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Sturm-Liouville problems on (−∞,∞) 1

I Consider two real analytic functions µ(x), ν(x) : R→ R such
that

lim
|x |→∞

dkµ

dxk
= lim
|x |→∞

dkν

dxk
= 0, ∀k ≥ 1.

I S-L problem: Determine the complex numbers λ ∈ C such
that the differential equation:

d2ψ

dx2
+ µ(x)

dψ

dx
+ ν(x)ψ = λψ (SLP)

has a solution ψλ : R→ C satisfying∫ ∞
−∞
|ψ(x)|2dx <∞, i.e. ψλ ∈ L2(−∞,∞).

2 / 43



Sturm-Liouville problems on (−∞,∞) 2

I Our hypothesis on µ(x) and ν(x) allow us to change the
convergence of the integral by the equivalent boundary
conditions

lim
|x |→∞

ψλ(x) = 0. (BC)

I This set Σ = {λ|∃ψλ ∈ L2(−∞,∞)} ⊂ C is called the
point-spectrum of the problem.

I Functional analysis provides us existence theorems and bounds
for the point-spectrum Σ.

I In general terms, it is not possible to determine exactly Σ by
algebraic means.

I In this work we present a methodology for some algebraically
some Sturm-Lioville problems arising in dynamical systems
and quantum mechanics.
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S-L problems and quantum potentials

I Let us consider a quantum-mechanical potential V (x), for
which the position is described by a real variable x . The
stationary Schrödinger equation reads,

Eψ(x) =

(
− ~2

2m

d2

dx2
+ V (x)

)
ψ(x).

I We write λ = −2mE
~2 and get a S-L problem in the form (SLP)

d2ψ

dx2
+
−2mV (x)

~2
ψ = λψ.

I The point-spectrum gives us the admissible values of energy
for the system.
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S-L problems and structural stability of Homoclinics 1

I Let us consider an analytic Hamiltonian H in R4, depending
on a λ, H = H(x ;λ), (x = (q1, q2, p1, p2)),

q̇i =
∂H

∂pi
ṗi = −∂H

∂qi
.

I Assume that the origin is saddle-saddle point.

I Let us assume that there exist an homoclinic orbit xh(t;λ) do
a for an open set of values of the parameter λ.

x h( t )

0

M

I Generic homoclinic orbits are structurally stable under
Hamiltonian perturbations.
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S-L problems and structural stability of Homoclinics 2
I Generic homoclinic orbits are structurally stable under

Hamiltonian perturbations.
I Its structural stability can be studied by means of its linear

aproximation, the first variatonal equation:

ξ̇ = J ·Hess(H(xh(t), λ))ξ. (VE)

I If the (VE) has two linearly independent bounded solutions
then the homoclinic orbit is not structurally stable and it may
give rise to saddle-node or pitchfork biffurcations under
suitable perturbations [Yagasaki 2010].

I We reduce the (VE) to its normal part, obtaining a second
order equation the reduced normal variational equation,

d2

dt2
η + h(t, λ)η = 0 (RNVE)

I If the (NV) has two linearly independent bounded solutions,
then the (RNVE) as a solution in L2(−∞,∞).
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S-L problems and linear stability of waves

I Let us consider a non-linear evolution equation,

ut = P(uxx , ux , u), P analytic

I Let us consider an stationary (or traveling wave) solution
v(x), equation along v(x , t) is,

ξt =
∂P

∂uxx
(v)ξxx +

∂P

∂ux
(v)ξx +

∂P

∂u
(v)ξ = Lv (ξ)

I The linear stability of v is then related to the eigenvalue
problem,

Lv (ξ) = λξ,

the stationary (wave) solution is linearly stable if all elements
of the point spectrum have negative real part.
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Picard-Vessiot theory in 2 Slides, 1

I Let Γ be a Riemann surface and z a non-constant
meromorphic function.

I Let K be the field of meromorphic functions on Γ.

I Then, (K , d
dz ) is a differential field.

I We deal with the integrability by quadratures of differential
equations,

L(ψ) =
d2

dz2
ψ + f

d

dz
ψ + g = 0, f , g ∈ K . (LE)

I Let Γ× ⊂ Γ be the Riemann surface obtained by removing the
singularities of the operator L, and Γ̃→ Γ× the universal
covering.

I There is a C-vector space E of holomorphic solutions in Γ×.
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Picard-Vessiot theory in 2 Slides, 2

I Let ψ1, ψ2 be a basis of E and P = K 〈ψ1, ψ2〉 the differential
field they span (endowed with the lift of d

dz). The extension
K ⊂ P is called the Picard-Vessiot extension of (LE).

I We consider field automorphisms that commute with the
derivation Aut d

dz
(P/K ) ⊂ GL(E ). They form a linear

algebraic group that we call the Galois group.

I The analytic continuation gives a natural linear action of
π1(Γ×) and then a group morphism π1(Γ×)→ Aut d

dz
(P/K ).

Its image is called the monodromy group.

I Recall that a singularity is called regular if any solution
approaching that singularity is bounded by some meromorphic
function.

I Theorem (Schlessinger): if the singularities of (LE) are regular
then the monodromy group is Zariski closed into the Galois
group.
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Local Fuchs-Frobenius theory 1

I Near a regular singularity z = 0, the (LE) has the form,

d2ψ

dz2
+

p(z)

z

dψ

dz
+

q(z)

z2
ψ = 0 (RS)

with p and q holomorphic at z = 0.

I Let α1, α2 be the roots of the indicial equation

α(α− 1) + p(0)α + q(0).

We name them in such way that <(α1) ≤ <(α2).

I If α2 − α1 6∈ Z then there are two solutions,

ψ1(z) = zα1F1(z), ψ2(z) = zα2F2(z), (NL)

with F1,F2 holomorphic at z .

I In this basis, the monodromy operator clockwise around z = 0

takes the form

(
e2πiα1

e2πiα2

)
.
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Local Fuchs-Frobenius theory 2

I If α2 − α1 ∈ Z then we may have two solutions as in (NL) or
two solutions as follows,

ψ1(z) = zα1F1(z), ψ2(z) = zα2F2(z) + ψ1(z) log(z),

with F1,F2 holomorphic at z .

I In this basis, the monodromy operator clockwise around z = 0

takes the form

(
e2πiα1 2πi

e2πiα2

)
.

I Key lemma: Assume that <(α1) < 0 < <(α2), then:

(i) There is a non-zero solution ψ1 which is bounded along any
ray approaching the z = 0.

(ii) Any other solution, independent with ψ1, is unbounded along
any ray approaching z = 0.

(iii) The solution ψ1 is an eigenvector of the monodromy around
z = 0 of eigenvalue e2πiα1 .
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Heuristics
I We present a heuristic idea for produce some Stiurm-Liouville

problems that can be solved analitically.
I Let Γ real algebraic curve given by an irreducible polynomial,

P(z ,w) = 0.
I We consider in Γ a real meromorphic vector field,

dz

dx
= f (z ,w), f (z ,w) ∈ K

and a real solution, γ : R→ Γ, x 7→ γ(x) connecting two
zeros, namely z±.

I Let Γloc be a neighbourhood of the path γ and Kloc its field of
meromorphic functions.

Re

Im

z+z−

Γloc

γ
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I Let g , h be meromorphic functions in Γ and holomorphic in
Γloc.

I We consider Sturm-Liouville problems with,

µ(x) = g(γ(x)), ν(z) = h(γ(x)). (CV)

I The Sturm-Liouville problem,

d2ψ

dx2
+ µ(x)

dψ

dx
+ ν(x)ψ = λψ (SLP)

is equivalent to the following. Determine for which values of
lambda, the meromorphic differential equation:

d2ψ

dz2
+

g + df
dz

f

dψ

dz
+

h − λ
f 2

= 0 (AE)

has a solution defined along γ tending to 0 at z±.
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I Define Gloc the Galois group of (AE) as a differential equation
with coefficients in Kloc.

I Define G the Galois group of (AE) as a differential equation
with coefficients in K .

I Remark: In general Gloc ⊂ G . If (AE) has exactly three
regular singularities at Γ then Gloc = G .

I Define,
µ± = lim

x→±∞
µ(x), ν± = lim

x→±∞
ν(x),

α±0 = µ−±
√
ν2− − 4(µ− − λ) α±1 = µ+±

√
ν2+ − 4(µ+ − λ)
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Main Result

I Theorem 1 [Yagasaki-B, 2010]: The following statements
hold:

I Assume <(α+
0 ) > 0, <(α+

0 ) > 0, <(α+
1 ) > 0, <(α−

1 ) > 0 then
al solutions of (SLP) satisfy the boundary conditions (BC).

I Assume one of the following conditions,

(i) <(α+
0 ) > 0, <(α−0 ) > 0, <(α+

1 ) · <(α−1 ) < 0.
(ii) <(α+

1 ) > 0, <(α−1 ) > 0, <(α+
0 ) · <(α−0 ) < 0.

then one solution of (SLP) satisfy the boundary conditions.
I Assume <(α+

i ) · <(α+
i ) < 0 for i = 0, 1 or equivalently

|<(
√
µ2
± − 4(ν± − λ)| > |µ∓|,

then if there is a solution of (SLP) satisfying the boundary
conditions (BC) then Gloc is a group of triangular matrices,
and henceforth solvable.
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Spectrum of the asymmetric Hulthen potential 1

I We consider the normalized Schroedinger equation for the
asymmetric Hulthen potential,

d2ψ

dz2
+ ν(x)ψ = λψ, ν(x) =

α2

ex + α1
− α3

(ex + α1)2
(AHP)
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Shape of the function ν(x) in (AHP) for several values of α2 when
α1 = 10/α2 or 1 and α3 = 10. Solid and dashed lines represent the cases
of α1 = 10/α2 and 1, respectively.
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Spectrum of the asymmetric Hulthen potential 2

I We know that possible eigenvalues are real numbers λ
satisfying,

max(ν−, 0) < λ <
α2
2

4α3
.

I We consider the change of variables,

z = γ(x) =
ex

ex + 1

I It takes the Equation (AHP) to its algebraic form,

d2ψ

dz2
+

2z − 1

z(z − 1)
ψ+

(z − 1)α3β
2

α2
1
− λ(z − z0)

z2(z − 1)2(z − z0)2
ψ = 0, (AAHP)

where z0 = α1
α1−1 .
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Spectrum of the asymmetric Hulthen potential 3

I Equation (AAHP) is a Riemann equation and its solutions are
expressed by a Riemann P function

P


0 1 z0
ρ+1 ρ+2 ρ+3 z
ρ−1 ρ−2 ρ−3

 ,

I The local exponents at z = 0, 1 and z0 are

ρ±1 = ±
√
λ− ν−, ρ±2 = ±

√
λ,

ρ±3 =
1

2

(
1± 1

α1

√
α2
1 + 4α3

)
.
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Spectrum of the asymmetric Hulthen potential 4

I Theorem [Kimura 1969]: Let us consider the Riemann
function,

P


z1 z2 z3
ρ+1 ρ+2 ρ+3 z
ρ−1 ρ−2 ρ−3

 ,

and the differential field extension C(z) ⊂ C(z)〈P〉. Its Galois
group is a group of triangular matrices if and only if at least
one of ρ1 + ρ2 + ρ3, −ρ1 + ρ2 + ρ3, ρ1 − ρ2 + ρ3 and
ρ1 + ρ2 − ρ3 is an odd integer, where ρj = ρ+j − ρ

−
j ,

j = 1, 2, 3, denote the exponent differences.

I In our particular cases it yields,

λ =
((2k + 1± ρ3)2 + 4ν−)2

16(2k + 1± ρ3)2
, k ∈ Z
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Spectrum of the asymmetric Hulthen potential 5
I Theorem: If for some integer k ∈ (−1

2(ρ3 + 1), 0)

λ =
((2k + 1 + ρ3)2 + 4ν−)2

16(2k + 1 + ρ3)2
∈
(

max(ν−, 0),
α2
2

4α3

)
,

then λ is an eigenvalue for the (AHP).

 0

 1

 2

 3

 0  2  4  6  8

λ
1

/2

ν−

k=−1

k=−2

k=−3

Eigenvalues for (AHP) with α1 = 1 and α3 = 10. The dotted lines
represent the upper bound

√
λ = 1

2
α2/
√
α3 and the lower bound√

λ =
√
ν−.
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Spectrum of the asymmetric Hulthen potential 6
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Bifurcation of Homoclinic orbits in G-L equations 1

I We consider the coupled real Ginzburg-Landau system of
non-linear PDE (s > 0),

Ut = Uxx − U + (U2 + β1V
2)U1 + β3V ,

Vt = Vxx − sV + (β1U
2 + β2V

2)V + β3U + β4V
2,

(GL)

I Stationary solutions are given by the ODE system

ẍ1 = x1 − (x21 + β1x
2
2 )x1 − β3x2,

ẍ2 = sx2 − (β1x
2
1 + β2x

2
2 )x2 − β3x1 − β4x22 ,

(SGL)

where x1 = U, x2 = V .
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Bifurcation of Homoclinic orbits in G-L equations 2

I It is Hamiltonian system (denote y1 = ẋ1, y2 = ẋ2),

H =
1

2
(−x21 − sx22 + β1x

2
1x

2
2 + y21 + y22 )

+
1

4
(x41 + β2x

4
2 ) + β3x1x2 +

1

3
β4x

3
2 ,

(SGLH)

I For β3 = 0 the origin x = 0 is saddle-saddle with eigenvalues,

λ1 = −
√
s, λ2 = −1, λ3 = 1, λ4 =

√
s.

I There are two orbits homoclinic to the origin:

xh±(t) = (±
√

(2sech(t), 0,±
√

2sech(t)tanh(t), 0).
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Bifurcation of Homoclinic orbits in G-L equations 3

I Reduced normal variational equation:

η̈ = (s − 2β1sech
2(t))η.

I Whic is transformed into a Riemann equation, z = sech2(t),
ν1 = s, ν2 = 2β1,

d2η

dz2
+

3z − 2

2z(z − 1)

dη

dz
+

ν1 − ν2z
4z2(z − 1)

η = 0.

I Applying Kimura’s result we derive integrability conditions:

β1 =
(2
√
s + 2`+ 1)2 − 1

8
` = 0, 1, 2, . . . (IC2)
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Bifurcation of Homoclinic orbits in G-L equations 4
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Integrability condition (IC2) for ` =0-4. Saddle-node bifurcations may happen

along red curves but along blue curves. Pitchfork bifurcations can occur along

all curves.
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Bifurcation of Homoclinic orbits in G-L equations 5
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y β4 = 2; (b) β1 = 7.5355339, β2 = 1 y β4 = 2; (c) β1 = 17.36396103,

β2 = 10 y β4 = 20.
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Bifurcation of Homoclinic orbits in G-L equations 6
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Bifurcation of Homoclinic orbits in G-L equations 7
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Bifurcation of Homoclinic orbits in G-L equations 8
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Stability of wave front solutions of Allen-Cahn equation 1
I Let us consider the Allen-Cahn (or Nagumo) equation,

ut = uxx + u(1− u)(u − α), α ∈ (0, 1).

I There is a traveling front solution u(x , t) = φ(x − ct) with
c =

√
(2)(12 − α) and

φ(x) =
1

e
x√
2
+1

 0

 0.5

 1

-15 -10 -5  0  5  10  15

φ

x
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Stability of wave front solutions of Allen-Cahn equation 2

I The linear stability of the wave front solution is determined by
the S-L problem,

d2ψ

dx2
+ µ(x)

dψ

dx
+ ν(x)ψ = λψ (ACSLP)

with µ(x) =
√

2(12 −α), ν(x) = −3φ(x)2 + 2(α+ 1)φ(x)−α.
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Stability of wave front solutions of Allen-Cahn equation 2

I We consider the change of variables,

dz

dx
=

z(1− z)√
2

, γ(x) =
e

x√
2

e
x√
2 + 1

.

I The algebraic form is a Riemann equation with singularites at
0, 1 and ∞,

d2ψ

dz2
+

2(z + α− 1)

z(z − 1)

dψ

dz
+

2(−3z2 + 2(2− α)z + α− 1− λ)

z2(z − 1)2
ψ = 0.

I The local exponents at 0, 1, ∞ are respectively

ρ±1 =
1

2
(2α− 1±

√
8λ+ (2α− 3)2),

ρ±2 =
1

2
(1− 2α±

√
8λ+ (2α + 1)2), ρ+3 = 3, ρ−3 = −2.
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Stability of wave front solutions of Allen-Cahn equation 4

I Theorem: Assume that for λ ∈ C there is a solution for the
(ACSL) satisfying the boundary conditions (BC). One of the
following holds:

(a) α ∈ (0, 12 ) and Theorem 1, (i) holds.
(b) α ∈ ( 1

2 , 1) and Theorem 1, (ii) holds.
(c) λ satisfies max(α− 1,−α) < λ < 1

3 (α2 − α + 1) and there is
an integer k such that

λ =
(k2 − 4)(k + 1− 2α)(k − 1 + 2α)

8k2
. (IC3)

Furthermore, conditions (a) and (b) are sufficient for the
existence of solution for the boundary problem.
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Stability of wave front solutions of Allen-Cahn equation 5

16 µ (λ −ν )+λ =0
+
2

R I

2
+

λ
I

λ
R 0

16µ (λ −ν )+λ =0
−
2

R I

2
−

Continuous spectra (the shaded region) for (ACSL) when α ∈ (0, 1
2
).
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Stability of wave front solutions of Allen-Cahn equation 6
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Eigenvalues given by (IC3) for k = 1, 2. The dotted line represents the lower

bound λ = max(α− 1,−α).
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Stability of wave front solutions of Allen-Cahn equation 7
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Eigenfunctions for (ACSL): (a) λ = 0; (b) α = 0.35; (c) 0.5; (d) 0.65.

Plates (b)-(c) show the functions for λ = 3
2
α(α− 1).
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