An application of differential Galois theory
to the computation of exact eigenvalues and eigenfunctions of some Sturm-Liouville problems

David Blázquez Sanz
(Joint work with K. Yagasaki)
Universidad de los Andes
May 31, 2012.

Universidad Sergio Arboleda
Instituto de Matemáticas
y sus Aplicaciones
IIITfis?

1. Statement of the problem, motivations

2. Differential Galois approach
3. Main results
4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

Sturm-Liouville problems on $(-\infty, \infty) 1$

- Consider two real analytic functions $\mu(x), \nu(x): \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\lim _{|x| \rightarrow \infty} \frac{\mathrm{d}^{\mathrm{k}} \mu}{\mathrm{dx}^{\mathrm{k}}}=\lim _{|x| \rightarrow \infty} \frac{\mathrm{d}^{\mathrm{k}^{\prime}} \nu}{\mathrm{dx}^{\mathrm{k}}}=0, \quad \forall k \geq 1 .
$$

- S-L problem: Determine the complex numbers $\lambda \in \mathbb{C}$ such that the differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}+\mu(x) \frac{\mathrm{d} \psi}{\mathrm{dx}}+\nu(x) \psi=\lambda \psi \tag{SLP}
\end{equation*}
$$

has a solution $\psi_{\lambda}: \mathbb{R} \rightarrow \mathbb{C}$ satisfying

$$
\int_{-\infty}^{\infty}|\psi(x)|^{2} \mathrm{dx}<\infty, \quad \text { i.e. } \quad \psi_{\lambda} \in \mathcal{L}^{2}(-\infty, \infty)
$$

Sturm-Liouville problems on $(-\infty, \infty) 2$

- Our hypothesis on $\mu(x)$ and $\nu(x)$ allow us to change the convergence of the integral by the equivalent boundary conditions

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \psi_{\lambda}(x)=0 \tag{BC}
\end{equation*}
$$

- This set $\Sigma=\left\{\lambda \mid \exists \psi_{\lambda} \in \mathcal{L}^{2}(-\infty, \infty)\right\} \subset \mathbb{C}$ is called the point-spectrum of the problem.
- Functional analysis provides us existence theorems and bounds for the point-spectrum Σ.
- In general terms, it is not possible to determine exactly Σ by algebraic means.
- In this work we present a methodology for some algebraically some Sturm-Lioville problems arising in dynamical systems and quantum mechanics.

S-L problems and quantum potentials

- Let us consider a quantum-mechanical potential $V(x)$, for which the position is described by a real variable x. The stationary Schrödinger equation reads,

$$
E \psi(x)=\left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}}+V(x)\right) \psi(x)
$$

- We write $\lambda=-\frac{2 m E}{\hbar^{2}}$ and get a S-L problem in the form (SLP)

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}+\frac{-2 m V(x)}{\hbar^{2}} \psi=\lambda \psi
$$

- The point-spectrum gives us the admissible values of energy for the system.

S-L problems and structural stability of Homoclinics 1

- Let us consider an analytic Hamiltonian H in \mathbb{R}^{4}, depending on a $\lambda, H=H(x ; \lambda),\left(x=\left(q_{1}, q_{2}, p_{1}, p_{2}\right)\right)$,

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \quad \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} .
$$

- Assume that the origin is saddle-saddle point.
- Let us assume that there exist an homoclinic orbit $x^{h}(t ; \lambda)$ do a for an open set of values of the parameter λ.

- Generic homoclinic orbits are structurally stable under Hamiltonian perturbations.

S-L problems and structural stability of Homoclinics 2

- Generic homoclinic orbits are structurally stable under Hamiltonian perturbations.
- Its structural stability can be studied by means of its linear aproximation, the first variatonal equation:

$$
\begin{equation*}
\dot{\xi}=\mathrm{J} \cdot \operatorname{Hess}\left(H\left(x^{h}(t), \lambda\right)\right) \xi \tag{VE}
\end{equation*}
$$

- If the (VE) has two linearly independent bounded solutions then the homoclinic orbit is not structurally stable and it may give rise to saddle-node or pitchfork biffurcations under suitable perturbations [Yagasaki 2010].
- We reduce the (VE) to its normal part, obtaining a second order equation the reduced normal variational equation,

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{dt}^{2}} \eta+h(t, \lambda) \eta=0 \tag{RNVE}
\end{equation*}
$$

- If the (NV) has two linearly independent bounded solutions, then the (RNVE) as a solution in $\mathcal{L}^{2}(-\infty, \infty)$.

S-L problems and linear stability of waves

- Let us consider a non-linear evolution equation,

$$
u_{t}=P\left(u_{x x}, u_{x}, u\right), \quad P \text { analytic }
$$

- Let us consider an stationary (or traveling wave) solution $v(x)$, equation along $v(x, t)$ is,

$$
\xi_{t}=\frac{\partial P}{\partial u_{x x}}(v) \xi_{x x}+\frac{\partial P}{\partial u_{x}}(v) \xi_{x}+\frac{\partial P}{\partial u}(v) \xi=L_{v}(\xi)
$$

- The linear stability of v is then related to the eigenvalue problem,

$$
L_{v}(\xi)=\lambda \xi
$$

the stationary (wave) solution is linearly stable if all elements of the point spectrum have negative real part.

1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results
4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

Picard-Vessiot theory in 2 Slides, 1

- Let Γ be a Riemann surface and z a non-constant meromorphic function.
- Let K be the field of meromorphic functions on Γ.
- Then, $\left(K, \frac{d}{d z}\right)$ is a differential field.
- We deal with the integrability by quadratures of differential equations,

$$
\begin{equation*}
L(\psi)=\frac{\mathrm{d}^{2}}{\mathrm{dz}^{2}} \psi+f \frac{\mathrm{~d}}{\mathrm{dz}} \psi+g=0, \quad f, g \in K \tag{LE}
\end{equation*}
$$

- Let $\Gamma^{\times} \subset \Gamma$ be the Riemann surface obtained by removing the singularities of the operator L, and $\tilde{\Gamma} \rightarrow \Gamma^{\times}$the universal covering.
- There is a \mathbb{C}-vector space E of holomorphic solutions in Γ^{\times}.

Picard-Vessiot theory in 2 Slides, 2

- Let ψ_{1}, ψ_{2} be a basis of E and $P=K\left\langle\psi_{1}, \psi_{2}\right\rangle$ the differential field they span (endowed with the lift of $\frac{d}{d z}$). The extension $K \subset P$ is called the Picard-Vessiot extension of (LE).
- We consider field automorphisms that commute with the derivation Aut $_{\frac{d}{\mathrm{dz}}}(P / K) \subset \mathrm{GL}(E)$. They form a linear algebraic group that we call the Galois group.
- The analytic continuation gives a natural linear action of $\pi_{1}\left(\Gamma^{\times}\right)$and then a group morphism $\pi_{1}\left(\Gamma^{\times}\right) \rightarrow$ Aut $_{\frac{d}{d z}}(P / K)$. Its image is called the monodromy group.
- Recall that a singularity is called regular if any solution approaching that singularity is bounded by some meromorphic function.
- Theorem (Schlessinger): if the singularities of (LE) are regular then the monodromy group is Zariski closed into the Galois group.

Local Fuchs-Frobenius theory 1

- Near a regular singularity $z=0$, the (LE) has the form,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{dz}^{2}}+\frac{p(z)}{z} \frac{\mathrm{~d} \psi}{\mathrm{dz}}+\frac{q(z)}{z^{2}} \psi=0 \tag{RS}
\end{equation*}
$$

with p and q holomorphic at $z=0$.

- Let α_{1}, α_{2} be the roots of the indicial equation

$$
\alpha(\alpha-1)+p(0) \alpha+q(0) .
$$

We name them in such way that $\Re\left(\alpha_{1}\right) \leq \Re\left(\alpha_{2}\right)$.

- If $\alpha_{2}-\alpha_{1} \notin \mathbb{Z}$ then there are two solutions,

$$
\begin{equation*}
\psi_{1}(z)=z^{\alpha_{1}} F_{1}(z), \quad \psi_{2}(z)=z^{\alpha_{2}} F_{2}(z) \tag{NL}
\end{equation*}
$$

with F_{1}, F_{2} holomorphic at z.

- In this basis, the monodromy operator clockwise around $z=0$
takes the form $\left(\begin{array}{ll}e^{2 \pi i \alpha_{1}} & \\ & e^{2 \pi i \alpha_{2}}\end{array}\right)$.

Local Fuchs-Frobenius theory 2

- If $\alpha_{2}-\alpha_{1} \in \mathbb{Z}$ then we may have two solutions as in (NL) or two solutions as follows,

$$
\psi_{1}(z)=z^{\alpha_{1}} F_{1}(z), \quad \psi_{2}(z)=z^{\alpha_{2}} F_{2}(z)+\psi_{1}(z) \log (z)
$$

with F_{1}, F_{2} holomorphic at z.

- In this basis, the monodromy operator clockwise around $z=0$ takes the form $\left(\begin{array}{cc}e^{2 \pi i \alpha_{1}} & 2 \pi i \\ & e^{2 \pi i \alpha_{2}}\end{array}\right)$.
- Key lemma: Assume that $\Re\left(\alpha_{1}\right)<0<\Re\left(\alpha_{2}\right)$, then:
(i) There is a non-zero solution ψ_{1} which is bounded along any ray approaching the $z=0$.
(ii) Any other solution, independent with ψ_{1}, is unbounded along any ray approaching $z=0$.
(iii) The solution ψ_{1} is an eigenvector of the monodromy around $z=0$ of eigenvalue $e^{2 \pi i \alpha_{1}}$.

1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results
4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

Heuristics

- We present a heuristic idea for produce some Stiurm-Liouville problems that can be solved analitically.
- Let Γ real algebraic curve given by an irreducible polynomial, $P(z, w)=0$.
- We consider in Γ a real meromorphic vector field,

$$
\frac{\mathrm{dz}}{\mathrm{dx}}=f(z, w), \quad f(z, w) \in K
$$

and a real solution, $\gamma: \mathbb{R} \rightarrow \Gamma, x \mapsto \gamma(x)$ connecting two zeros, namely $z_{ \pm}$.

- Let $\Gamma_{\text {loc }}$ be a neighbourhood of the path γ and $K_{\text {loc }}$ its field of meromorphic functions.

- Let g, h be meromorphic functions in Γ and holomorphic in $\Gamma_{\text {loc }}$.
- We consider Sturm-Liouville problems with,

$$
\begin{equation*}
\mu(x)=g(\gamma(x)), \quad \nu(z)=h(\gamma(x)) . \tag{CV}
\end{equation*}
$$

- The Sturm-Liouville problem,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}+\mu(x) \frac{\mathrm{d} \psi}{\mathrm{dx}}+\nu(x) \psi=\lambda \psi \tag{SLP}
\end{equation*}
$$

is equivalent to the following. Determine for which values of lambda, the meromorphic differential equation:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{dz}^{2}}+\frac{g+\frac{d f}{d z}}{f} \frac{\mathrm{~d} \psi}{\mathrm{dz}}+\frac{h-\lambda}{f^{2}}=0 \tag{AE}
\end{equation*}
$$

has a solution defined along γ tending to 0 at $z_{ \pm}$.

- Define $G_{l o c}$ the Galois group of (AE) as a differential equation with coefficients in $K_{\text {loc }}$.
- Define G the Galois group of (AE) as a differential equation with coefficients in K.
- Remark: In general $G_{\text {loc }} \subset G$. If (AE) has exactly three regular singularities at Γ then $G_{\text {loc }}=G$.
- Define,

$$
\begin{aligned}
\mu_{ \pm}=\lim _{x \rightarrow \pm \infty} \mu(x), & \nu_{ \pm}=\lim _{x \rightarrow \pm \infty} \nu(x), \\
\alpha_{0}^{ \pm}=\mu_{-} \pm \sqrt{\nu_{-}^{2}-4\left(\mu_{-}-\lambda\right)} & \alpha_{1}^{ \pm}=\mu_{+} \pm \sqrt{\nu_{+}^{2}-4\left(\mu_{+}-\lambda\right)}
\end{aligned}
$$

Main Result

- Theorem 1 [Yagasaki-B, 2010]: The following statements hold:
- Assume $\Re\left(\alpha_{0}^{+}\right)>0, \Re\left(\alpha_{0}^{+}\right)>0, \Re\left(\alpha_{1}^{+}\right)>0, \Re\left(\alpha_{1}^{-}\right)>0$ then al solutions of (SLP) satisfy the boundary conditions (BC).
- Assume one of the following conditions,
(i) $\Re\left(\alpha_{0}^{+}\right)>0, \Re\left(\alpha_{0}^{-}\right)>0, \Re\left(\alpha_{1}^{+}\right) \cdot \Re\left(\alpha_{1}^{-}\right)<0$.
(ii) $\Re\left(\alpha_{1}^{+}\right)>0, \Re\left(\alpha_{1}^{-}\right)>0, \Re\left(\alpha_{0}^{+}\right) \cdot \Re\left(\alpha_{0}^{-}\right)<0$.
then one solution of (SLP) satisfy the boundary conditions.
- Assume $\Re\left(\alpha_{i}^{+}\right) \cdot \Re\left(\alpha_{i}^{+}\right)<0$ for $i=0,1$ or equivalently

$$
\mid \Re\left(\sqrt { \mu _ { \pm } ^ { 2 } - 4 (\nu _ { \pm } - \lambda) } \left|>\left|\mu_{\mp}\right|\right.\right.
$$

then if there is a solution of (SLP) satisfying the boundary conditions $(B C)$ then $G_{l o c}$ is a group of triangular matrices, and henceforth solvable.

1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results

4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results
4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

Spectrum of the asymmetric Hulthen potential 1

- We consider the normalized Schroedinger equation for the asymmetric Hulthen potential,

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{dz}^{2}}+\nu(x) \psi=\lambda \psi, \quad \nu(x)=\frac{\alpha_{2}}{e^{x}+\alpha_{1}}-\frac{\alpha_{3}}{\left(e^{x}+\alpha_{1}\right)^{2}}(\mathrm{AHP})
$$

Shape of the function $\nu(x)$ in (AHP) for several values of α_{2} when $\alpha_{1}=10 / \alpha_{2}$ or 1 and $\alpha_{3}=10$. Solid and dashed lines represent the cases of $\alpha_{1}=10 / \alpha_{2}$ and 1 , respectively.

Spectrum of the asymmetric Hulthen potential 2

- We know that possible eigenvalues are real numbers λ satisfying,

$$
\max \left(\nu_{-}, 0\right)<\lambda<\frac{\alpha_{2}^{2}}{4 \alpha_{3}} .
$$

- We consider the change of variables,

$$
z=\gamma(x)=\frac{e^{x}}{e^{x}+1}
$$

- It takes the Equation (AHP) to its algebraic form,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{dz}^{2}}+\frac{2 z-1}{z(z-1)} \psi+\frac{(z-1) \frac{\alpha_{3} \beta^{2}}{\alpha_{1}^{2}}-\lambda\left(z-z_{0}\right)}{z^{2}(z-1)^{2}\left(z-z_{0}\right)^{2}} \psi=0 \tag{AAHP}
\end{equation*}
$$

where $z_{0}=\frac{\alpha_{1}}{\alpha_{1}-1}$.

Spectrum of the asymmetric Hulthen potential 3

- Equation (AAHP) is a Riemann equation and its solutions are expressed by a Riemann P function

$$
P\left\{\begin{array}{cccc}
0 & 1 & z_{0} & \\
\rho_{1}^{+} & \rho_{2}^{+} & \rho_{3}^{+} & z \\
\rho_{1}^{-} & \rho_{2}^{-} & \rho_{3}^{-} &
\end{array}\right\}
$$

- The local exponents at $z=0,1$ and z_{0} are

$$
\begin{aligned}
& \rho_{1}^{ \pm}= \pm \sqrt{\lambda-\nu_{-}}, \quad \rho_{2}^{ \pm}= \pm \sqrt{\lambda}, \\
& \rho_{3}^{ \pm}=\frac{1}{2}\left(1 \pm \frac{1}{\alpha_{1}} \sqrt{\alpha_{1}^{2}+4 \alpha_{3}}\right) .
\end{aligned}
$$

Spectrum of the asymmetric Hulthen potential 4

- Theorem [Kimura 1969]: Let us consider the Riemann function,

$$
P\left\{\begin{array}{cccc}
z_{1} & z_{2} & z_{3} & \\
\rho_{1}^{+} & \rho_{2}^{+} & \rho_{3}^{+} & z \\
\rho_{1}^{-} & \rho_{2}^{-} & \rho_{3}^{-} &
\end{array}\right\}
$$

and the differential field extension $\mathbb{C}(z) \subset \mathbb{C}(z)\langle P\rangle$. Its Galois group is a group of triangular matrices if and only if at least one of $\rho_{1}+\rho_{2}+\rho_{3},-\rho_{1}+\rho_{2}+\rho_{3}, \rho_{1}-\rho_{2}+\rho_{3}$ and $\rho_{1}+\rho_{2}-\rho_{3}$ is an odd integer, where $\rho_{j}=\rho_{j}^{+}-\rho_{j}^{-}$, $j=1,2,3$, denote the exponent differences.

- In our particular cases it yields,

$$
\lambda=\frac{\left(\left(2 k+1 \pm \rho_{3}\right)^{2}+4 \nu_{-}\right)^{2}}{16\left(2 k+1 \pm \rho_{3}\right)^{2}}, \quad k \in \mathbb{Z}
$$

Spectrum of the asymmetric Hulthen potential 5

- Theorem: If for some integer $k \in\left(-\frac{1}{2}\left(\rho_{3}+1\right), 0\right)$

$$
\lambda=\frac{\left(\left(2 k+1+\rho_{3}\right)^{2}+4 \nu_{-}\right)^{2}}{16\left(2 k+1+\rho_{3}\right)^{2}} \in\left(\max \left(\nu_{-}, 0\right), \frac{\alpha_{2}^{2}}{4 \alpha_{3}}\right),
$$

then λ is an eigenvalue for the (AHP).

Eigenvalues for (AHP) with $\alpha_{1}=1$ and $\alpha_{3}=10$. The dotted lines represent the upper bound $\sqrt{\lambda}=\frac{1}{2} \alpha_{2} / \sqrt{\alpha_{3}}$ and the lower bound $\sqrt{\lambda}=\sqrt{\nu_{-}}$.

Spectrum of the asymmetric Hulthen potential 6

Eigenfunctions for (AHP) with $\alpha_{1}=1$ and $\alpha_{3}=10$: (a) $\left(\nu_{-}, \sqrt{\lambda}\right)=(0,1.35078)$; (b) ($0,0.850781$); (c) $(0,0.350781)$; (d)
(3.5, 1.99855); (e) (1.5, 1.29155); (f) (0.25, 0.528955).

1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results
4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

Bifurcation of Homoclinic orbits in G-L equations 1

- We consider the coupled real Ginzburg-Landau system of non-linear PDE $(s>0)$,

$$
\begin{align*}
& U_{t}=U_{x x}-U+\left(U^{2}+\beta_{1} V^{2}\right) U_{1}+\beta_{3} V \\
& V_{t}=V_{x x}-s V+\left(\beta_{1} U^{2}+\beta_{2} V^{2}\right) V+\beta_{3} U+\beta_{4} V^{2} \tag{GL}
\end{align*}
$$

- Stationary solutions are given by the ODE system

$$
\begin{align*}
& \ddot{x}_{1}=x_{1}-\left(x_{1}^{2}+\beta_{1} x_{2}^{2}\right) x_{1}-\beta_{3} x_{2}, \\
& \ddot{x}_{2}=s x_{2}-\left(\beta_{1} x_{1}^{2}+\beta_{2} x_{2}^{2}\right) x_{2}-\beta_{3} x_{1}-\beta_{4} x_{2}^{2}, \tag{SGL}
\end{align*}
$$

where $x_{1}=U, x_{2}=V$.

Bifurcation of Homoclinic orbits in G-L equations 2

- It is Hamiltonian system (denote $y_{1}=\dot{x}_{1}, y_{2}=\dot{x}_{2}$),

$$
\begin{align*}
& H=\frac{1}{2}\left(-x_{1}^{2}-s x_{2}^{2}+\beta_{1} x_{1}^{2} x_{2}^{2}+y_{1}^{2}+y_{2}^{2}\right) \\
& +\frac{1}{4}\left(x_{1}^{4}+\beta_{2} x_{2}^{4}\right)+\beta_{3} x_{1} x_{2}+\frac{1}{3} \beta_{4} x_{2}^{3} \tag{SGLH}
\end{align*}
$$

- For $\beta_{3}=0$ the origin $x=0$ is saddle-saddle with eigenvalues,

$$
\lambda_{1}=-\sqrt{s}, \quad \lambda_{2}=-1, \quad \lambda_{3}=1, \quad \lambda_{4}=\sqrt{s}
$$

- There are two orbits homoclinic to the origin:

$$
x_{ \pm}^{h}(t)=(\pm \sqrt{(} 2 \operatorname{sech}(t), 0, \pm \sqrt{2} \operatorname{sech}(t) \tanh (t), 0)
$$

Bifurcation of Homoclinic orbits in G-L equations 3

- Reduced normal variational equation:

$$
\ddot{\eta}=\left(s-2 \beta_{1} \operatorname{sech}^{2}(t)\right) \eta .
$$

- Whic is transformed into a Riemann equation, $z=\operatorname{sech}^{2}(t)$, $\nu_{1}=s, \nu_{2}=2 \beta_{1}$,

$$
\frac{d^{2} \eta}{d z^{2}}+\frac{3 z-2}{2 z(z-1)} \frac{d \eta}{d z}+\frac{\nu_{1}-\nu_{2} z}{4 z^{2}(z-1)} \eta=0
$$

- Applying Kimura's result we derive integrability conditions:

$$
\begin{equation*}
\beta_{1}=\frac{(2 \sqrt{s}+2 \ell+1)^{2}-1}{8} \quad \ell=0,1,2, \ldots \tag{IC2}
\end{equation*}
$$

Bifurcation of Homoclinic orbits in G-L equations 4

Integrability condition (IC2) for $\ell=0-4$. Saddle-node bifurcations may happen along red curves but along blue curves. Pitchfork bifurcations can occur along all curves.

Bifurcation of Homoclinic orbits in G-L equations 5

Bifurcation diagram with parameter β_{3} and $s=2$: (a) $\beta_{1}=1.7071068, \beta_{2}=1$
y $\beta_{4}=2$; (b) $\beta_{1}=7.5355339, \beta_{2}=1$ y $\beta_{4}=2$; (c) $\beta_{1}=17.36396103$,
$\beta_{2}=10$ y $\beta_{4}=20$.

Bifurcation of Homoclinic orbits in G-L equations 6

Profiles of homoclinic orbits on the branches of the previous diagrams. (a1,2) $\beta_{3}=1 ;(b 1,2) \beta_{3}=0.5 ; y(c 1,2), \beta_{3}=0.3$.

Bifurcation of Homoclinic orbits in G-L equations 7

Bifurcation diagram with parameter $\beta_{1}, s=2, \beta_{2}=1$ y $\beta_{3}=\beta_{4}=0$.

Bifurcation of Homoclinic orbits in G-L equations 8

Homoclinic orbits on the branches of $\ell=0-4$ on the previous diagram with $\beta_{1}=15$: (a) $\ell=0$; (b) $\ell=1$; (c) $\ell=2$; (d) $\ell=3 \mathrm{y}$ (e) $\ell=4$ (lower branch).

1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results
4. Applications

- Spectrum of the asymmetric Hulthen potential
- Bifurcation of homoclinic solutions of real coupled Ginzburg-Landau equations
- Linear stability of front waves in Alen-Cahn (Nagumo) equation

Stability of wave front solutions of Allen-Cahn equation 1

- Let us consider the Allen-Cahn (or Nagumo) equation,

$$
u_{t}=u_{x x}+u(1-u)(u-\alpha), \quad \alpha \in(0,1) .
$$

- There is a traveling front solution $u(x, t)=\phi(x-c t)$ with $c=\sqrt{(2)}\left(\frac{1}{2}-\alpha\right)$ and

$$
\phi(x)=\frac{1}{e^{\frac{x}{\sqrt{2}}+1}}
$$

Stability of wave front solutions of Allen-Cahn equation 2

- The linear stability of the wave front solution is determined by the S-L problem,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}+\mu(x) \frac{\mathrm{d} \psi}{\mathrm{dx}}+\nu(x) \psi=\lambda \psi \tag{ACSLP}
\end{equation*}
$$

with $\mu(x)=\sqrt{2}\left(\frac{1}{2}-\alpha\right), \nu(x)=-3 \phi(x)^{2}+2(\alpha+1) \phi(x)-\alpha$.

Plots of $\nu(x)$ for $\alpha=0.1,0.3,0.5$.

Stability of wave front solutions of Allen-Cahn equation 2

- We consider the change of variables,

$$
\frac{\mathrm{dz}}{\mathrm{dx}}=\frac{z(1-z)}{\sqrt{2}}, \quad \gamma(x)=\frac{e^{\frac{x}{\sqrt{2}}}}{e^{\frac{x}{\sqrt{2}}}+1}
$$

- The algebraic form is a Riemann equation with singularites at 0,1 and ∞,

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{dz}^{2}}+\frac{2(z+\alpha-1)}{z(z-1)} \frac{\mathrm{d} \psi}{\mathrm{dz}}+\frac{2\left(-3 z^{2}+2(2-\alpha) z+\alpha-1-\lambda\right)}{z^{2}(z-1)^{2}} \psi=0 .
$$

- The local exponents at $0,1, \infty$ are respectively

$$
\begin{aligned}
& \rho_{1}^{ \pm}=\frac{1}{2}\left(2 \alpha-1 \pm \sqrt{8 \lambda+(2 \alpha-3)^{2}}\right), \\
& \rho_{2}^{ \pm}=\frac{1}{2}\left(1-2 \alpha \pm \sqrt{8 \lambda+(2 \alpha+1)^{2}}\right), \quad \rho_{3}^{+}=3, \quad \rho_{3}^{-}=-2 .
\end{aligned}
$$

Stability of wave front solutions of Allen-Cahn equation 4

- Theorem: Assume that for $\lambda \in \mathbb{C}$ there is a solution for the (ACSL) satisfying the boundary conditions (BC). One of the following holds:
(a) $\alpha \in\left(0, \frac{1}{2}\right)$ and Theorem 1, (i) holds.
(b) $\alpha \in\left(\frac{1}{2}, 1\right)$ and Theorem 1, (ii) holds.
(c) λ satisfies $\max (\alpha-1,-\alpha)<\lambda<\frac{1}{3}\left(\alpha^{2}-\alpha+1\right)$ and there is an integer k such that

$$
\begin{equation*}
\lambda=\frac{\left(k^{2}-4\right)(k+1-2 \alpha)(k-1+2 \alpha)}{8 k^{2}} . \tag{IC3}
\end{equation*}
$$

Furthermore, conditions (a) and (b) are sufficient for the existence of solution for the boundary problem.

Stability of wave front solutions of Allen-Cahn equation 5

Continuous spectra (the shaded region) for (ACSL) when $\alpha \in\left(0, \frac{1}{2}\right)$.

Stability of wave front solutions of Allen-Cahn equation 6

Eigenvalues given by (IC3) for $k=1,2$. The dotted line represents the lower bound $\lambda=\max (\alpha-1,-\alpha)$.

Stability of wave front solutions of Allen-Cahn equation 7

Eigenfunctions for (ACSL): (a) $\lambda=0$; (b) $\alpha=0.35$; (c) 0.5 ; (d) 0.65 . Plates (b)-(c) show the functions for $\lambda=\frac{3}{2} \alpha(\alpha-1)$.

References and related research

- P. Acosta-Humánez, J. J. Morales-Ruiz, J.-A. Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Physics, 67 (2011) 3, pp. 305-374.
- D. Blázquez-Sanz, K. Yagasaki, Analytic and algebraic conditions for bifurcations of homoclinic orbits I: Saddle equilibria, arXiv:1009.0977
- D. Blázquez-Sanz, K. Yagasaki, Galoisian approach for a Sturm-Liouville problem on the infinite interval, arXiv:1009.0979
- F. Fauvet, J.-P. Ramis, F. Richard-Jung, J. Thomann, Stokes phenomenon for the prolate spheroidal wave equation, Appl. Numer. Math. (2010), doi:10.1016/j.apnum.2010.05.010.

Numerical computations and figures by K. Yagasaki using AUTO97.

