WEYL ALTERNATIVE, SEPARATION OF VARIABLES AND SELFADJOINTNESS OF THE DIRAC OPERATOR

Sergio Luigi Cacciatori

DIPARTIMENTO DI FISICA E MATEMATICA, UNIVERSITÀ DELL'INSUBRIA DI COMO

Bogotà, May 31 2010- June 4 2010

▲□▶▲□▶▲□▶▲□▶ □ のQで

Mathematical tools

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

ADJOINTABLE, SYMMETRIC AND SELF ADJOINT OPERATORS

 \mathcal{H} : complex separable Hilbert space, with sesquilinear product (|); $A \equiv (A, D_A)$ linear operator in $O(\mathcal{H})$ if

- D_A is a linear subset of \mathcal{H} ,
- $A: D_A \to \mathcal{H}$ is a linear map

A is adjointable if densely defined: $\overline{D}_A = \mathcal{H}$. Set $D_{A^{\dagger}} = \{x \in \mathcal{H} | D_A \to \mathbb{C}, z \mapsto (x | Az) \text{ is continuous } \}$. Riesz theorem: $\exists ! y \ s.t. \ (y | z) = (x | Az)$. Then A^{\dagger} on $D_{A^{\dagger}}$ is defined by $y =: A^{\dagger}x$.

A is symmetric if $A \subseteq A^{\dagger}$ ($D_A \subseteq D_{A^{\dagger}}$ and $A^{\dagger}x = Ax \ \forall x \in D_A$). A is selfadjoint if $A = A^{\dagger}$. The graphic of $A \in O(\mathcal{H})$ is the set $\mathcal{G}_A = \{(x, y) \in \mathcal{H} \times \mathcal{H} | x \in D_A, y = Ax\}.$

EXERCISE: \mathcal{G} is the graphic of an operator iff it is a linear subset of $\mathcal{H} \times \mathcal{H}$ and $(0, y) \in \mathcal{G} \Leftrightarrow y = 0$.

A is closed if G_A is closed. A is closable if \overline{G}_A is a graphic; then $\overline{G}_A =: G_{\overline{A}}$ defines \overline{A} , the closure of A.

EXERCISE: *A* is closable iff for any sequence $\{x_n\} \subset D_A$, $x_n \to 0 \Rightarrow Ax_n \to 0$.

A is essentially selfadjoint if A is closable and $\bar{A} = \bar{A}^{\dagger}$

EXERCISE: If A is closed then ImA is closed.

MINIMAL REDUCED DIRAC OPERATORS

On $\mathcal{H} := \mathcal{L}_2((a, b); w)^2$, where $-\infty \le a < b \le +\infty$, *w* is a positive function on (a, b), and

$$(f|g) = \int_a^b w(x)(f(x), g(x))dx.$$

Here (,) denotes the usual scalar product in \mathbb{C}^2 . Let us define the minimal reduced Dirac operator A_{V0}

$$A_{V0}: D_0 \longrightarrow \mathcal{H}, f \mapsto \frac{1}{w} (\Omega \frac{df}{dx} + Vf) \equiv \hat{D}f,$$
$$D_0 = \{ f \in \mathcal{AC}_c((a, b), \mathbb{C}^2) | A_{V0}(f) \in \mathcal{H} \}.$$

Here \mathcal{AC}_c means absolutely continuous with compact support, whereas V is a 2 × 2 Hermitian valued function on (a, b), and

$$\Omega = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right)$$

Further assumptions:

- w and V are measurable on (a, b)
- 2 w is positive a.e. in (a, b)
- Iwl and IVI are locally integrable

We will say that A_{V0} is regular in a (in b) if $a > -\infty$ ($b < \infty$) and such conditions are satisfied in [a, b) (in (a, b]). A_{V0} is regular if it is regular both in a and b.

We say that f is locally $\mathcal{L}_2((a,b);w)^2$ (write $\mathcal{L}_2((a,b);w)_{loc}^2$) if $f|_{(x,y)} \in \mathcal{L}_2((x,y);w)^2$ for any $[x,y] \subset (a,b)$.

Green's formula: for $f, g \in \mathcal{L}_2((a, b); w)^2_{loc}$ set

$$[f,g]_x^y := {}^t \bar{f}(x)\Omega g(x) - {}^t \bar{f}(y)\Omega g(y).$$

Then the following formula holds

$$\int_{x}^{y} [(\hat{D}f, g)(s) - (f, \hat{D}g)(s)]w(s)ds = [f, g]_{x}^{y}.$$

Set

$$D := \{ f \in \mathcal{H} | f \in \mathcal{AC}, \hat{D}f \in \mathcal{H} \}.$$

Then, we define on D the maximal reduced Dirac operator A_V as

$$A_V: D \longrightarrow \mathcal{H}, f \mapsto A_V f := \hat{D} f.$$

PROP. (W1, TH. 3.1)

If $f \in D_0$ and $g \in D$ then $(A_{V0}f|g) = (f|A_Vg)$.

PROOF: if $f \in D_0$ let be supp $(f) \in [x, y] \subset (a, b)$. Then we can apply the Green's formula. \Box

This means that A_{V0} is Hermitian but not yet that it is symmetric. To this end we need to show that D_0 is dense in \mathcal{H} . This will be easily done for regular operators. Strategy: if $[x, y] \subset (a, b)$, $\hat{D}|_{[x,y]}$ is regular.

Let us consider the case \hat{D} is regular. Define $D_1 = \{d \in D | f(a) = f(b) = 0\}$. This define the operator $A_{V1} = A_v|_{D_1}$: $A_{V0} \subseteq A_{V1} \subseteq A_V$.

PROP. (W1, TH. 3.3)

If \hat{D} is regular and $f \in D_1$, $g \in D$ then $(A_{V1}f|g) = (f|A_Vg)$.

Again, this means that A_{V1} is Hermitian.

We now need some technical results.

Prop. (W1, Th. 3.4)

If \hat{D} is regular and $\lambda \in \mathbb{C}$ then: a) Im $(A_{V1} - \lambda) = \text{Ker}(A_V - \bar{\lambda})^{\perp};$ b) Im $(A_{V1} - \lambda)^{\perp} = \text{Ker}(A_V - \bar{\lambda}).$

PROOF: a) Assume $f \in \text{Im}(A_{V1} - \lambda)$ and let *h* be the unique solution of the Cauchy problem $(\hat{D} - \lambda)h = f$, h(a) = 0. Moreover, let g_1, g_2 be the solution of $(\hat{D} - \bar{\lambda})g = 0$ with Cauchy condition $g_1(b) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $g_2(b) = -\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ respectively. Then

$$(f|g_i) = ((\hat{D} - \lambda)h|g_i) = ((\hat{D} - \lambda)h|g_i) - (h|(\hat{D} - \bar{\lambda})g_i) = [h, g_i]_a^b = \bar{h}_{(i)}(b),$$

where $h_{(i)}$, i = 1, 2 is the *i*-th component of the \mathbb{C} vector. Then $h \in D_1 \Leftrightarrow f \perp g_i$. This proves a). b) as dim Ker $(A_V - \overline{\lambda}) = 2 < \infty$ we have a) \Rightarrow b).

Prop. (W1, Th. 3.5)

Let \hat{D} be regular and $\alpha, \beta \in \mathbb{C}^2$. Then $\exists g \in D$ (not unique) s.t. $g(a) = \alpha$ and $g(b) = \beta$.

PROOF: Take g_1, g_2 solutions of the Cauchy problems $\hat{D}g_i = 0$, i = 1, 2 and $g_1(b) = -\binom{0}{1}, g_2(b) = \binom{1}{0}$ respectively. Then $g_i \in D$ and any $f \in \text{Ker}A_V$ takes the form $f = \mu g_1 + \nu g_2$. In particular we can choose f s.t. $(f|g_i) = \bar{\beta}_{(i)}$. Take h as the unique solution of $\hat{D}h = f, h(a) = 0$. Then:

$$\bar{\beta}_{(i)} = (f|g_i) = (\hat{D}h|g_i) = (\hat{D}h|g_i) - (h|\hat{D}g_i) = [h, g_i]_a^b = \bar{h}(b)_{(i)}$$

so that $h(b) = \beta$. In the same way construct $k \in D$ such that $k(a) = \alpha$, k(b) = 0. Then g = h + k.

PROP. (W1, TH. 3.6)

Let \hat{D} be regular. Then a) A_{V1} is symmetric, b) $A_V = A_{V1}^{\dagger}$, c) $A_{V1} = A_V^{\dagger}$. In particular A_{V1} is closed.

PROOF: a) First we have to prove that D_1 is dense in \mathcal{H} . Let $f \perp D_1$ and g a solution of $\hat{D}g = f$, so that $f \in D$. $\forall h \in D_1$ we have

$$(g|A_{V1}h) = (A_Vg|h) = (f|h) = 0.$$
(1)

Then $g \perp \text{Im}(A_{V1}) \Rightarrow g \in \text{Ker}(A_V)$ and then f = 0.

b) Obviously $A_V \subseteq A_{V1}^{\dagger}$. Viceversa take $f \in D(A_{V1}^{\dagger})$. Set $h = A_{V1}^{\dagger}f$ and solve $\hat{D}g = h$. Then $g \in D(T)$. If $k \in D_1$ then

$$(f - g|A_{V1}k) = (A_V(f - g)|k) = 0$$

so that $f - g \in (\operatorname{Im}(A_{V1}))^{\perp} = \operatorname{Ker}(A_V) \subset D$. Then $f \in D$.

c) From b) we have $A_{V1}^{\dagger}{}^{\dagger} = A_V^{\dagger}$. By construction $A_{V1} \subseteq A_{V1}^{\dagger}{}^{\dagger}$, so that $A_{V1} \subseteq A_V^{\dagger}$. Now, $A_{V1} \subseteq A_V \Rightarrow A_V^{\dagger} \subset A_{V1}^{\dagger} = A_V$. Take $f \in D(A_V^{\dagger})$. The $A_V^{\dagger}f = A_V f$ and $(A_V f|g) = (A_V^{\dagger}f|g) = (f|A_V g) \quad \forall g \in D$.

Then

$$0 = (A_V f|g) - (f|A_V g) = [f,g]_a^b \qquad \forall \ g \in D.$$

In particular, choosing $g_i \in D$ s. t, $g_i(a) = 0$ and $g_1(b) = -\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $g_2(b) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, we get f(b) = 0. In a similar way f(a) = 0. Then $f \in D_1$ and $A_{V1} = A_V^{\dagger}$. The closure of A_{V1} follows from the next exercise.

EXERCISE: Shew that a densely defined operator A is closable iff A^{\dagger} is adjointable and then $\bar{A} = A^{\dagger \dagger}$.

PROP. (W1, TH. 3.7)

Let \hat{D} arbitrary. Then A_{V0} is symmetric and $A_{V0}^{\dagger} \subseteq A_V$.

PROOF: For any $I \equiv [x, y] \subset (a, b)$ define $A_{V1,I}$ as \hat{D} on the domain $D_{1,I} = \{f \in D | f(x) = 0 \forall x \in (a, x] \cup [y, b)\}$. Then $\bar{D}_{1,I} = \mathcal{L}_2(I; w)^2$. The density of D_0 follows from $D_0 = \cup_I D_{1,I}$. Assume $f \in D(A_{V0}^{\dagger})$ and $g \in D_{1,I}$. Then $(A_{V0}^{\dagger}f|g) = (f|A_{V0}g) = (f|A_{V1,I}g)$ so that

$$f|_{I} \in D(A_{V1,I}^{\dagger})|_{I} = D_{I} := \{ f \in \mathcal{L}_{2}(I;w)^{2} | f \in \mathcal{AC}, \ \hat{D}f \in \mathcal{L}_{2}(I;w)^{2} \}, \Rightarrow (A_{V0}^{\dagger}f)_{I} = (\hat{D}f)|_{I} \Rightarrow \hat{D}f = A_{V0}^{\dagger}f \in \mathcal{H}.$$

EXERCISE: Shew that if \hat{D} is regular then $A_{V1} = \bar{A}_{V0} = A_{V0}^{\dagger}^{\dagger}$.

In the general case $A_{V1} := \overline{A}_{V0} = A_{V0}^{\dagger}^{\dagger}$.

PROP. (W1, TH. 3.9)

 $A_{V0}^{\dagger} = A_{V1}^{\dagger} = A_V.$

PROOF: The first identity is obvious. Also we know that $A_{V0}^{\dagger} \subseteq A_V$. On the other hand from $(A_{V0}f|g) = (f|A_Vg) \ \forall f \in D_0, g \in D$ and the density of D_0 it follows $g \in D(A_{V0}^{\dagger})$.

The Wronskian of two solutions f, h of $\hat{D}g = \lambda g$ is

$$W(f,h;x) := \det \begin{pmatrix} f_{(1)}(x) & h_{(1)}(x) \\ f_{(2)}(x) & h_{(2)}(x) \end{pmatrix} = [f,gx].$$

NOTE: *f* and *h* determine a fundamental system for $\hat{D}g = \lambda g$ iff $W(f, h; x) \neq 0$ for some $x \in (a, b)$.

PROP. (W1, TH. 5.2)

Assume h, k fundamental system of $\hat{D}g = \lambda g$ and assume |wf| is locally integrable in (a, b). Then all solutions of $(\hat{D} - \lambda)g = f$ have the form

$$g(x) = a(x)h(x) + b(x)k(x),$$

$$a(x) = a_0 - \int_c^x W(h,k;s)^{-1}(\bar{k}(s),f(s))w(s)ds$$

$$b(x) = b_0 + \int_c^x W(h,k;s)^{-1}(\bar{h}(s),f(s))w(s)ds, \qquad c \in (a,b).$$

PROOF. Variation of constant: g(x) = a(x)h(x) + b(x)k(x) and $(\hat{D} - \lambda)g = f$ imply $\begin{pmatrix} h_1 & k_1 \\ h_2 & k_2 \end{pmatrix} \begin{pmatrix} da/dx \\ db/dx \end{pmatrix} = -w\Omega f$,

so that

$$\begin{pmatrix} da/dx \\ db/dx \end{pmatrix} = \frac{w(x)}{W(h,k;x)} \begin{pmatrix} -k_1 & -k_2 \\ h_1 & h_2 \end{pmatrix} f.$$

Prop.

If h and k are a fundamental system for $(\hat{D} - \lambda)g = 0$, then $y(x) = \bar{h}(x)/\bar{W}(h,k;x)$ and $\chi(x) = \bar{k}(x)/\bar{W}(h,k;x)$ solve $(\hat{D} - \bar{\lambda})g = 0$.

PROOF: $[\Omega \partial_x + V(x) - w(x)\lambda]h(x) = 0 \Rightarrow [\Omega \partial_x + \bar{V}(x) - w(x)\bar{\lambda}]\bar{h}(x) = 0.$ Then $dW(h,k;x)/dx = -(\bar{k}(x), (V(x) - \bar{V}(x))h(x))$ gives

$$\begin{split} w(x)(\hat{D} - \bar{\lambda}) \frac{\bar{h}(x)}{\bar{W}(h,k;x)} &= -\frac{\Omega}{\bar{W}(h,k;x)^2} \bar{h}(x)(k(x), (V(x) - \bar{V}(x))\bar{h}(x)) \\ &+ (V(x) - \bar{V}(x)) \frac{\bar{h}(x)}{\bar{W}(h,k;x)} =: z(x). \end{split}$$

 Ω and $V(x) - \overline{V}(x)$ antisymmetric imply (h(x), z(x)) = 0. By definition of W(k(x), z) = 0. Then $z(x) \in \{h(x), k(x)\}^{\perp} = 0$.

Prop. (W1, Th. 5.3)

Assume $\exists \lambda_0 \in \mathbb{C}$ s.t. all solutions of $(\hat{D} - \lambda_0)g = 0$ and $(\hat{D} - \bar{\lambda}_0)g = 0$ lie right in $\mathcal{L}_2((a, b); w)^2$. Then it holds for every $\lambda \in \mathbb{C}$.

PROOF: Write $(\hat{D} - \lambda)g = 0$ as $(\hat{D} - \lambda_0)g = (\lambda - \lambda_0)g$. Choose a fundamental system h, k for $(\hat{D} - \lambda_0)g = 0$. Then

$$g(x) = a_0 h(x) + b_0 k(x) - (\lambda - \lambda_0) k(x) \int_c^x w(s)(\chi(s), g(s)) ds + (\lambda - \lambda_0) h(x) \int_c^x w(s)(y(s), g(s)) ds.$$

By hyp. $y, \chi \in \mathcal{L}_2((c,b); w)^2$. Set

$$M := 2|\lambda - \lambda_0|^2 \left[\int_c^b (|y(s)|^2 + |\chi(s)|^2) w(s) ds \right], \qquad A = \max\{|a_0|, |b_0|\}.$$

Using Cauchy and some manipulations we get

$$|g(x)|^{2} \leq 2A^{2}(|h(x)| + |k(x)|)^{2} + M(|h(x)| + |k(x)|)^{2} \int_{c}^{x} |g(s)|^{2} w(s) ds.$$

As $|h(x)| + |k(x)| \in \mathcal{L}_2((c, b), w)^2$ it exists $d \in (c, b)$ such that

$$\int_{d}^{b} (|h(x)| + |k(x)|)^{2} w(x) dx \le \frac{1}{2M}$$

so that

$$\int_{d}^{z} |g(x)|^{2} w(x) dx \leq 2A^{2} \int_{d}^{b} (|h(x)| + |k(x)|)^{2} w(x) dx + \frac{1}{2} \int_{c}^{z} |g(x)|^{2} w(x) dx.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

As this is true for any $z > d \Rightarrow g \in \mathcal{L}_2((d, b); w)^2$.

Define the deficiency indices $m^{\pm} = \dim K^{\pm}$ where

$$K^{\pm} = \operatorname{Ker}(A_V \mp i) = \operatorname{Im}(A_{V1} \pm i)^{\perp}.$$

LEMMA (VON NEUMANN I; W2, TH. 8.12)

 $D=D_1\oplus K^+\oplus K^-.$

PROOF: Assume $g \in D$. As A_{V1} is closed $\operatorname{Im}(A_{V1} + i)$ is closed and we can write $\operatorname{Im}(A_V + i) = \operatorname{Im}(A_{V1} + i) \oplus \operatorname{Im}(A_V + i) \cap (\operatorname{Im}(A_{V1} + i))^{\perp}$. Then $(A_{V1} + i)g_0 + g_1, g_1 \in (\operatorname{Im}(A_{V1} + i))^{\perp}$. Set $g_+ = ig/2$. Then one easily sees that $g_- := g - g_0 - g_+ \in K^-$. Then $g = g_0 + g_- + g_+$. Finally we see that $g = 0 \Rightarrow g_0 = g_+ = g_-$. Indeed,

$$0 = g = A_{V1}^{\dagger}g_0 + ig_+ - ig_-.$$

Then $(A_{V1} - i)g_0 = 2ig_-$. But $g_- \in (\operatorname{Im}(A_{V1} - i))^{\perp}$ then $g_- = 0$. Similarly $g_+ = 0$ and then $g_0 = 0$.

Define the right deficiency indices

$$m_b^{\pm} := \dim\{g \in \operatorname{Ker}(\hat{D} \mp i) \mid g \in \mathcal{L}_2((a,b);w)_{right}^2\}.$$

Lemma

 $m_b^+ + m_b^- \ge 2.$

PROOF: Let \hat{D}_c and \hat{D}_{c0} the maximal and the closed minimal operators associated to \hat{D} in $\mathcal{L}_2((c, b); w)^2$, a < c < b. \hat{D} is regular in [c, d], then \exists $h, k \in \hat{D}_0$ such that h(x) = k(x) = 0 for x > d and $h(c) = \vec{v}_1$, $k(c) = \vec{v}_2$ are a basis for \mathbb{C}^2 . Thus follows

$$D(\hat{D}_{c0}) + L(h,k)_{\mathbb{C}} \subset D(\hat{D}_{c})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

so that $\dim(D(\hat{D}_c)/D(\hat{D}_{c0})) \ge 2$. But from von Neumann I, $m_b^+ + m_b^- = \dim(D(\hat{D}_c)/D(\hat{D}_{c0})).$

PROP. (WEYL'S ALTERNATIVE)

Suppose \hat{D} real ($\bar{V} = V$), and consider the equation $(\hat{D} - \lambda)g = 0$. Then either

- **1** $\forall \lambda \in \mathbb{C}$ all solutions lie right in $\mathcal{L}_2((a, b); w)$ (limit circle case *LCC*) or
- Q ∀λ ∈ C\R ∃!, up to a multiplicative constant, solution which lies right in L₂((a, b); w) (limit point case LPC)

PROOF: \hat{D} is real \Rightarrow if g is a solution for a given λ , than \bar{g} is for λ . Then, as dim Ker $(\hat{D} - \lambda) = 2$ it suffices to show that if $\lambda \in \mathbb{C} \setminus \mathbb{R}$ then exists at least a a solution. As \hat{D} is real then $m_b^+ = m_b^- \ge 1$.

Obviously similar results hold true in a.

Prop.

If A is a closed symmetric operator and $Im(A \pm i) = H$, then A is selfadjoint.

PROOF: Take $y \in D(A^{\dagger})$. By hypothesis $\exists x_{\pm} \in D(A)$ s.t. $(A^{\dagger} \pm i)y = (A \pm i)x_{\pm}$. As $A = A^{\dagger}|_{D(A)}$ we have $(A^{\dagger} \pm i)(y - x_{\pm}) = 0$. But $\operatorname{Ker}(A^{\dagger} \pm i) = (\operatorname{Im}(A^{\dagger} \pm i))^{\perp} = 0$. Then $y = x_{\pm} \in D(A)$. Then $A = A^{\dagger}$. \Box

Prop. (W1, Th. 5.8(I))

Let \hat{D} be real and $\lambda \in \mathbb{R}$. If \hat{D} is LPC at both a and b then $A_V = A_{V1}$ is the only selfadjoint extension of A_{V1} .

PROOF: Using the same methods as in the last Lemma, it is easy to show that $m^{\pm} = m_a^{\pm} + m_b^{\pm} - 2$. As \hat{D} is real, and is LPC at both hands, then $m^+ = m^- = 0$. Then Im $(A_{V1} \pm i) = \mathcal{H}$ and A_{V1} is selfadjoint.

Prop. (W1, Th. 6.8)

Let \hat{D} be real. If the non vanishing constant functions 1 do not lie right in $\mathcal{L}_1((a,b);w)$, then \hat{D} is LPC at b.

PROOF: Take a fundamental system h, k for $\hat{D}g = 0$ and set W := |W(h, k; x)|. It is easy to check that W is constant (as \hat{D} is real). Then

$$Ww(x) \le w(x)(|h_1k_2| + |h_2k_1|) \le w(x)|h(x)||k(x)| \le \frac{1}{2}w(x)(|h(x)|^2 + |k(x)|^2).$$

Then, if *w* does not lie right in $\mathcal{L}_1((a, b); w)$, *h* and *k* cannot lie both right in $\mathcal{L}_1((a, b); w)$.

Part II

Physical applications

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

M, **g** four dimensional manifold with Lorentzian metric $\mathbf{g} = g_{\mu\nu}dx^{\mu} \otimes dx^{\nu} = \eta_{ab}e^a \otimes e^b$, $\eta = \text{diag}\{-1, 1, 1, 1\}$. FLAT DIRAC MATRICES: Γ^a , a = 0, 1, 2, 3 and $\Gamma_a = \eta_{ab}\Gamma^b$ satisfy $\{\Gamma_a, \Gamma_b\} = -2\eta_{ab}$. CURVED DIRAC MATRICES: $\gamma_{\mu} = e^a_{\mu}\Gamma_a \Rightarrow \{\gamma_{\mu}, \gamma_{\nu}\} = -2g_{\mu\nu}$. $S \to M$ principal spin bundle with infinitesimal Levi-Civita connection ω , $P \to M$ principal U(1) bundle with infinitesimal connection A. In local gauge $S \otimes P \to M$ the Dirac equation for a field ψ having charge qand mass μ is

$$\left[-i\hbar\gamma^{\mu}\left(\partial_{\mu}+\frac{1}{4}\omega_{\mu}^{ab}\Gamma_{a}\Gamma_{b}+i\frac{q}{c}A_{\mu}\right)+\mu c^{2}\right]\psi=0.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

TIME EVOLUTION: $i\hbar\partial_t \psi = \hat{H}\psi$, w.r.t. a chosen foliation Σ_t of M. Unitary evolution requires \hat{H} Hermitian operator. If M, **g** is a stationary spacetime then \hat{H} is time independent.

PROBLEM: consider selfadjointness of \hat{H} in $\mathcal{H} = \mathcal{L}_2(\vec{x}, \mu)^4$ where μ induced by

$$(\psi|\phi) = \int_{\Sigma} \sqrt{-g} (\psi, \Gamma^0 \gamma^t \phi) dx^3.$$

where (,) is the usual sesquilinear product in \mathbb{C}^4 .

STRATEGY: Exploit variable separation to reduce the problem to the one of a reduced Dirac operator.

Reissner-Nordström anti de Sitter black hole manifold ($c = 1, \hbar = 1$)

$$\begin{aligned} \mathbf{g} &= -f(r)dt^2 + \frac{1}{f(r)}dr^2 + r^2 d\Omega^2, \\ f(r) &= 1 + \frac{r^2}{L^2} - \frac{2M}{r} + \frac{Q^2}{r^2}; \qquad t \in \mathbb{R}, \ r \in (r_+, \infty), \ \Omega \in S^2, \\ A_\mu &= \delta_\mu^t \frac{Q}{r}. \end{aligned}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 r_+ is the larger root of f(r). Gamma matrices

$$\Gamma^0 = \begin{pmatrix} \mathbb{I} & \mathbb{O} \\ \mathbb{O} & -\mathbb{I} \end{pmatrix}, \qquad \vec{\Gamma} = \begin{pmatrix} \mathbb{O} & \vec{\sigma} \\ -\vec{\sigma} & \mathbb{O} \end{pmatrix},$$

where $\vec{\sigma}$ are the Pauli matrices. Choose the vierbein $e^0 = \sqrt{f} dt$, $e^1 = r d\theta$, $e^2 = dr/\sqrt{f}$, $e^3 = r \sin\theta d\phi$.

Set $D_{\mu} := \partial_{\mu} + \frac{1}{4} \omega_{\mu}^{ab} \Gamma_a \Gamma_b$. Then

$$\begin{split} \hat{H} &= -i\frac{1}{4}\omega_t^{ab}\Gamma_a\Gamma_b + \frac{qQ}{r} - if(r)\Gamma^0\Gamma^2 D_r + \frac{\sqrt{f(r)}}{r}\Gamma^0\Gamma^1 \hat{L} \\ &+ \Gamma^0\sqrt{f(r)}\mu c^2, \\ \hat{L} &:= -i(D_\theta + i\Gamma^2\sin\theta D_\phi). \end{split}$$

The Hilbert space is $\mathcal{H} = \mathcal{L}_2((r_+, \infty) \times (0, \pi) \times (0, 2\pi); \sin^2 \theta r^2 f(r)^{-\frac{1}{2}} dr d\theta d\phi).$

EXERCISE: Let compute the spin connection coefficients ω_{μ}^{ab} . Recall

$$de^a + \omega^{ab} \wedge \eta_{ac}e^c = 0, \qquad \omega^{ab} + \omega^{ba} = 0.$$

We want to look at essential selfadjointness of \hat{H} on the domain $D_c = C_c^{\infty}((r_+, \infty) \times (0, \pi) \times (0, 2\pi))$. Here one easily verify that both \hat{H} and \hat{L} are symmetric (D_c is dense in \mathcal{H}). This can be achieved by setting

$$\psi(r,\theta,\phi) = \begin{pmatrix} R_1(r)S_1(\theta,\phi) \\ R_2(r)S_2(\theta,\phi) \\ R_2(r)S_2(\theta,\phi) \\ R_1(r)S_1(\theta,\phi) \end{pmatrix}$$

EXERCISE: Shew that the angular operator \hat{L} then reduces to the operator

$$\hat{L}_{red} = -i(D_{\theta} + \sin\theta\sigma_3 D_{\phi}),$$

on $C_c^{\infty}((0,\pi) \times (0,2\pi))$, which is dense in $\mathcal{H}_{\theta} = \mathcal{L}_2((0,\pi) \times (0,2\pi); \sin^2 \theta d\theta d\phi)$.

It is easy to see that the spherical spinors $\Omega_{j,l,m}$, $j \in \mathbb{Z} + \frac{1}{2}$ are a complete set for \mathcal{H}_{θ} and diagonalize \hat{L}_{red} , with eigenvalues of the form $k, k \in \mathbb{Z} + \frac{1}{2}$. Then $(\operatorname{Im}(\hat{L}_{red} \pm i))^{\perp} = 0$, and then \hat{L}_{red} is essentially selfadjoint. This means that we can reduce to consider the reduced Hamiltonians

$$\hat{H}_{red}^{k} := \begin{pmatrix} \sqrt{f}\mu + \frac{qQ}{r} & -f\partial_{r} + k\frac{\sqrt{f}}{r} \\ f\partial_{r} + k\frac{\sqrt{f}}{r} & -\sqrt{f}\mu + \frac{qQ}{r} \end{pmatrix}$$

with domain $C_c^{\infty}((r_+,\infty))^2$ dense in $\mathcal{L}_2((r_+,\infty);f(r)^{-1}dr)^2$, where we have defined

$$\left(egin{array}{c} R_1(r) \ R_2(r) \end{array}
ight) = rac{1}{rf^{rac{1}{4}}} \psi_{red}(r).$$

This is a reduced Dirac operator with w = 1/f and V of class C^{∞} in (r_+, ∞) .

(日)

To look at $r \sim r_+$ introduce tortoise coordinate y so that

$$\frac{dy}{dr} = -\frac{1}{f(r)}, \qquad y \in (0,\infty),$$

where $r = r_+$ correspond to $y = \infty$. In this coordinate the measure function becomes w(y) = 1 and

$$\hat{H}_{red}^k := \begin{pmatrix} \sqrt{f}\mu + \frac{qQ}{r(y)} & \partial_y + k\frac{\sqrt{f}}{r(y)} \\ -\partial_y + k\frac{\sqrt{f}}{r(y)} & -\sqrt{f}\mu + \frac{qQ}{r(y)} \end{pmatrix}$$

As w = 1, at $y \sim \infty$ constant functions are not in \mathcal{L}_1 right and we are in LPC.

Near $r \sim \infty w(r) \sim L^2/r^2$ so we cannot use the same argument. EXERCISE: Shew that near $r \sim \infty$ the eigenvalue equation $(\hat{H}_{red}^k - \lambda)\psi_{red}$ takes the form

$$rac{d\psi_r ed}{dr} = rac{\mu L}{r} \sigma_2 \psi_{red} + O(rac{1}{r^2}).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From this it follows that a fundamental set of solutions is

$$\psi_{red}^{\pm}(r) = \frac{1}{r^{\pm \mu L}} (1 + O(\frac{1}{r}))$$

if $2\mu L \notin \mathbb{N}$, and

$$\begin{split} \psi^+_{red}(r) &= \frac{1}{r^{\mu L}} (1 + O(\frac{1}{r})), \\ \psi^-_{red}(r) &= r^{\mu L} (1 + O(\frac{1}{r})) + c \psi^+_{red}(r) \log(r/L), \end{split}$$

if $2\mu L$ is integer. Thus, ψ_{red}^+ lies right in \mathcal{L}_2 , whereas ψ_{red}^- does not iff $2\mu L \ge 1$. Thus, \hat{H} is essentially selfadjoint iff $\mu L \ge \frac{1}{2}$.

DIRAC OPERATOR ON KERR-NEWMAN ADS

Metric

$$\mathbf{g} = -\frac{\Delta_r}{\rho^2} \left[dt - \frac{a \sin^2 \theta}{\Xi} d\phi \right]^2 + \frac{\rho^2}{\Delta_r} dr^2 + \frac{\rho^2}{\Delta_\theta} d\theta^2 + \Delta_\theta \frac{\sin^2 \theta}{\rho^2} \left[a dt - \frac{r^2 + a^2}{\Xi} d\phi \right]^2 ,$$

where

$$\begin{split} \rho^2 &= r^2 + a^2 \cos^2 \theta \;, \qquad \Xi = 1 - \frac{a^2}{l^2} \;, \\ \Delta_r &= (r^2 + a^2) \left(1 + \frac{r^2}{l^2} \right) - 2mr + z^2 \;, \\ \Delta_\theta &= 1 - \frac{a^2}{l^2} \cos^2 \theta \;, \qquad z^2 = q_e^2 + q_m^2 \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

•

Electromagnetic potential

$$A = -\frac{q_e r}{\rho \sqrt{\Delta_r}} e^0 - \frac{q_m \cos \theta}{\rho \sqrt{\Delta_\theta} \sin \theta} e^1 ,$$

where we introduced the vierbein

$$e^{0} = \frac{\sqrt{\Delta_{r}}}{\rho} \left(dt - \frac{a \sin^{2} \theta}{\Xi} d\phi \right) ,$$

$$e^{1} = \frac{\sqrt{\Delta_{\theta}} \sin \theta}{\rho} \left(a dt - \frac{r^{2} + a^{2}}{\Xi} d\phi \right) ,$$

$$e^{2} = \frac{\rho}{\sqrt{\Delta_{r}}} dr ,$$

$$e^{3} = \frac{\rho}{\sqrt{\Delta_{\theta}}} d\theta .$$

Mass, angular momentum, electric and magnetic charge are

$$M = \frac{m}{\Xi^2}, \quad J = \frac{am}{\Xi^2}, \quad Q_e = \frac{q_e}{\Xi}, \quad Q_m = \frac{q_m}{\Xi}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

•

Choose gamma matrices

$$\Gamma^0 = \begin{pmatrix} \mathbb{O} & -\mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix} , \qquad \vec{\Gamma} = \begin{pmatrix} \mathbb{O} & -\vec{\sigma} \\ \vec{\sigma} & \mathbb{O} \end{pmatrix} ,$$

and a Newman-Penrose frame

$$\begin{split} \theta^{1} &= \frac{1}{\sqrt{2}} |Z(r,\theta)|^{\frac{1}{2}} \left[\frac{W(r)}{Z(r,\theta)} \left(dt + \frac{a \sin^{2} \theta}{\Xi} d\phi \right) + \frac{dr}{W(r)} \right] ,\\ \theta^{2} &= \frac{1}{\sqrt{2}} |Z(r,\theta)|^{\frac{1}{2}} \left[\frac{W(r)}{Z(r,\theta)} \left(dt + \frac{a \sin^{2} \theta}{\Xi} d\phi \right) - \frac{dr}{W(r)} \right] ,\\ \theta^{3} &= \frac{1}{\sqrt{2}} |Z(r,\theta)|^{\frac{1}{2}} \left[\frac{X(\theta)}{Z(r,\theta)} \left(a dt - \frac{r^{2} + a^{2}}{\Xi} d\phi \right) + i \frac{\sin \theta d\theta}{X(\theta)} \right] ,\\ \theta^{4} &= \overline{\theta}^{3} , \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

with

$$Z(r,\theta) = \frac{r^2 + a^2 \cos^2 \theta}{\Xi} , \quad W(r) = \frac{\sqrt{\Delta_r}}{\Xi^{\frac{1}{2}}} , \quad X(\theta) = \frac{\sqrt{\Delta_\theta} \sin \theta}{\Xi^{\frac{1}{2}}} .$$

Then

$$ds^2 = -2(\theta^1 \theta^2 - \theta^3 \theta^4) ,$$

and

$$A=-rac{1}{\sqrt{2|Z(r, heta)|}}\left[rac{H(r)}{W(r)}(heta^1+ heta^2)+rac{G(heta)}{X(heta)}(heta^3+ heta^4)
ight]\,,$$

where

$$H(r) = Q_e r$$
, $G(\theta) = Q_m \cos \theta$.

EXERCISE: Set

$$\mathcal{B}(r,\theta) = rac{i}{4} \log rac{r - ia \cos \theta}{r + ia \cos \theta} ,$$

Perform the transformation $\psi \mapsto S^{-1}\psi$, with

$$S = Z^{-\frac{1}{4}} \operatorname{diag}(e^{i\mathcal{B}}, e^{i\mathcal{B}}, e^{-i\mathcal{B}}, e^{-i\mathcal{B}}) ,$$

and introduce the new wave function

$$\tilde{\psi} = (\Delta_{\theta} \Delta_r)^{\frac{1}{4}} S^{-1} \psi \,.$$

Shew that then the Dirac equation takes the form

$$(\mathcal{R}(r) + \mathcal{A}(\theta))\tilde{\psi} = 0$$
,

where

$$\mathcal{R} = \begin{pmatrix} i\mu r & 0 & -\sqrt{\Delta_r}\mathcal{D}_+ & 0\\ 0 & -i\mu r & 0 & -\sqrt{\Delta_r}\mathcal{D}_- \\ -\sqrt{\Delta_r}\mathcal{D}_- & 0 & -i\mu r & 0\\ 0 & -\sqrt{\Delta_r}\mathcal{D}_+ & 0 & i\mu r \end{pmatrix},$$

$$\mathcal{A} = \begin{pmatrix} -a\mu\cos\theta & 0 & 0 & -i\sqrt{\Delta_{\theta}}\mathcal{L}_{-} \\ 0 & a\mu\cos\theta & -i\sqrt{\Delta_{\theta}}\mathcal{L}_{+} & 0 \\ 0 & -i\sqrt{\Delta_{\theta}}\mathcal{L}_{-} & -a\mu\cos\theta & 0 \\ -i\sqrt{\Delta_{\theta}}\mathcal{L}_{+} & 0 & 0 & a\mu\cos\theta \end{pmatrix},$$

and

$$\mathcal{D}_{\pm} = \partial_r \pm \frac{1}{\Delta_r} \left((r^2 + a^2) \partial_t - a \Xi \partial_{\phi} + i e q_e r \right) ,$$

$$\mathcal{L}_{\pm} = \partial_{\theta} + \frac{1}{2} \cot \theta \pm \frac{i}{\Delta_{\theta} \sin \theta} \left(\Xi \partial_{\phi} - a \sin^2 \theta \partial_t + i e q_m \cos \theta \right) .$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

From the exercise it follows

$$H = \left[\left(1 - \frac{\Delta_r}{\Delta_\theta} \frac{a^2 \sin^2 \theta}{(r^2 + a^2)^2} \right)^{-1} \left(\mathbb{I}_4 - \frac{\sqrt{\Delta_r}}{\sqrt{\Delta_\theta}} \frac{a \sin \theta}{r^2 + a^2} BC \right) \right] (\tilde{\mathcal{R}} + \tilde{\mathcal{A}}) ,$$

where

$$\begin{split} \tilde{\mathcal{R}} &= -\frac{\mu r \sqrt{\Delta_r}}{r^2 + a^2} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} \mathcal{E}_- & 0 & 0 & 0 \\ 0 & -\mathcal{E}_+ & 0 & 0 \\ 0 & 0 & 0 & \mathcal{E}_- \end{pmatrix} , \\ \tilde{\mathcal{A}} &= \frac{a\mu \cos \theta \sqrt{\Delta_r}}{r^2 + a^2} \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -\mathcal{M}_- & 0 & 0 \\ \mathcal{M}_+ & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathcal{M}_- \\ 0 & 0 & -\mathcal{M}_+ & 0 \end{pmatrix}) , \\ \mathcal{E}_{\pm} &= i \frac{\Delta_r}{a^2 + r^2} \left[\partial_r \mp \frac{a\Xi}{\Delta_r} \partial_{\phi} \pm i \frac{eq_e r}{\Delta_r} \right] , \\ \mathcal{M}_{\pm} &= \frac{\sqrt{\Delta_r} \sqrt{\Delta_\theta}}{r^2 + a^2} \left[\partial_{\theta} + \frac{1}{2} \cot \theta \pm \frac{i\Xi}{\Delta_{\theta} \sin \theta} \partial_{\phi} \mp \frac{eq_m \cot \theta}{\Delta_{\theta}} \right] , \\ B &= \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix} , \quad C = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} . \end{split}$$

satisfy $[B, C] = 0, B^2 = C^2 = \mathbb{I}_4.$

(ロト・日本)・モン・モン・モー のへの

The Hilbert space is $\mathcal{H}_{\langle\rangle} = \mathcal{L}^2 := (L^2((r_+,\infty) \times S^2; d\mu))^4$ with measure

$$d\mu = rac{r^2 + a^2}{\Delta_r} rac{\sin heta}{\sqrt{\Delta_{ heta}}} dr d heta d\phi,$$

and scalar product

$$\langle \tilde{\psi} | \tilde{\chi} \rangle = \int_{r_+}^{\infty} dr \int_0^{\pi} d\theta \int_0^{2\pi} d\phi \frac{r^2 + a^2}{\Delta_r} \frac{\sin \theta}{\sqrt{\Delta_\theta}} \, {}^t \tilde{\psi}^* \left(\mathbb{I}_4 + \frac{\sqrt{\Delta_r}}{\sqrt{\Delta_\theta}} \frac{a \sin \theta}{r^2 + a^2} BC \right) \tilde{\chi} \, d\theta$$

PROBLEM: Complete separability is made difficult by the presence of the matrix

$$\Xi^2(r, heta) := \mathbb{I}_4 + rac{\sqrt{\Delta_r}}{\sqrt{\Delta_ heta}} rac{a\sin heta}{r^2 + a^2} BC.$$

To solve it, let us introduce a second Hilbert space $\mathcal{H}_{()} = \mathcal{L}^2 := (L^2((r_+, \infty) \times S^2; d\mu))^4$, with scalar product

$$(\psi|\chi) = \int_{r_+}^{\infty} dr \int_0^{\pi} d\theta \int_0^{2\pi} d\phi \frac{r^2 + a^2}{\Delta_r} \frac{\sin\theta}{\sqrt{\Delta_\theta}} \, {}^t\psi^*\chi = \int d\mu^t \psi^*\chi \,.$$

EXERCISE: Shew that Ξ^2 is indeed an Hermitian bounded positive matrix function with bounded inverse, so that its positive square root Ξ is well defined as well as Ξ^{-1} . Next, shew that the map

$$V_{\Xi}: \mathcal{H}_{\langle\rangle} \mapsto \mathcal{H}_{\langle\rangle},$$

defined by $(V_{\Xi}\psi)(r, \theta, \phi)$ is an isomorphism of Hilbert spaces.

From such an isomorphism, it follows that essential selfadjointness of \hat{H} on a domain $D \subset \mathcal{H}_{\langle \rangle}$ is equivalent to essential selfadjointness of $V_{\Xi}\hat{H}V_{\Xi}^{-1}$ on $V_{\Xi}D \subset \mathcal{H}_{\langle \rangle}$. Now, set

$$\hat{H}_0 := \Xi^2 \hat{H} = \tilde{\mathcal{R}} + \tilde{\mathcal{A}}.$$

Prop.

 \hat{H} is essentially selfadjoint on $D \subset \mathcal{H}_{\langle \rangle}$ if and only if \hat{H}_0 is essentially selfadjoint on $D \subset \mathcal{H}_{\langle \rangle}$.

PROOF: The isomorphism V_{Ξ} implies that essential selfadjointness of \hat{H} on D is equivalent to essential selfadjointness of $V_{\Xi}\hat{H}V_{\Xi}^{-1} = \hat{\Xi}^{-1}\hat{H}_0\hat{\Xi}^{-1}$ on $V_{\Xi}D$, where $\hat{\Xi}^{-1}$ is the multiplication operator by Ξ^{-1} in over $\mathcal{H}_{()}$. As Ξ is real, bounded with bounded inverse, then $\hat{\Xi}^{-1}$ is selfadjoint over $\mathcal{H}_{()}$. Then

$$(\hat{\Xi}^{-1}\hat{H}_0\hat{\Xi}^{-1})^{\dagger} = \hat{\Xi}^{-1}\hat{H}_0^{\dagger}\hat{\Xi}^{-1}.$$

It is convenient to introduce the unitary map $V : \mathcal{H}_{()} \to \mathcal{H}_{()}$:

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 & i \\ i & 0 & -i & 0 \\ 0 & -1 & 0 & -1 \\ -1 & 0 & -1 & 0 \end{pmatrix},$$

and then to consider the operator $V\hat{H}_0V^{\dagger}$ on VD.

EXERCISE: Shew that

$$\begin{split} VH_0V^* &= \left(\begin{array}{cc} \frac{1}{r^2 + a^2}(ia\Xi\partial_{\phi} + eq_er + \mu r\sqrt{\Delta_r})\mathbb{I} & \frac{\Delta_r}{r^2 + a^2}\partial_r\mathbb{I} + \frac{\sqrt{\Delta_r}}{r^2 + a^2}\mathbb{U} \\ & -\frac{\Delta_r}{r^2 + a^2}\partial_r\mathbb{I} + \frac{\sqrt{\Delta_r}}{r^2 + a^2}\mathbb{U} & \frac{1}{r^2 + a^2}(ia\Xi\partial_{\phi} + eq_er - \mu r\sqrt{\Delta_r})\mathbb{I} \end{array}\right),\\ \mathbb{U} &= \left(\begin{array}{cc} -\mu a\cos(\theta) & i\sqrt{\Delta_\theta}(\partial_\theta + \frac{1}{2}\cot(\theta) + g) \\ i\sqrt{\Delta_\theta}(\partial_\theta + \frac{1}{2}\cot(\theta) - g)) & \mu a\cos(\theta) \end{array}\right). \end{split}$$

1 - () - (0))

Separation of variable is now obtained by looking at solutions of the eigenvalue problem of the form $\psi(r, \theta, \phi) = V\chi(r, \theta, \phi)$, with

$$\chi(r,\theta,\phi) = \varepsilon(\phi) \begin{pmatrix} R_1(r)S_2(\theta) \\ R_2(r)S_1(\theta) \\ R_2(r)S_2(\theta) \\ R_1(r)S_1(\theta) \end{pmatrix},$$

where $\varepsilon(\phi) \in C_c^{\infty}(0,2\pi), R(r) := \begin{pmatrix} R_1(r) \\ R_2(r) \end{pmatrix} \in C_c^{\infty}(r_+,\infty)^2$ and
$$S(\theta) := \begin{pmatrix} S_1(\theta) \\ S_2(\theta) \end{pmatrix} \in C_c^{\infty}(0,\pi)^2.$$

We now look at essential selfadjointness of $V\hat{H}_0V^*$ on the domain $D = C_c^{\infty}((r_+, \infty) \times S^2)^4 \subset \mathcal{H}_{()}.$ The first reduction arises by looking at the operator $i\partial_{\phi}$ on $C_c^{\infty}((0, 2\pi))$, with anti-periodic boundary conditions at 0 and at 2π . It is obviously essentially selfadjoint and the subspace L_k spanned by the eigenfunctions $e^{-ik\phi}$, $k \in \mathbb{Z} + \frac{1}{2}$ is such that $L^2((r_+, \infty), \frac{r^2 + a^2}{\Delta_r} dr)^2 \otimes L^2((0, \pi), \frac{\sin(\theta)}{\sqrt{\Delta_{\theta}}} d\theta)^2 \otimes L_k$ is a reducing subspace for $V\hat{H}_0V^*$.

The restriction $\hat{\mathbb{U}}_k \otimes I_k$ of \mathbb{U} to $C_0^{\infty}(0,\pi)^2 \otimes L_k$ (I_k is the identity operator on L_k) is

$$\mathbb{U}_{k} = \begin{pmatrix} -\mu a \cos(\theta) & i\sqrt{\Delta_{\theta}}(\partial_{\theta} + \frac{1}{2}\cot(\theta) + b_{k}(\theta)) \\ i\sqrt{\Delta_{\theta}}(\partial_{\theta} + \frac{1}{2}\cot(\theta) - b_{k}(\theta)) & \mu a \cos(\theta) \end{pmatrix},$$

where $b_k(\theta) := \frac{1}{\Delta_\theta \sin(\theta)} \Xi k - \frac{1}{\Delta_\theta} q_m e \cot(\theta)$.

Prop.

 $\hat{\mathbb{U}}_k$ is essentially self adjoint on $C_c^{\infty}(0,\pi)^2$ for any $k = n + \frac{1}{2}$, $n \in \mathbb{Z}$ iff $\frac{q_m e}{\Xi} \in \mathbb{Z}$.

PROOF-EXERCISE: \mathbb{U}_k has the form of a reduced Dirac operator acting on $S(\theta) := \begin{pmatrix} S_1(\theta) \\ S_2(\theta) \end{pmatrix} \in C_c^{\infty}(0,\pi)^2$. Consider the unitary transformations $W = \begin{pmatrix} 0^{-i} \\ 10 \end{pmatrix}$ and $R : L^2((0,\pi), \frac{\sin(\theta)}{\sqrt{\Delta_{\theta}}} d\theta)^2 \to L^2((0,\pi), \frac{1}{\sqrt{\Delta_{\theta}}} d\theta)^2$ $(RS)(\theta) := (\sin(\theta))^{\frac{1}{2}} S(\theta) =: \Theta(\theta).$

Shew that near $\theta_1 := 0$ and $\theta_2 := \pi$, the eigenvalue equation for $RW\mathbb{U}_k W^{\dagger} R^{\dagger}$ takes the form

$$(\theta - \theta_i)\partial_{\theta}\Theta = N_i\Theta + O((\theta - \theta_i)),$$

with

$$N_1 := \begin{pmatrix} -k + \frac{q_m e}{\Xi} & 0\\ 0 & k - \frac{q_m e}{\Xi} \end{pmatrix}, \qquad N_2 := \begin{pmatrix} k + \frac{q_m e}{\Xi} & 0\\ 0 & -k - \frac{q_m e}{\Xi} \end{pmatrix}.$$

Then, impose the LPC condition at both $\theta = 0$ and $\theta = \pi$ to complete the proof.

Indeed, one can prove that \mathbb{U}_k has a purely discrete spectrum, which is simple. Let us then introduce its (normalized) eigenfunctions $S_{k;j}(\theta) := \begin{pmatrix} S_{1\ k;j}(\theta) \\ S_{2\ k;j}(\theta) \end{pmatrix} \text{ with eigenvalues } \lambda_{k;j}. \text{ Then}$ $\mathcal{H}_{k,j} := L^2((r_+, \infty), \frac{r^2 + a^2}{\Delta_r} dr)^2 \otimes M_{k,j}, \text{ where } M_{k,j} := \{F_{k;j}(\theta, \phi)\}, \text{ with}$ $F_{k;j}(\theta, \phi) := S_{k;j}(\theta) \frac{e^{-ik\phi}}{\sqrt{2\pi}}, \text{ is a reducing subspace for } V\hat{H}_0 V^*. \text{ There, it acts as}$

$$h_{k,j} := \begin{pmatrix} \frac{1}{r^2 + a^2} (a \Xi k + eq_e r + \mu r \sqrt{\Delta_r}) & \frac{\Delta_r}{r^2 + a^2} \partial_r + \frac{\sqrt{\Delta_r}}{r^2 + a^2} \lambda_{k;j} \\ -\frac{\Delta_r}{r^2 + a^2} \partial_r + \frac{\sqrt{\Delta_r}}{r^2 + a^2} \lambda_{k;j} & \frac{1}{r^2 + a^2} (a \Xi k + eq_e r - \mu r \sqrt{\Delta_r}) \end{pmatrix}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うらつ

over $D_{k,j} := C_c^{\infty}(r_+,\infty)^2$

Prop.

$$\hat{h}_{k,j}$$
 is essentially selfadjoint on $C_0^{\infty}(r_+,\infty)^2$ iff $\mu l \geq \frac{1}{2}$.

PROOF: Choose the tortoise coordinate $y \in (0, \infty)$ defined by

$$dy = -\frac{r^2 + a^2}{\Delta_r} dr.$$

Then, $y \to \infty \Leftrightarrow r \to r_+^+$ and

$$h_{k,j} = \left(egin{array}{cc} 0 & -\partial_y \ \partial_y & 0 \end{array}
ight) + V(r(y)).$$

As constants are not in \mathcal{L}_1 right the limit point case holds for $h_{k,j}$ at $y = \infty$. To look at $r \to \infty$, set $x = \frac{1}{r}$. The eigenvalue equation takes the form

$$x\partial_x X = G(x)X,$$

where the smooth matrix G(x) is regular as $x \to 0^+$ and

$$\lim_{\alpha \to 0^+} G(x) = \begin{pmatrix} 0 & \mu l \\ \mu l & 0 \end{pmatrix}.$$

This has a singularity of the first kind, with eigenvalues $w_{\pm} = \pm \mu l$. It follows that the limit point case occurs at $r = \infty$ iff

$$\int_c^\infty \frac{dr}{r^2} r^{\pm 2\mu l} = \infty.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

For $\mu > 0$ this imply the assert.

BIBLIOGRAPHY

[W1]

Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics 1258. Berlin: Springer-Verlag, 1987.

[W2]

Weidmann, J.: Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics 68. Berlin: Springer-Verlag, 1980.

BC1]

F. Belgiorno, S.L. Cacciatori, "Quantum Effects for the Dirac Field in Reissner-Nordstrom-AdS Black Hole Background," published in Class.Quant.Grav.25:105013,2008.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[BC2]

F. Belgiorno, S. L. Cacciatori, "The Dirac Equation in Kerr-Newman-AdS Black Hole Background," J. Math. Phys. 51, 033517 (2010).