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Setting

Purpose: Treat many-body quantum systems exhibiting a special kind of
symmetry: scale invariance. Typically, we are interested in the ground
state of some local hamiltonian:

H =
∑
〈i, j〉

hij , HΨ0 = E0Ψ0, (1)

Example : H =
∑
k

σx
kσ

x
k+1 +

∑
k

σz . (2)

Many-body (quantum) systems have too many degrees of freedom to
allow a direct treatment. In the example above,

dim (Hilb) = dn.

Exact solution of (1) is generally out of question. Even storing the
coefficients of Ψ0 in some standard basis is impossible.
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Renormalisation

We never want to know everything about a system. Only some very
general properties are of interest: ground state energy, correlators,
susceptibility, conductivity, etc.

Key observation: There are huge classes of natural systems for which
only a handful of degrees of freedom are relevant when computing or
measuring these quantities.

A renormalisation group (RG) generally refers to a process where some
degrees of freedom of a system are eliminated. Hopefully, at the end of
the process, our description of the system is simplified enough that a
prediction can be made for the quantity we are interested in.

N.B. A renormalisation group is not a group. There is a deep reason for
that.

Of course, we want an RG to be successful in

I Identifying the relevant degrees of freedom

I Estimating how irrelevant are the discarded degrees of freedom.
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An example: matrix product states (White ’90)

Consider again some one-dimensional local hamiltonian.

Again, let’s assume we are interested in the lowest eigenvalue of H, E0,
and the corresponding eigenvector. Assuming H ≥ 0, one possibility is to
define the transfer operator Tε(H) = exp(−εH) and use the identity

Ψ0 = lim
n→∞

Tε(H)nΦ0/||Tε(H)nΦ0||, ∀Φ0 | 〈Ψ0|Φ0〉 6= 0, (3)

One therefore constructs a sequence:

Φ0
Tε(H)→ Φ1

Tε(H)→ Φ2
Tε(H)→ . . .

Tε(H)→ Φn
Tε(H)→ . . .

Along this sequence, correlations typically grow so much that it is rapidly
impossible to keep all the information about the states Φk . The matrix
product state (MPS) RG consists in projecting successive states Tε(H)Φk

onto a special class of states:

Φ0
Tε(H)→ HΦ0

Cutoff→ Φ1
Tε(H)→ HΦ1

Cutoff→ Φ2 . . .
Tε(H)→ HΦn−1

Cutoff→ Φn . . .
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An example: matrix product states (White ’90)

Matrix product states are states of the form

Φ(x1 . . . xn)|x1 . . . xn〉 = tr A1(x1) . . .An(xn)|x1 . . . xn〉. (4)

where, for each value xk ∈ 1 . . . d , Ak(xk) is an m ×m matrix.

Mean field methods: χ = 1.

MPS have been used with great success over the past 20 years. However,
their ability to describe scale invariant systems is limited, because they
can only account for bounded correlations:

〈ΨMPS|XxX
′
y |ΨMPS〉 ≈ exp(−α|x − y |).
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Interlude: diagrammatic notations
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Entanglement renormalisation

If one is interested in scale invariance, it is of course natural to propose a
renormalisation scheme where (the approximation of) the ground state is
associated with a tree tensor network.

The isometries eliminate degrees of freedom.

The multiscale entanglement renormalisation ansatz (MERA) can also be
associated with a tree tensor network, but with an additional ingredient:
disentangling unitaries.

Motivation for the introduction of disentanglers: eliminate local degrees
of freedom through local operations so that a maximal amount of
information is kept when applying the isometries.
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An entanglement renormalisation algorithm

Suppose we are interested in finding an approximation to the ground state
of some local hamiltonian H. Then, a possibility is to proceed as follows.

1. Assume the ground state can be well described by a MERA, i.e. by a
collection of tensors glued as above:

τ̄ = {τi}i=1...ν1+ν2 = {Ui}i=1...ν1 ∪ {Wi}i=1...ν2

2. Initialise τ̄ to some fiducial value τ̄0.

3. Run along the tensor network and pick a node α. Treat the tensors
related to other nodes as constants. The mean value of the energy
of the system can then be expressed as

EMERA
0 = 〈Ψ(τ)|H|Ψ(τ)〉 =

∑
i

tr Ai τ
∗
α Bi τα.

N.B. The sum over the index i typically only contains few terms.
The quadratic form EMERA

0 is optimised over the tensor τα.

4. Repeat the previous step until convergence.
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The D-quantum / (D + 1)-classical correspondence

Consider a D-dimensional classical system described in terms of a set of
degrees of freedom qi , conjugate variables pi , and some Hamiltonian H.
Feynman-Hibbs quantisation (D-dimensional quantum):

〈q′, t ′|q, t〉 =

∫
{γ}

dγ e i
∫
γ
dτ(pi q̇i−H), (5)

γ labels paths in phase space between time t and time t ′.

〈q′, t ′|T
[
Ô1(t1) . . . ÔM(tM)

]
|q, t〉 =

∫
{γ} dγ

∏M
k=1 Ok(tk) e i

∫
γ
dτ(pi q̇i−H)

〈q′, t ′|q, t〉
(6)

On the other hand, classical statistical mechanics tells us that:

Z =
∑
{σ}

e−βH(σ) (7)

〈O1(x1) . . .OM(xM)〉 =

∑
{σ}O1(x1) . . .OM(xM)e−βH(σ)

Z
. (8)
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The D-quantum / (D + 1)-classical correspondence

This analogy can be (formally) turned into an identity if we observe that
the ground state mean value of Ô1(t1) . . . ÔM(tM) can be expressed as

〈Ô1(t1) . . . ÔM(tM)〉 = lim
τ,τ ′→∞

〈q′,−iτ ′|Ô1(t1) . . . ÔM(tM)|q, iτ〉
〈q′,−iτ ′|q, iτ〉

.

(9)

Crucial to the correspondence is the analogy between the transfer
operator of classical statistical mechanics and the quantum transfer
operator introduced earlier:

e−βH
classical(σrow

k ,σrow
k+1 ) ←→ Tε(H) = exp(−εHquantum).

These considerations immediately extend to fields (at least conceptually
if not mathematically).
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Symmetries

We will call symmetry of a system a structured set of transformations of
this system, together with a representation of this structured set spanned
by a set of field {Φ(x) : x ∈ ”Space”}. Here, we are going to consider
symmetries related to groups of space-time transformations G :

x
g→ x ′, Φ(x)

g→ Φ′(x ′). (10)

Important examples:

Translations Proper rotations Dilation
x ′ x + a gx , gg t = 1 λx

Φ′(x ′) e ip·aΦ(x) π(g)Φ(x) λ−∆Φ(x)

We say that a (classical) system possesses a symmetry when its action

Sγ =

∫
γ

d (d+1)x L(Φ, ∂µΦ) is left invariant ∀g , γ.
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Symmetries

A symmetry has consequences on the manner correlators transform. For
instance,

Transformation x ′ 〈Φ′1(x ′1) . . .Φ′n(x ′n)〉
Translation x + a e i(p1·a1+...pn·an)〈Φ1(x1) . . .Φn(xn)〉

Rotation gx 〈Φ1(x1) . . .Φn(xn)〉
Dilation λx λ−∆1 . . . λ−∆n〈Φ1(x1) . . .Φn(xn)〉

Of particular importance are conformal transformations:

g ′µν(x ′) = Λ(x)gµν(x). (11)

(Space-time transformations that preserve angles)

Such symmetries are important because

I Many important critical theories satisfy them. N.B. Such theories
are gapless and are therefore delicate to tackle numerically.

I In 1 + 1 dimensions, they yield a lot of information about correlation
functions.
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Global conformal transformations and quasi-primary fields

g ′µν(x ′) = Λ(x)gµν(x).

There are two kinds of conformal transformations: (i) global: Λ(x)
doesn’t depend on x , (ii) local: the others. A field is called quasi-primary
when it transforms, under a global conformal transformation as

Φ(x)→ Φ′(x ′) = |∂x
′

∂x
|−∆/dΦ(x), ∆ : Scaling dimension. (12)

Importantly, if (the action of) a theory is invariant under global
conformal transformations, then two- and three-point correlators of
quasi-primary fields have a special form:

〈Φ1(x1)Φ2(x2)〉 =

{
C12

|x1−x2|2∆1
if ∆1 = ∆2

0 if ∆1 6= ∆2

(13)

〈Φ1(x1)Φ2(x2)Φ3(x3)〉 = C123/x
∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31 .

(14)
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Local conformal transformations and primary fields

Primary fields transform under local conformal transformations as

Φ(x)→ Φ′(x ′) = |∂x
′

∂x
|−∆/dΦ(x), ∆ : Scaling dimension. (15)

Primary fields can be viewed as eigenstates of the conformal group.
Primary fields play an important role in 1 + 1-dimensions. Consider the
identification (x , y)↔ z = x + iy . Conformal transformations are
associated with holomorphic functions:

z → w(z),
∂w

∂z∗
= 0.

This is a rich set of symmetry. So rich that conformal field theories are
essentially determined by a very little set of data.
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Conformal field theory

Conformal data:

I The central charge c , governing e.g. correlations of extended parts
of the system (see entanglement entropy).

I A complete list of primary fields {Φα}, together with their scaling
dimensions {Φα} 1

I The coefficients Cijk dictating the behaviour of three-point
correlators of primary fields.

Other quasi-primary fields (so called descendent) are obtained by
application of some operators Ln, n ∈ Z+ on primary fields:

Φn,α = L−nΦα,Φn1,n2,α = L−n2L−n1 Φα. (16)

The operators Ln are some kind of moments of the energy-momentum
tensor. The scaling dimension of a descendent field is determined as
∆(Φn1,...,nm,α) = ∆α + 2(n1 + . . .+ nm).

1To be more precise, one should rather consider their conformal dimensions
(hα, h̄α). But this doesn’t matter here.
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An example: the critical Ising model

Hquantum = −1

2

+∞∑
k=−∞

σx
kσ

x
k+1 −

λ

2

+∞∑
k=−∞

σz
k . (17)

Hclassical = −1

2

∑
〈i,j〉

σx
i σ

x
j . (18)

At criticality (λ∗ = 1, β(λ∗)), both models are described by a CFT with
central charge c = 1/2, three primary fields {1, σ, ε} with respective
scaling dimensions {0, 1/8, 1}.
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Entanglement renormalisation and CFT

A layer of a MERA, L, defines a lifting of operators:

X → LXL∗ ≡ S(X ).

It is of course natural to interpret this lifting as a scale transformation.
Now if we consider a MERA which is a good approximation of the
ground state of some critical system. Then we expect to be able to
identify the eigen-operators of S:

S(Φα) = (1/2)−∆αΦα

with primary and quasiprimary fields of the underlying CFT.

This program has been carried out with remarkable success by Pfeifer et
al.
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(Quasi-)primary fields from MERA

S(Φα) = (1/2)−∆αΦα, 〈Φ1(x1)Φ2(x2)〉 = δ(∆1,∆2)
C12

|x1 − x2|2∆1

Ising ∆CFT ∆MERA

σ 1/8 0.124997
ε 1 1.0001

Potts ∆CFT ∆MERA

σ1 2/15 = 0.133... 0.1339
σ2 2/15 = 0.133... 0.1339
ε 4/5 0.8204
Z1 4/3 1.3346
Z2 4/3 1.3351

First descendent fields are also found accurately.
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Entanglement renormalisation and Boundary CFT

Boundary conformal field theory is an extension of CFT aimed at
describing semi-infinite systems. Certainly, the physics of such systems
far in the bulk is described by a CFT as we have discussed. Nevertheless
the theory should be supplemented by a set of boundary scaling operators
with support at finite distance from the edge of system, Φ∂

α, that
transform as primary fields under coarse graining:

S(Φ∂
α) = (1/2)−∆∂αΦ∂

α

but whose two-point correlations with a bulk primary field satisfies the
relation

〈Φ∂
α(0)Φβ(x)〉 =

Cαβ

x∆∂α+∆β
,

even when ∆∂
α 6= ∆β . In particular,

〈Φβ(x)〉 =
C0β

x∆β
in contrast to 〈Φβ(x)〉bulk = 0 for any bulk non-trivial

scaling operator Φβ .

Sofyan Iblisdir University of Barcelona Joint work with R.Pfeiffer, G. Evenbly, G. Vidal (Queensland) and V.Picó (Barcelona)Entanglement Renormalisation and Boundary Conformal Field Theory



Boundary MERA

A boundary MERA is an ansatz aimed at extracting information related
to the edge of system. We have used this ansatz to study the critical
hamiltonian

HIsing = η σx
0 −

∞∑
k=0

(σx
kσ

x
k+1 − σz

k). (19)

The constant η determines whether the system has free or fixed boundary
conditions (η = 0 or η = ±1 respectively). We have optimised the
tensors ub,wb,w∂ in order to get an approximation of the ground state.
The resulting MERA defines a scale transformation whose eigen-operators
can be identified with the (boundary) primary fields of the theory

∆BCFT (free Ising) ∆MERA ∆BCFT (fixed Ising) ∆MERA

(1) 0 0 (1) 0 0
(σ) 0.5 0.499 (σ) 2 1.992

1.5 1.503 3 2.998
2 2.001 4 4.005

2.5 2.553 4 4.062
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Outlook

I MERA’s bring an new perspective on old problems. The
introduction of disentanglers is an interesting ingredient.

I CFT’s are elegant and powerful (Think of the correlators). But how
do we get there, given a concrete microscopic hamiltonian? The
MERA seems to be a promising tool for this task. In particular, it
seems to be accurate at identifying (quasi-)primary fields.

I MERA’s also seem to be relevant to other problems. E.g. They
describe exactly ground states of large families of topologically
ordered systems.
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