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Objetivos 

Objetivos Específicos 
 

•Realizar una revisión bibliográfica para describir de manera general en qué consiste la teoría 

de renormalización. 

•Determinar específicamente la teoría de renormalización para la matriz densidad. 

•Apropiarse de esta técnica para describir a través de ella el comportamiento de propiedades 

físicas en tópicos de materia condensada y óptica cuántica. 

•Estudiar el formalismo de Green en correspondencia con el método DMRG para adaptarlo al 

estudio de sistemas de baja dimensionalidad correlacionados. 

•Redactar un documento que muestre la potencialidad de este método de aproximación.  

Objetivo General 
 

Apropiarse de las herramientas básicas que permitan el análisis del Método numérico 

Matriz de Renormalización (DMRG- Density Matrix Renormalization Group) a 

través de documentos específicos y visitas técnicas a grupos que manejen dicha 

herramienta. 



Abstract 

  The Density Matrix Renormalization Group ($DMRG$) has become a 

powerful numerical method that can be applied to low-dimensional 

strongly correlated fermionic and bosonic systems. It allows for a very 

precise calculation of static, dynamical and thermodynamical properties. 

Its field of applicability has now extended beyond Condensed Matter, and 

is successfully used in Statistical Mechanics and High Energy Physics as 

well. In this work, we briefly review the main aspects of the method. We 

also comment on some of the most relevant applications so as to give an 

overview on the scope and possibilities of DMRG and mention the most 

important extensions of the method such as the calculation of dynamical 

properties, the application to classical systems, inclusion of temperature, 

phonons and disorder, field theory, time-dependent properties and the ab 

initio calculation of electronic states in molecules. 







Introduction 



Renormalization Group (RG) 

Mathematical apparatus.  

Particle Physics 

that allows systematic 

investigation of the changes of 

a physical system as viewed at 

different distance scales.  
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The idea of scale transformations and scale invariance is old in physics. 

Scaling arguments were commonplace for the Pythagorean school, Euclid 

and up to Galileo. They became popular again at the end of the 19th 

century, perhaps the first example being the idea of enhanced viscosity of 

Osborne Reynolds, as a way to explain turbulence. 

The  history Renormalization Group 



The renormalization group was initially devised in particle physics, but 

nowadays its applications extend to solid-state physics, fluid mechanics, 

cosmology and even nanotechnology. An early article [1] by Ernst 

Stueckelberg and Andre Petermann in 1953 anticipates the idea in 

quantum field theory. Stueckelberg and Petermann opened the field 

conceptually. They noted that renormalization exhibits a group of 

transformations which transfer quantities from the bare terms to the 

counterterms. They introduced a function h(e) in QED, which is now 

called the beta function (see below). 

 1. Stueckelberg, E.C.G. and Petermann, A. (1953). Helv. Phys. Acta, 26, 499. 



Murray Gell-Mann and Francis E. Low in 1954 restricted the idea to scale 

transformations in QED,[2] which are the most physically significant, and focused 

on asymptotic forms of the photon propagator at high energies. They determined the 

variation of the electromagnetic coupling in QED, by appreciating the simplicity of 

the scaling structure of that theory. 

 2. Gell-Mann, M.; Low, F.E. (1954). "Quantum Electrodynamics at Small Distances". 

Physical Review 95 (5): 1300–1312.  

3. N.N. Bogoliubov, D.V. Shirkov (1959): The Theory of Quantized Fields. New York, 

Interscience. 

The renormalization group prediction (cf Stueckelberg-Petermann and Gell-Mann-

Low works) was confirmed 40 years later at the LEP accelerator experiments: the 

fine structure "constant" of QED was measured to be about 1/127 at energies close to 

200 GeV, as opposed to the standard low-energy physics value of 1/137. (Early 

applications to quantum electrodynamics are discussed in the influential book of 

Nikolay Bogolyubov and Dmitry Shirkov in 1959.[3]) 



A deeper understanding of the physical meaning and generalization of the 

renormalization process, which goes beyond the dilatation group of conventional 

renormalizable theories, came from condensed matter physics. Leo P. Kadanoff's 

paper in 1966 proposed the "block-spin" renormalization group.[4] The blocking idea 

is a way to define the components of the theory at large distances as aggregates of 

components at shorter distances. 

This approach covered the conceptual point and was given full computational 

substance[5] in the extensive important contributions of Kenneth Wilson. The power 

of Wilson's ideas was demonstrated by a constructive iterative renormalization 

solution of a long-standing problem, the Kondo problem, in 1974, as well as the 

preceding seminal developments of his new method in the theory of second-order 

phase transitions and critical phenomena in 1971. He was awarded the Nobel prize 

for these decisive contributions in 1982. 

4. L.P. Kadanoff (1966): "Scaling laws for Ising models near ", Physics (Long Island City, N.Y.) 

2, 263. 

5. K.G. Wilson(1975): The renormalization group: critical phenomena and the Kondo problem, 

Rev. Mod. Phys. 47, 4, 773. 
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The structure of a quantum field 

theory often simplifies when one 

considers processes involving 
large momenta or short distances. 

 The problem is that there are 

usually ultra-violet divergences 

caused by large fluctuations of the 

field(s) on short distance scales.  

it is necessary to expose the 

methods to handle high-

energy/short distance problems. 

These manifest themselves in Feynman 

graphs as divergences 

These simplifications are important 

in improving one's ability to 

calculate predictions from the 

theory 

One –dimensional Ising model 

Consequently our first task will be to 

treat the ultra-violet renormalizations. 

The simplification is that the 

divergences can be cancelled by 

renormalizations of the parameters of 

the action 



• Make 
testable 
predictions 

Strong interaction 
theory 

• Rate of 
convergence 

Weakly coupled 
theory • Factorization 

of a cross-
section. 

Process involves 
widely different 
distance scales. 



 Ultra-violet divergences 

Renormalization is essential, 

for otherwise most field theories 

do not exist 

These manifest themselves in 

Feynman graphs as divergences 

when loop momenta go to infinity 

with the external momenta fixed 

The simplification  is that the 

divergences can be cancelled by 

renormalizations of the 

parameters of the action. 
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Remove the divergences 

 

Feynman 

 

Stṻckelberg 

Quantum electrodynamics 

bare parameters (masses, coupling 

constants) 



Lagrange Functions 

Physical masses and coupling coefficients 

Ultraviolet divergences 

Connection Virtual transitions  

Bare and physical quantities 

Leaving the renormalized theory finite. 



Figure 1. Renormalization in quantum electrodynamics: The 

simple electron-photon interaction that determines the 

electron's charge at one renormalization point is revealed to 

consist of more complicated interactions at another. 



Figure 2. A diagram contributing to electron-

electron scattering in QED. The loop has an 

ultraviolet divergence. 



Figure 3. The vertex corresponding to the Z1 

counterterm cancels the divergence in Figure 2. 



Advantages 
The new coupling constants could 

be smaller.  
Free theory without interactions 

The successively  interacted 

coupling coefficients “parameter 

flow” fixed point 

Elimination of degrees of freedom 

is accompanied by a change of the 

underlying lattice spacing  o length 

scale , one can anticipate that the 

fixed points are under certain 

circumstances related to Critical 

point. 

Flow in the vicinity of these fixed 

point can yield information about 

the universal quantities in the 

neighborhood of the critical 

points..  

By repeated applications of the 

renormalization procedure, one 

could thus finally obtain 
One –dimensional Ising model 

Two –dimensional Ising model 



Finally, the general structure of such transformations will be discussed with 

the derivation of scaling laws. A brief schematic treatment of continuous field-

theoretical formulations will be undertaken following the Ginzburg–Landau 

theory. 



The Method 

              



Density matrix renormalization group (DMRG) is a numerical technique for finding 

accurate approximations of the ground  state and the low-energy excited states of 

strongly interacting quantum systems. Its accuracy is remarkable for one-dimensional  

systems with very little amount of computational effort. It is however limited by the 

dimensionality or range of interactions. 

The method is kind of “iterative method” and is based on the truncation of the Hilbert 

space used to represent the Hamiltonian in a controlled way, keeping the most probable 

eigenstates! 

The physical understanding of quantum many-body systems is hindered  by the fact 

that the number of parameters describing the physical states  grows exponentially 

with the number of particles, or size of the system. 

What is it? 



More formally in a nutshell: DMRG method 

 For large systems  

Accuracy comparable to exact results 

Variational and non-Perturbative 

No problems with frustration or fermions  

 

It can calculate:  
 

 All ground state properties (energies, correlation functions, gaps, moments)  

 Finite temperature properties 

 Classical systems at finite temperature 

 Dynamical quantities (frequency dependent) 

 Time evolution 

Convergence depends on details of the system (dimensionality, boundary conditions, range 

of interactions) and efficient programming is very complicated. 

Limitations:  



Quantum Many-Body Problem 

Examples: 
 

Hubbard Model: an effective model for electrons in narrow band (eg, d or f  

electron metal ions). It is applicable for atoms, clusters, molecules, solids,….. 

Interesting ground state properties: (AFM at half-band filling, n=1),  1D: 

Luttinger liquid; 2D: d-wave superconductivity (n <1?) Dynamical properties 

like conductivity and temperature dependence are also  quite interesting. 

| | |

( )i j j i i i
ij i

H t a a a a U n n 

 
 

    

System of N quantum mechanical subsystems 

One-tight binding band, local Coulomb interactions 4N degrees of freedom – 

states: |0>,         ,          and  



Localized QM spin degrees of freedom: (2S+1)N for N spin-S objects. 

i j

ij

H J S S
 

  

Heisenberg model: 

Strong coupling limit of the Hubbard model at n=1 Antiferromagnetic 

exchange J=4t2/U 

A model to describe quantum magnetism in most of the oxide materials or any 

system with localized spin orbitals. 
 

Bethe-ansatz (closed form exact) solution exist only in 1D. 
 

A good model for describing the parent phase of high-Tc cuprates 
 

Ground state, dynamics and low-temperature properties quite interesting. 



How does one study many-body interactions? 

Analytic: 

Mean-field theories 

Strong and weak coupling expansions (perturbative methods) 

Field theoretical methods 

Mostly uncontrolled 
Numerical: 

 Exact diagonalization 

 Configuration Interactions and Coupled Cluster 

 Quantum Monte Carlo 

 Dynamical mean-field theory (DMFT) 

 DMRG 

Extremely involved, each method has its own difficulties 

Microscopic understanding of systems for applications in magnetic, optical,  

electrical, mechanical, transport…..phenomena 



What is RG Method? 



E E E   

What is RG Method? 

The basic idea behind a renormalization group method is to apply a transformation to the 

Hamiltonian which eliminates unimportant degrees of freedom for the description of the 

system within a given energy range.  

For example, if we are interested in the low-energy states of a system with a 

energy cut-off  E, one integrates out energy modes with energy 

dE is a  small energy interval 

Then we rescale the parameters of the new system so that it reproduces the 

previous one.  

Given a H of a system with N variables, a RG transformation Ra is a mapping in 

the Hamiltonian space which maps H to H’ : H’=Ra(H). H’ now has N’ variables 

where N’=N/a which is less than N.  

RG transformation must be unitary; i.e., it has to preserve  Z=Tr exp(-H/kT)  so 

that ZN’[H’] = ZN [H].                    



However, an exact transformation is not possible. 

 
Wilson and others:  

 

          Work in Fourier space and use a perturbative scheme in order  

           to analytically solve this problem. 

K. G. Wilson and F. Kogut, J. Phys. Rep C 12, 75 (1974). 

K. G. Wilson, Rev. Mod. Phys. 43, 773 (1975). 

H. R. Krishnamurthy, J. W. Wilkins and K. G. Wilson, Phys. Rev. B 

   21, 1044 (1980). 

Extremely successful method for solving 

Kondo problem and Anderson Impurity problem 



Numerical Importance 



Numerical Renormalization Group (K. G. Wilson, 1974). 

Integrate out the degrees of freedom numerically for obtaining low-energy 

properties. 

Idea behind all lattice renormalization group methods is to enlarge the system 

iteratively but keeping only a constant number of basis states. 

Can it be applied for Correlated Lattice problem? 

Let H be a Hamiltonian describing an interacting electronic systems on a lattice 

with L sites. Each site has four states: |0>, |down>, |up> & |2>. 

 
The dimension of the Hilbert space for L=100 with Nup=Ndown=50 is 1058, 

which is not intractable numerically. The idea is to obtain the  Low-energy 

eigen-states of this system keeping only a small number ofstates, say 100.  



 Isolate a finite system (N) 

 Diagonalize numerically 

 Keep m lowest energy eigenstates 

 Add another finite system (N) 

 Solve  (2N) system and iterate the process. 

REAL Space algorithm 

Let Bl be a block describing the first l sites for 

which we only keep m states to describe the H. 

The same goes for Bl’ block also with m’ states. 
 

When we put these two blocks together, the H of 

the new block Bl+l’ has dimensions mm’. 

' '

s s s

l ll l
H H H C A B


   

Solve H l+l’ and keep only lowest m energy eigenstates 



Low-energy states are most important for low-energy behavior of larger system 

By iterating this procedure, one obtains recursion relations  on the set of 

coupling constants which define the Hamiltonian  and the properties in the 

thermodynamic limit. 

The message: 

However, only for Kondo lattice or Anderson impurity models 



Very bad for other quantum lattice models: 
 

Hubbard (Bray, Chui, 1979) 

 Heisenberg (White, 1992, Xiang and Gehring, 1992) 

Anderson localization (Lee, 1979) 

Kondo impurity problem: Hierarchy in the matrix elements; Boundary 

conditions seem not important. 

Just have a look for a tight-binding model: 2tii – ti, i+1 – t i, i-1 































2100

1210

0121

0012

H

If one puts two blocks together: does not represent the full system 

Another way…. 



Two same size boxes (of length L, 1D, 1-electron problem) 

Will putting together the ground states of L-length box  give rise to the ground 

state of box of size 2L?   NO 

Treatment of boundary  

becomes critical: 

Gr states of a chain of 16 atoms (open) and two 8 atoms chains (filled) 



When boundary becomes critical: (White and Noack, 1992) 

Use combinations of boundary conditions (BCs): 

Diagonalize a block, HL with different combinations of BCs. 

Use orthogonalized set of states as new basis. 

     Fluctuations in additional blocks allow general behavior at boundaries. 

Diagonalize superblock composed of n blocks (each block size L). 

Project wavefunctions onto size 2L block, orthogonalize. 

Exact results as  n becomes large 

2L 

HL HL HL HL 

HL 

        Fixed-Fixed           Fixed-Free              Free-Free                 Free-Fixed 



Relative error vs no of states kept 

The total number of states is 228 

This amazing accuracy is  achieved 

by just keeping  only  ~100 states! 
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[2] Density Matrix Renormalization, edited by I. Peschel, X. Wang, M. 
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(Series: Lecture Notes in Physics, Springer, Berlin, 1999) 

[3] S. White, Phys. Rev. B 48, 10345 (1993) 
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Use of density matrix 



Use of density matrix 

Divide the many-body system: how?  

 

      Density matrix projection 

Divide the whole system into a subsystem and an environment 

We know the eigenfunction for the whole system: how to describe the 

subsystem block best? 

Reduced density matrix for the subsystem block: 
 

Trace over states of the environment block, all many-body states. 

Steven White, 1992 



Applications 

              



Applications: 

Total number of papers published with the string “density matrix renormalization” in 

their title or abstract from 1993 to 2005 is more than 5,000 (obtained from ISI 

database) and  2006-2012 aprox. 3000 more. 

Distributed Multimedia Research Group 

Design Methodology Research Group 

Direct Marketing Resource Group 

Data Management Resource Group 

 

 Groupe de Renormalisation de la Matrice Densite (GRMD) !!! 

All are DMRG indeed ! 

Strongly correlated electronic systems 

Nuclear Physics 

Quantum information theory 

Quantum Chemistry 

Classical Statistical Physics 

Soft condensed matter Physics 



Solid State Physics 
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The 
convergence 

Fourier 
Series 

Theory 
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surfaces 

• Fermi Liquids 

 

Renormalization 

Group 



La renormalización, también es una herramienta habitual en el campo de la 

física de la materia condensada, donde se utiliza para describir las 

excitaciones colectivas de sistemas de muchas partículas, y explicar 

fenómenos como la superconductividad, la superfluidez o el efecto Hall 

cuántico 



Modos normales. Los modos normales 

de un sistema físico son sus 

vibraciones colectivas más simples, 

como las de esta membrana elástica. 

Segunda cuantización. Un sistema de 

dos osciladores cuánticos es equivalente 

a un sistema con un número variable de 

partículas de «dos clases».  



Gate defined double quantum dot fabricated from a GaAs/AlGaAs 2-dimensional 

electron gas wafer. The number of electrons in the double quantum dot is determined 

by measuring the quantum point contact charge sensor conductance, gS. Trapped 

electrons are coupled to ~106 lattice nuclei through the contact hyperfine interation. 



Heisenberg Chain  

S=1 

Spin Gap 

Correlation  

Functions 

Anisotropic Chain 

 S=1 

Systems  

S = 1/2 

1D Hubbard  

and  

T-J models 

Spin Wave Theory 
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conjugated one-
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Spin correlation functions Cz between the impurity and conduction band  



Spin correlation functions Cz between the impurity and conduction band  



Image from "Passing quantum correlations to qubits using any two-mode state" 

[Mauro Paternostro, Gerardo Adesso, and Steve Campbell, Phys. Rev. A 80, 

062318 (2009)] 



Image from "Passing quantum correlations to qubits using any two-mode state" 

[Mauro Paternostro, Gerardo Adesso, and Steve Campbell, Phys. Rev. A 80, 

062318 (2009)] 



BEC in a dilute atomic gas, extremely low temperatures are required. Our experimental 

setup employs a combination of laser cooling and evaporative cooling to produce cold and 

dense atomic clouds in a vacuum system. A double magneto-optical trap system captures and 

cools up to 6x 109 87Rb atoms using laser light. 



he animation shows how peaks in the 2d echo-spectra are oscillation and 

changing for various delay times. For a full explanation, see Modelling of 

Oscillations in Two-Dimensional Echo-Spectra of the Fenna-Matthews-Olson 

Complex by B.Hein, C. Kreisbeck, T. Kramer, M. Rodríguez, New J. of Phys., 

14, 023018 (2012), open access. 
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Conclusions 



I have presented here a very brief description of the Density Matrix 

Renormalization Group technique, its applications and extensions. The aim 

of this work is to give the unexperienced reader an idea of the possibilities 

and scope of this powerful, though relatively simple method. The 

experienced reader can find here an extensive (however incomplete) list of 

references covering most applications to date using DMRG in a great 

variety of fields such as Condensed Matter, Statistical Mechanics and High 

.Energy Physics. 



Thank you 



Appendix  The Method 



“When we solve a quantum-mechanical problem, what we really do is  

divide the universe into two parts – the system in which we are  

interested and the rest of the universe.” 

 

                                                - Richard P. Feynman 

          (Statistical Mechanics : A set of lectures; Westview press, 1972) 

 

 

 

When we include the part of the universe outside the system, the 

motivation of using the density matrices become clear. 

                                              

Density Matrix 

So what does this mean ? 



Let             be a complete set of vectors in the vector space describing the  

system, and let             be a complete set for the rest of the universe. 

| i 
| i 

The most general way to write the wavefunction for the total system is 

| | |ij i j

ij

C     

Now let A be an operator that acts only on the system, ie A does not act  

on  i|
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Now we have, 
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Density Matrix 



We define the operator ρ to be such that, 

' ' | |i i i i      Note that ρ is Hermitian.  

Again,  
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= Tr Aρ 

Due to the Hermitian nature of ρ it can be diagonalized with a complete  

orthonormal set of eigenvectors        with real eigenvalues   i| iw

| |i

i

w i i  



If we let A be 1, we obtain 

| 1i
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If we let A be              we have |''| ii 
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Therefore, we have  

0iw  1i

i

w and 

Orthonormal set of eigenvectors and real eigenvalues. 

| |i

i

w i i  So, we have <y|A|y> = Tr Ar and  



Any system is described by a density matrix ρ, where ρ is of the form  

                    and  
i

i iiw ||

i|(a) The set         is a complete orthonormal set of vectors. 

(b)   

(c)   

(d)  Given an operator A, the expectation of A is given by 

0iw 
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i
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ATrA 
Notice that,  

' '

' | | ' ' | | | ' | |i i

i i i i

A Tr i A i w i i i A i w i A i               

Thus,      is the probability that the system is in state      . If all but one  

       are zero, we say that the system is in a pure state; otherwise it is  

in a mixed state . 
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    1 Consider a pure state: 

1 1 1

1 12 2 2
| |

1 1 12 2

2 22

  

   
    
       
    

  
  

Notice that ρ2 = ρ 

and 

Tr ρ = 1 

2 Consider a mixed state: 50%         and 50%  |

   

   

1 1
| | | |

2 2

1 01 1
1 0 0 1

0 12 2

1 01

0 12

    

   
    

   

 
  

 

Notice that ρ2  ρ 
and 

Tr ρ = 1 



3 50% and 50% mixture of   
1
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Notice that ρ2  ρ 
and 

Tr ρ = 1 

Diagonal elements = Populations 

Off-diagonal elements = Coherence 

It is important to note that in 2 and 3, both cases we describe  

a system about which we know nothing, ie, A state of total ignorance. 



Density matrix: 
 

Eigenstates of density matrix form complete basis for subsystem block 

Eigenvalues give the weight of a state 

Keep the m eigenstates corresponding to m highest eigenvalues 

Eigenstate of the whole system thus given by: 

Schmidt decomposition 

The optimal approximation 

Entanglement states (mutual quantum information): 

0| | |w  



    

( ) ( log ) logS Tr w w 


     

DM can be defined for pure, coherent superposition or statistical averaged states 



Density matrix renormalization group: Formulation  

 

 Diagonalization of a small finite lattice 

 Division of system 

 Reduction of the subsystem block via density matrix 

 Renormalize the matrix formulation of all the operators 

 Add one or two sites (few possible degrees of freedom) 

 Construct the bigger lattice 

 Repeat all the steps 
 

Environment block:  
 

a) Exact sites only 

b) Reflection of subsystem block 

c) Stored block from a previous step 
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