component plasma	Some applications
Beyond $\Gamma = 2$	Density profile in the soft edge disk
Applications	Numerical results

N	$M_N =$	aN +	b +	c/\sqrt{N} +	d/N
		а	b	с	d
2	1.21875				
3	1.25420875420875				
4	1.36950440777577				
5	1.51576558282311	0.188419	0.468569	-0.269131	1.12729
6	1.67718058035561	0.189303	0.447536	-0.213712	1.08645
7	1.84742557965232	0.194189	0.301703	0.217776	0.728635
8	2.02343313425351	0.197002	0.20078	0.545661	0.42975
9	2.20346793019457	0.197864	0.164668	0.672559	0.30455
10	2.38645657506403	0.198269	0.145249	0.745579	0.227431
11	2.57169539517539	0.198622	0.126216	0.821535	0.142267
12	2.75870117826714	0.198925	0.108069	0.897903	0.0519525
13	2.9471288020509	0.199158	0.0926932	0.965792	-0.0322945
14	3.13672349360904	0.199328	0.0804934	1.02207	-0.10526
∞		0.2	0		

Table: Eighth moment (n = 4) of the density when $\Gamma = 4$.

∃ >

The two-dimensional one-component plasma	Some applications
Beyond $\Gamma = 2$	Density profile in the soft edge disk
Applications	Numerical results

N	$M_N =$	aN +	b +	c/\sqrt{N} +	d/N
		a	Ь	с	d
3	0.829151732377539				
4	1.13999055712937				
5	1.45889183119874				
6	1.78179400313294	0.330681	-0.23698	-0.0197034	0.256393
7	2.10668148567864	0.326556	-0.113869	-0.383961	0.55846
8	2.43308749295152	0.335184	-0.423364	0.621536	-0.358107
9	2.76069703430536	0.335669	-0.443708	0.693027	-0.428642
10	3.08920070504297	0.333408	-0.335393	0.285749	0.00150004
11	3.41837572685644	0.33287	-0.306358	0.169876	0.131419
12	3.74807370935471	0.333069	-0.318295	0.220112	0.0720079
∞		1/3	-1/3		

Table: Fourth moment (n = 2) of the density when $\Gamma = 6$.

The two-dimensional one-component plasma	Some applications
Beyond $\Gamma = 2$	Density profile in the soft edge disk
Applications	Numerical results

N	$M_N =$	aN +	b +	c/\sqrt{N} +	d/N
		а	Ь	с	d
3	0.63878932696137				
4	0.852317437834435				
5	1.07602482170551				
6	1.30481948267947	0.238952	-0.17935	-0.0015329	0.306508
7	1.5366992098612	0.241542	-0.256653	0.227188	0.116838
8	1.77130926929194	0.254997	-0.739333	1.79534	-1.31262
9	2.00817460819162	0.253514	-0.677215	1.57705	-1.09725
10	2.24678505124783	0.249869	-0.502619	0.920542	-0.403889
11	2.48676496530133	0.249348	-0.474543	0.8085	-0.278266
12	2.72785340315076	0.249797	-0.501405	0.921547	-0.411958
∞		0.25	-0.5		

Table: Sixth moment (n = 3) of the density when $\Gamma = 6$.

∃ >

The two-dimensional one-component plasma	Some applications
Beyond $\Gamma = 2$	Density profile in the soft edge disk
Applications	Numerical results

N	\mathcal{M}_N	=	aN +	b +	c/\sqrt{N} +	d/N
			а	Ь	с	d
3	0.57984866	5870171				
4	0.73293725	7370685				
5	0.89777860	1877637				
6	1.0681468	8756782	0.178851	0.00107475	-0.227029	0.519884
7	1.2422055	2729734	0.18911	-0.305123	0.678947	-0.231411
8	1.4196919	3536163	0.204817	-0.8686	2.50959	-1.90014
9	1.6000281	6650081	0.201673	-0.736901	2.04679	-1.44354
10	1.7826107	9422029	0.198035	-0.562593	1.39137	-0.751319
11	1.9670053	8479197	0.198245	-0.573912	1.43654	-0.801964
12	2.1529080	8747152	0.199242	-0.633669	1.68802	-1.09938
∞			0.2	$-2/3 \simeq -0.666667$		

Table: Eighth moment (n = 4) of the density when $\Gamma = 6$.