An application of differential Galois theory

to the computation of exact eigenvalues and
eigenfunctions of some Sturm-Liouville problems

David Blazquez Sanz
(Joint work with K. Yagasaki)

Universidad de los Andes
May 31, 2012.

. . . Instituto de Matematicas
Universidad Sergio Arboleda

y sus Aplicaciones

82 TGy



1. Statement of the problem, motivations
2. Differential Galois approach
3. Main results

4. Applications

» Spectrum of the asymmetric Hulthen potential

» Bifurcation of homoclinic solutions of real coupled
Ginzburg-Landau equations

» Linear stability of front waves in Alen-Cahn (Nagumo)
equation

43



Sturm-Liouville problems on (—o0, 00) 1

» Consider two real analytic functions p(x),v(x): R — R such

that . .
im S m Y o ks 1

|x|—00 dx x| =00 dxk

=

» S-L problem: Determine the complex numbers A € C such
that the differential equation:

a2y

() + v = M (SLP)

has a solution 1) : R — C satisfying

/Oo ‘w(X)lde < oo, ie. 1/})\ € ﬁz(—O0,00).

—00
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Sturm-Liouville problems on (—o0, 00) 2

Our hypothesis on p(x) and v(x) allow us to change the
convergence of the integral by the equivalent boundary
conditions

lim 1hx(x) = 0. (BC)

|x]—o0
This set ¥ = {\|F) € L2(—00,00)} C C is called the
point-spectrum of the problem.

Functional analysis provides us existence theorems and bounds
for the point-spectrum X.

In general terms, it is not possible to determine exactly ¥ by
algebraic means.

In this work we present a methodology for some algebraically
some Sturm-Lioville problems arising in dynamical systems
and quantum mechanics.
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S-L problems and quantum potentials

» Let us consider a quantum-mechanical potential V/(x), for
which the position is described by a real variable x. The
stationary Schrodinger equation reads,

2 2
£V = (= gz + V00 90

> We write A = —2’;—2E and get a S-L problem in the form (SLP)
d%p  —2mV(x)
o h?2

» The point-spectrum gives us the admissible values of energy
for the system.

b= .
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S-L problems and structural stability of Homoclinics 1

>

Let us consider an analytic Hamiltonian H in R*, depending
ona A H= H(x; A), (x = (41,2, 1, p2)).

_oH oM
G =gn PI= "5

Assume that the origin is saddle-saddle point.

Let us assume that there exist an homoclinic orbit x"(¢; \) do
a for an open set of values of the parameter \.

Generic homoclinic orbits are structurally stable under
Hamiltonian perturbations.
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S-L problems and structural stability of Homoclinics 2

>

Generic homoclinic orbits are structurally stable under
Hamiltonian perturbations.

Its structural stability can be studied by means of its linear
aproximation, the first variatonal equation:

€ =J - Hess(H(x"(t), \))¢. (VE)

If the (VE) has two linearly independent bounded solutions
then the homoclinic orbit is not structurally stable and it may
give rise to saddle-node or pitchfork biffurcations under
suitable perturbations [Yagasaki 2010].

We reduce the (VE) to its normal part, obtaining a second
order equation the reduced normal variational equation,

d2
qE! + h(E A =0 (RNVE)

If the (NV) has two linearly independent bounded solutions,
then the (RNVE) as a solution in £2(—o00, 00).

6

43



S-L problems and linear stability of waves

> Let us consider a non-linear evolution equation,
ur = P(uxx, ux, u), P analytic

» Let us consider an stationary (or traveling wave) solution
v(x), equation along v(x, t) is,

3" (V)& =Lu(S)

oP oP oP

= aUXX(V)fxx + aT(V)gx + En

» The linear stability of v is then related to the eigenvalue
problem,

Lv(é-) = A¢,

the stationary (wave) solution is linearly stable if all elements
of the point spectrum have negative real part.
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Picard-Vessiot theory in 2 Slides, 1

Let I be a Riemann surface and z a non-constant
meromorphic function.

Let K be the field of meromorphic functions on I'.
Then, (K, £) is a differential field.
We deal with the integrability by quadratures of differential

equations,

d? d
L(zﬁ):@lﬁ‘i‘f&w‘i‘g:@ f.g€ K. (LE)

Let ' C T be the Riemann surface obtained by removing the
singularities of the operator L, and ' — ' the universal
covering.

There is a C-vector space E of holomorphic solutions in I'*.

43



Picard-

>

Vessiot theory in 2 Slides, 2

Let 11, 17 be a basis of E and P = K (11, ») the differential
field they span (endowed with the lift of %). The extension
K C P is called the Picard-Vessiot extension of (LE).

We consider field automorphisms that commute with the
derivation Aut El (P/K) C GL(E). They form a linear
algebraic group that we call the Galois group.

The analytic continuation gives a natural linear action of
7m1(F*) and then a group morphism 71 (') — Aut%(P/K).
Its image is called the monodromy group.

Recall that a singularity is called regular if any solution
approaching that singularity is bounded by some meromorphic
function.

Theorem (Schlessinger): if the singularities of (LE) are regular
then the monodromy group is Zariski closed into the Galois

group.
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Local Fuchs-Frobenius theory 1

» Near a regular singularity z = 0, the (LE) has the form,

P p(@)dv | a2
dz2 z dz z2

with p and g holomorphic at z = 0.

b =0 (RS)

> Let oy, ap be the roots of the indicial equation
a(a —1) + p(0)a + q(0).

We name them in such way that R(a1) < R(az).
> If ap — a1 € 7Z then there are two solutions,

Y1(z) = 2" Fi(z),  a(z) = 2*2F2(2), (NL)
with F1, F> holomorphic at z.

> In this basis, the monodromy operator clockwise around z = 0
2mian
takes the form <

e27ria2
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Local Fuchs-Frobenius theory 2

> If ax — ay € Z then we may have two solutions as in (NL) or
two solutions as follows,

PY1(z) = 2" Fi(z),  Ya(z) = 2" Fa(2) + ¥1(2) log(2),

with F1, F> holomorphic at z.

> In this basis, the monodromy operator clockwise around z =0
e27ria1 o
takes the form ( >

e27ria2

» Key lemma: Assume that #(a1) < 0 < R(a2), then:
(i) There is a non-zero solution 1 which is bounded along any
ray approaching the z = 0.
(i) Any other solution, independent with 1, is unbounded along
any ray approaching z = 0.
(iii) The solution 9 is an eigenvector of the monodromy around
z = 0 of eigenvalue e>™/1,
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Heuristics

» We present a heuristic idea for produce some Stiurm-Liouville
problems that can be solved analitically.
» Let I real algebraic curve given by an irreducible polynomial,

P(z,w) =0.
» We consider in [ a real meromorphic vector field,
d
d—}Z{ =f(z,w), f(z,w)eK

and a real solution, v: R — I, x — ~(x) connecting two
zeros, namely zy.
> Let N, be a neighbourhood of the path v and Kij. its field of
meromorphic functions.
Im
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» Let g, h be meromorphic functions in I and holomorphic in
rloc-
» We consider Sturm-Liouville problems with,

u(x) = g(v(x)), v(z) = h(r(x)) (V)
» The Sturm-Liouville problem,
2
% + u(x)i—i +v(x)Y =\ (SLP)

is equivalent to the following. Determine for which values of
lambda, the meromorphic differential equation:

o grfa hos
dz? f  dz 2

=0 (AE)
has a solution defined along v tending to 0 at z...
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Define G the Galois group of (AE) as a differential equation
with coefficients in K.

Define G the Galois group of (AE) as a differential equation
with coefficients in K.

Remark: In general G, C G. If (AE) has exactly three
regular singularities at I then G, = G.

Define,

He = XHTOO 'U(X)7 ve XHTOO V(X)’

ag Zufi\/ﬁ —4(p-—N) oy =u+i\/Vi—4(M+—A)

16
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Main Result

» Theorem 1 [Yagasaki-B, 2010]: The following statements
hold:
» Assume R(ag) >0, R(ag) > 0, R(aj) >0, R(a; ) > 0 then
al solutions of (SLP) satisfy the boundary conditions (BC).
» Assume one of the following conditions,
(i) R(ad) >0, R(ag) >0, R(ay) - R(a;) <0.
(i) R(af) >0 R(a;) >0, R(ag) - R(ag ) < 0.
then one solution of (SLP) satisfy the boundary conditions.
» Assume R(a;) - R(a;) < 0 for i = 0,1 or equivalently

R(\/ 14 — v = A)| > |pl,

then if there is a solution of (SLP) satisfying the boundary
conditions (BC) then G is a group of triangular matrices,
and henceforth solvable.
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Spectrum of the asymmetric Hulthen potential 1

» We consider the normalized Schroedinger equation for the
asymmetric Hulthen potential,

d?ep ” ..
dz? + ( )11) ¢a ( ) e+ o (ex + al)2 ( )
sl N ]
E u2=13‘,// //, ’\\\ =125 :
3P S "'\\1\ 1
> [em2 7 J \\\
I / \15 0,=8
ot W=
! T S 4
b oyto \ ]
U T
6 " . L |

Shape of the function v(x) in (AHP) for several values of a when
a1 = 10/a; or 1 and a3 = 10. Solid and dashed lines represent the cases
of ax = 10/ and 1, respectively.
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Spectrum of the asymmetric Hulthen potential 2

» We know that possible eigenvalues are real numbers A

satisfying,
a3
max(v_,0) < A < —=.
X(V ) 4o
» We consider the change of variables,
eX
z=10J = ex+1

> It takes the Equation (AHP) to its algebraic form,

@y 21 (2 1) Mz 2)

7l R e Y (AAHP)

(5]

where zp = m
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Spectrum of the asymmetric Hulthen potential 3

» Equation (AAHP) is a Riemann equation and its solutions are
expressed by a Riemann P function

0 1 2z
PSpl p3 i zy,
pPL P2 P3

» The local exponents at z =0, 1 and zy are

pf =+\VA—v_, ,0%: = +VA,

1 1
+
pF =5 <1ia1w/a%—|—4a3>.
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Spectrum of the asymmetric Hulthen potential 4

» Theorem [Kimura 1969]: Let us consider the Riemann
function,
21 22 Z3
PSpi P2 p3 zyp,
P1 P2 P3
and the differential field extension C(z) C C(z)(P). Its Galois
group is a group of triangular matrices if and only if at least
one of p1 + p2 + p3, —p1+ p2+p3, p1— p2+p3 and
p1 -+ p2 — p3 is an odd integer, where p; = pJ — P
Jj =1,2,3, denote the exponent differences.

> In our particular cases it yields,

((2k + 1+ p3)* +4v_)?

kez
16(2k + 1 £ p3 )2 <

A=

23 /43



Spectrum of the asymmetric Hulthen potential 5
> Theorem: If for some integer k € (—3(ps3 +1),0)
(k414 p3)* +4v) a3
A= 16(2k + 1 + p3)? € {max(v-.0), 4as )’
then A is an eigenvalue for the (AHP).

3 T 1 T T T [ T 17T

=\
—_
L

(=]
S}
IS
(=)}
E3

Eigenvalues for (AHP) with a; = 1 and a3 = 10. The dotted lines
represent the upper bound v = %Oég/w/OQ and the lower bound

VA= -
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Spectrum of the asymmetric Hulthen potential 6

I e e e LA B e e e e I I e e e e A LA s s e s e
1 (a) 7 05 = (b) 7
=05 | B > 0
0 = 05 F e
L L L L L L L L
10 5 0 5 10 10 5 0 5 10
X X
| ET
05 () 7 @) ]
> 0 >o05F B
05 [ B 0
1 1 1 1 1 1 1 1
10 5 0 5 10 10 5 0 5 10
X X
I e e e e LA B e e e L e L e e o e e N B s s s
05 = (e) 7 05 = (f) 7
> o0 > o0
05 F B 05 F B
T Y Y I T T N I Y N | Y B I T T I N |
-10 s 0 5 10 -10 5 0 5 10
X X

Eigenfunctions for (AHP) with a; =1 and a3 = 10: (a)
(v—,vA) = (0,1.35078); (b) (0,0.850781); (c) (0,0.350781); (d)
(3.5,1.99855); (e) (1.5,1.29155); (f) (0.25,0.528955).
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Bifurcation of Homoclinic orbits in G-L equations 1

» We consider the coupled real Ginzburg-Landau system of
non-linear PDE (s > 0),

Ur = Ugx — U+ (UP + B1V?) UL + B3V,

2 2 2 (GL)
Vi= Vi —sV+ (ﬁlU +B2V )V+B3U+B4V »
» Stationary solutions are given by the ODE system
%1=x1 — (xf + P1x3)x1 — Baxz, (GL)

g 2 2 2
Xp = sxop — (Bix{ + Pox5)x2 — Bax1 — Pax3,

where xy = U, xo = V.
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Bifurcation of Homoclinic orbits in G-L equations 2

» It is Hamiltonian system (denote y; = X1, y2 = X2),
1
H=S(=x = 96 + B3 + 1 +3)

1 1
+ Z(Xf + Bax3) + Baxixa + 554X§7

(SGLH)

» For 83 = 0 the origin x = 0 is saddle-saddle with eigenvalues,
)\1:_\/57 )\2:_17 A3:]-7 )‘4:\/g
» There are two orbits homoclinic to the origin:

x1(t) = (£+v/(2sech(t), 0, £v/2sech(t)tanh(t), 0)
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Bifurcation of Homoclinic orbits in G-L equations 3

» Reduced normal variational equation:

ij = (s — 2B1sech?(t))n.

» Whic is transformed into a Riemann equation, z = sech?(t),
V1 =s, 1 = 2f,

@_{_ 3z-2 @_’_ V| — Z
dz?  2z(z—1)dz 4z%(z—1)

n=0.

» Applying Kimura's result we derive integrability conditions:

(2y/s+204+1)2 -1
8

B = (=0,1,2,... (IC2)
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Bifurcation of Homoclinic orbits in G-L equations 4

Tt 77 T T T T 1T T T T T T

Integrability condition (IC2) for £ =0-4. Saddle-node bifurcations may happen
along red curves but along blue curves. Pitchfork bifurcations can occur along
all curves.
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Bifurcation of Homoclinic orbits in G-L equations 5

max X, or min X,

T
[CH

Bifurcation diagram with parameter 33 and s = 2: (a) 1 = 1.7071068, 5. =1

y Ba=2; (b) By = 7.5355330, B =1y B4 = 2; (c) 1 = 17.36396103,
Bo =10y B4 = 20.
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Bifurcation of Homoclinic orbits in G-L equations 6

1 (a1) 1 0
05 /\ 1 o2f ]
o 04 [ (@2 ]

-10 -5 0 5 10 -10 -5 0 5 10

[ (b1) 05T (b2)
iy TR

= T T T T Y AR os b v
-10 -5 0 5 10 -10 -5 0 5 10

t t

01 F (c1) B 01 (c2) 1

-10 -5 0 5 10 -10 10

Profiles of homoclinic orbits on the branches of the previous diagrams. (al,2)
ﬂ?, = 1; (b1,2) 53 = 05, Yy (C1,2), ﬂ?, =0.3.
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Bifurcation of Homoclinic orbits in G-L equations 7

06 -

04 -

max X,
T

02 -

0\\\\\\\\\\\
0 5 10 15 20

B1

Bifurcation diagram with parameter 51, s =2, o =1y 3= (2 = 0.
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Bifurcation of Homoclinic orbits in G-L equations 8

T 05

04[(a 1 (b)
So2f ] 2 of
o [
Coo e g ,0_5\\\\\\\\\\\\\\\\\\
10 5 0 5 10 -10 5 0 5
t t
05 T T T 05 T T T
[(0) 1 [ (d)

20 ok
,0_57\\\\\\\\\\\\\\\\\\\7 ,0_57\\\\\\\\\\\\\\\\\\
10 5 0 5 10 10 5 0 5
t t
— T
02y /\/\ ]

o \/W

02 1
SR G R
10 -5 0 5 10

Homoclinic orbits on the branches of £ =0-4 on the previous diagram with
B1=15: (a) £=0; (b) £=1; (c) £ =2; (d) £ =3y (e) £ = 4 (lower branch).

10
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Stability of wave front solutions of Allen-Cahn equation 1

> Let us consider the Allen-Cahn (or Nagumo) equation,
Ur = Uxx + u(l —u)(u—a), ae€(0,1).

» There is a traveling front solution u(x, t) = ¢(x — ct) with

c=+/(2)(3 — ) and

1
P(x) = —
evitl
L e e B B
1
< 05 4
0
O YV Y
-15 -10 -5 0 5 10 15

X
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Stability of wave front solutions of Allen-Cahn equation 2

> The linear stability of the wave front solution is determined by
the S-L problem,

2
% + ,u(x)j%f +rv(x)Y =X\ (ACSLP)
with 1(x) = vV2(3 — a), v(x) = =3¢(x)? +2(a + 1)p(x) — a.

O ST T T T 7T T T T T T T T T T T T T

-0.5

Plots of v(x) for & = 0.1,0.3,0.5.
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Stability of wave front solutions of Allen-Cahn equation 2

» We consider the change of variables,

S

dz  z(1-2z) e

—=—— ) ==
dx V2 ) evi 41

» The algebraic form is a Riemann equation with singularites at
0, 1 and oo,

d2¢+2(z +a-— 1)%_{_2(—322 +22—a)z+a—1-))
dz? z(z—1) dz z2(z — 1)?

¥ = 0.

> The local exponents at 0, 1, co are respectively

1
pE = S0 -1+ \/8\ + (2 — 3)2),

1
Py = 51— 20 \/8A+ (2a+1)2), pI =3, p3=-2.

38 /43



Stability of wave front solutions of Allen-Cahn equation 4

» Theorem: Assume that for A € C there is a solution for the
(ACSL) satisfying the boundary conditions (BC). One of the
following holds:

(a) € (O7 1) and Theorem 1, (i) holds.

(b) o € (3,1) and Theorem 1, (ii) hoIds

(c) A satlsfles max(a — 1, —a) < A < 3(a® — a+ 1) and there is
an integer k such that

k2 —4)(k +1—2a)(k — 1+ 2a)

(
A= 8k>2

(IC3)

Furthermore, conditions (a) and (b) are sufficient for the
existence of solution for the boundary problem.
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Stability of wave front solutions of Allen-Cahn equation 5

16 ui (e +)+7»12 =0

= 16p> (A, —v)+A2 =0

?

Continuous spectra (the shaded region) for (ACSL) when « € (0, 3).
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Stability of wave front solutions of Allen-Cahn equation 6

[T rrrrrr 11111111 11 17T1]
0k ~
o k=2 A
01 [ -
02 [ -
< r N 1
03 - ]
04 o
0.5 Coov v 10y \‘\‘l"‘\ L
0 0.25 0.5 0.75 1

o

Eigenvalues given by (IC3) for k = 1,2. The dotted line represents the lower

bound A = max(a — 1, —a).
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Stability of wave front solutions of Allen-Cahn equation 7

0.4

;_0.2 F

-0.5

Eigenfunctions for (ACSL): (a) A = 0; (b) a = 0.35; (c) 0.5; (d) 0.65.
Plates (b)-(c) show the functions for A = 3a(a — 1).
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