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Purpose: Treat many-body quantum systems exhibiting a special kind of
symmetry: scale invariance. Typically, we are interested in the ground
state of some local hamiltonian:

H=Y hyj, HVo= EWy, (1)
)
Example: H= Z OROR41 + Z o’. (2)
k k

Many-body (quantum) systems have too many degrees of freedom to
allow a direct treatment. In the example above,

dim (Hilb) = d”.

Exact solution of (1) is generally out of question. Even storing the
coefficients of Wy in some standard basis is impossible.
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Renormalisation

We never want to know everything about a system. Only some very
general properties are of interest: ground state energy, correlators,
susceptibility, conductivity, etc.

Key observation: There are huge classes of natural systems for which
only a handful of degrees of freedom are relevant when computing or
measuring these quantities.

A renormalisation group (RG) generally refers to a process where some
degrees of freedom of a system are eliminated. Hopefully, at the end of
the process, our description of the system is simplified enough that a
prediction can be made for the quantity we are interested in.

N.B. A renormalisation group is not a group. There is a deep reason for
that.

Of course, we want an RG to be successful in
> Identifying the relevant degrees of freedom

» Estimating how irrelevant are the discarded degrees of freedom.
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An example: matrix product states (White '90)

Consider again some one-dimensional local hamiltonian.

Again, let's assume we are interested in the lowest eigenvalue of H, Eg,
and the corresponding eigenvector. Assuming H > 0, one possibility is to
define the transfer operator T.(H) = exp(—eH) and use the identity

\Uo = I|m TE(H)nd)o/HTE(H)nd)()H, Vd)o ‘ <\UO‘¢0> 7& O, (3)

n— o0
One therefore constructs a sequence:

i, "W, TN | T T

(Do > ¢1Ti)H)¢2 —

Along this sequence, correlations typically grow so much that it is rapidly
impossible to keep all the information about the states ®,. The matrix
product state (MPS) RG consists in projecting successive states T.(H)®
onto a special class of states:

) Cutoff

q>0 L) Hq)o ( ) Cutoff

Cutoff

o, WHe, O, T Whe, e,
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An example: matrix product states (White '90)

Matrix product states are states of the form
D(x1. . xp)|X1 .. Xn) =tr Ar(xa) . An(Xn) X1 - Xn)- (4)

where, for each value xx € 1...d, Ax(x) is an m x m matrix.
Mean field methods: x = 1.

MPS have been used with great success over the past 20 years. However,
their ability to describe scale invariant systems is limited, because they
can only account for bounded correlations:

(Wnps| X X [ Wnps) ~ exp(—alx — y]).
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Interlude: diagrammatic notations
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Entangle ormalisation

If one is interested in scale invariance, it is of course natural to propose a
renormalisation scheme where (the approximation of) the ground state is
associated with a tree tensor network.

The isometries eliminate degrees of freedom.

The multiscale entanglement renormalisation ansatz (MERA) can also be
associated with a tree tensor network, but with an additional ingredient:
disentangling unitaries.

Motivation for the introduction of disentanglers: eliminate local degrees
of freedom through local operations so that a maximal amount of
information is kept when applying the isometries.
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An entanglement renormalisation algorithm

Suppose we are interested in finding an approximation to the ground state
of some local hamiltonian H. Then, a possibility is to proceed as follows.

1. Assume the ground state can be well described by a MERA, i.e. by a
collection of tensors glued as above:

T =A{7i}i=1..n40o = {Ui}tiz1..00 U{Witiz1. o,

2. Initialise 7 to some fiducial value 7.

3. Run along the tensor network and pick a node . Treat the tensors
related to other nodes as constants. The mean value of the energy
of the system can then be expressed as

EQERA = (W(r)|H[W(T)) = ZtrA 72 Bi Ta.

N.B. The sum over the index i typically only contains few terms.
The quadratic form E&VIERA is optimised over the tensor 7.

4. Repeat the previous step until convergence.
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The D-quantum / (D + 1)-classical correspondence

Consider a D-dimensional classical system described in terms of a set of
degrees of freedom g;, conjugate variables p;, and some Hamiltonian H.
Feynman-Hibbs quantisation (D-dimensional quantum):

<q/7 t/|CI, t> = / d'y eif»y dT(PifIi—H)’ (5)
{7}

~ labels paths in phase space between time t and time t’.

~ ~ f{ d~y A{ Ok(tk) eifﬂldr(p,-c';,-fH)
Lt 0 (0] _ Hk_l
<q , t |; [ 1(1'1)... M(tM)]|q, t) = < /,t/| ’t>

(6)
On the other hand, classical statistical mechanics tells us that:
7 — Z e BH(o) (7)
{0}

O1(x1) ... Om(xm)ePH(@)
(04(x1) ... Ol — 2=t 10 ZM( ) : (8)

Sofyan Iblisdir University of Barcelona Joint work with R.Pfeiffer, G. Ever Entanglement Renormalisation and Boundary Conformal Field Theory



The D-quantum / (D + 1)-classical correspondence

This analogy can be (formally) turned into an identity if we observe that
the ground state mean value of Oy(t1)...Oum(tm) can be expressed as

~ ~ ~ o (g, =iT|0u(t) - . Om(tm)lg, iT)
<Ol(t1)OM(tM)> _T,‘I!,rr:oo <ql7_i7-/|q7 IT>

(9)

Crucial to the correspondence is the analogy between the transfer
operator of classical statistical mechanics and the quantum transfer
operator introduced earlier:

eiﬁHclassical(giow’O_ii\f) Te ( H) _ eXp(_quuantum )

These considerations immediately extend to fields (at least conceptually
if not mathematically).
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We will call symmetry of a system a structured set of transformations of
this system, together with a representation of this structured set spanned
by a set of field {®(x) : x € ”Space”}. Here, we are going to consider
symmetries related to groups of space-time transformations G:

x & X, d(x) S d/(x). (10)

Important examples:

Translations | Proper rotations | Dilation
x' x4+ a gx, ggt=1 AX
d'(x") ePad(x) m(g)P(x) A~20(x)

We say that a (classical) system possesses a symmetry when its action

S, = / d(d+x L(P,0,P) is left invariant Vg, .
v
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Symmetries

A symmetry has consequences on the manner correlators transform. For

instance,
Transformation x' _ (PL(x1) ... dL(x)
Translation x+a | eflPratra) (o) (x;)...d,(x,))
Rotation ax (P1(x1) ... Dp(xn))
Dilation Ax | ATBE U ATR (D (x1) .. D,(x,))

Of particular importance are conformal transformations:
gl’w(x’) = N(x)guv(x). (11)

(Space-time transformations that preserve angles)
Such symmetries are important because
» Many important critical theories satisfy them. N.B. Such theories
are gapless and are therefore delicate to tackle numerically.
» In 1+ 1 dimensions, they yield a lot of information about correlation
functions.

Entanglement Renormalisation and Boundary Conformal Field Theory

Sofyan Iblisdir University of Barcelona Joint work with R.Pfeiffer, G. Ever



Global conformal transformations and quasi-primary fields

81 (x) = N(x)guv ().

There are two kinds of conformal transformations: (i) global: A(x)
doesn't depend on x, (ii) local: the others. A field is called quasi-primary
when it transforms, under a global conformal transformation as

!
d(x) = d'(X) = \({;—);FA/C’CD(X), A : Scaling dimension.  (12)

Importantly, if (the action of) a theory is invariant under global
conformal transformations, then two- and three-point correlators of
quasi-primary fields have a special form:

if Ay = Ay

Ci2
(P1(x1)P2(x2)) = {(l))qXZMI NN (13)

1 (x1) P2 (%) P3(x3)) = Cios xD1+B2—B3 Do+ A3—LDy A3+ —Ay
12 23 31

(14)
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Local conformal transformations and primary fields

Primary fields transform under local conformal transformations as
e ox’ —A/d . . .
d(x) = d'(x') = \8—| ®(x), A :Scaling dimension. (15)
X

Primary fields can be viewed as eigenstates of the conformal group.
Primary fields play an important role in 1 4 1-dimensions. Consider the
identification (x, y) > z = x + iy. Conformal transformations are
associated with holomorphic functions:

ow
" Oz*
This is a rich set of symmetry. So rich that conformal field theories are
essentially determined by a very little set of data.

z = w(z) =0.
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Conformal field theory

Conformal data:

» The central charge ¢, governing e.g. correlations of extended parts
of the system (see entanglement entropy).

> A complete list of primary fields {®,}, together with their scaling
dimensions {®,} 1

> The coefficients Cjj dictating the behaviour of three-point
correlators of primary fields.

Other quasi-primary fields (so called descendent) are obtained by
application of some operators L,,n € Z™ on primary fields:

q)n,a - Lfnq)om q)nl,nz,oz - Lfnsznlq)ow (16)

The operators L, are some kind of moments of the energy-momentum
tensor. The scaling dimension of a descendent field is determined as
A(Pp, npa) =Da+2(m+...+ np).

1'[0 be more precise, one should rather consider their conformal dimensions
(ha, ha). But this doesn’t matter here.

Sofyan Iblisdir University of Barcelona Joint work with R.Pfeiffer, G. Ever Entanglement Renormalisation and Boundary Conformal Field Theory



An example: the critical Ising model

quantum 1 ~ X X A = z
H :_5 Z o—ko—k“rl_i Z Oy (17)
k=—o00 k=—o00
[Hclassical _ 71 Z e (18)
2 A
(i)

At criticality (A* =1, 8(\*)), both models are described by a CFT with
central charge ¢ = 1/2, three primary fields {1, 0, €} with respective
scaling dimensions {0,1/8,1}.
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Entanglement renormalisation and CFT

A layer of a MERA, L, defines a lifting of operators:
X = LXLx = S(X).

It is of course natural to interpret this lifting as a scale transformation.
Now if we consider a MERA which is a good approximation of the
ground state of some critical system. Then we expect to be able to
identify the eigen-operators of S:

5(®a) = (1/2)" 20,

with primary and quasiprimary fields of the underlying CFT.
This program has been carried out with remarkable success by Pfeifer et
al.
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(Quasi-)primary fields from MERA

5(®a) = (1/2)7 %@,

(®1(x1)P2(x2)) = (A1, A2)

G2
X1 — xo|PA

Ising ACFT AMERA
o 1/8 0.124997
€ 1 1.0001

Potts ACFT AMERA
o1 2/15=0.133... 0.1339
o, | 2/15=0.133.. | 0.1339
¢ 4/5 0.8204
7 4/3 1.3346
7 473 1.3351

First descendent fields are also found accurately.

Sofyan Iblisdir University of Barcelona Joint work with R.Pfeiffer, G. Ever

Entanglement Renormalisation and Boundary Conformal Field Theory



Entanglement renormalisation and Boundary CFT

Boundary conformal field theory is an extension of CFT aimed at
describing semi-infinite systems. Certainly, the physics of such systems
far in the bulk is described by a CFT as we have discussed. Nevertheless
the theory should be supplemented by a set of boundary scaling operators
with support at finite distance from the edge of system, ®9, that
transform as primary fields under coarse graining:

S(99) = (1/2)7%2 02

but whose two-point correlations with a bulk primary field satisfies the
relation

Ca
<¢2(0)¢ﬁ(x)> = XAgifAﬁ’

even when A2 # Ag. In particular,
(Pp(x)) = $5 in contrast to (P5(x))buik = 0 for any bulk non-trivial

_ X568
scaling operator ®g.
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Boundary MERA

A boundary MERA is an ansatz aimed at extracting information related
to the edge of system. We have used this ansatz to study the critical

hamiltonian
o0
HIsing =n 0-6( - Z(Uio-i+1 - Ui) (19)
k=0

The constant 1 determines whether the system has free or fixed boundary
conditions (7 = 0 or n = £1 respectively). We have optimised the
tensors u®, w”, w? in order to get an approximation of the ground state.
The resulting MERA defines a scale transformation whose eigen-operators
can be identified with the (boundary) primary fields of the theory

ABCFT (free Ising) | AMERA TWABCFT (fixed Ising) | AMERA
1o 0 Mo 0

(0) 05 0.499 ()2 1.992

1.5 1.503 3 2.998

2 2.001 4 4.005

2.5 2.553 4 4.062
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» MERA's bring an new perspective on old problems. The
introduction of disentanglers is an interesting ingredient.

» CFT's are elegant and powerful (Think of the correlators). But how
do we get there, given a concrete microscopic hamiltonian? The
MERA seems to be a promising tool for this task. In particular, it
seems to be accurate at identifying (quasi-)primary fields.

» MERA's also seem to be relevant to other problems. E.g. They
describe exactly ground states of large families of topologically
ordered systems.
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