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Mathematical tools



ADJOINTABLE, SYMMETRIC AND SELF ADJOINT
OPERATORS

‘H: complex separable Hilbert space, with sesquilinear product (|);
A = (A, D,) linear operator in O(H) if
@ Dy, is a linear subset of H,
@ A: Dy — His alinear map
A is adjointable if densely defined: Dy = H.
Set Dy = {x € H|Ds — C,z +— (x]Az) is continuous }.
Riesz theorem: Jly s.7. (y|z) = (x|Az). Then AT on D, is defined by
y =: Afx.
A is symmetric if A C AT (D4 C D+ and ATx = Ax Vx € Dy).
A is selfadjoint if A = AT,



CLOSABLE OPERATORS AND CLOSURE

The graphic of A € O(H) is the set G4 = {(x,y) € H X H|x € D4,y = Ax}.

EXERCISE: G is the graphic of an operator iff it is a linear subset of H x H
and (0,y) e G < y=0.

A'is closed if Gy is closed. A is closable if Gy is a graphic; then G4 =: G
defines A, the closure of A.

EXERCISE: A is closable iff for any sequence {x,} C Djy,
x, — 0 = Ax, — 0.

A is essentially selfadjoint if A is closable and A = AT

EXERCISE: If A is closed then ImA is closed.



MINIMAL REDUCED DIRAC OPERATORS

On H := L>((a, b);w)?, where —oo < a < b < 400, w is a positive
function on (a, b), and

b
(flg) = / WO (), 9(1))dx.

Here (, ) denotes the usual scalar product in C2.
Let us define the minimal reduced Dirac operator Ay

1 _d .
AV() ZD() —’H,f'—> *(fo +Vf) EDf,
w dx

Dy = {f € AC.((a,b),C*)|Avo(f) € H}.

Here AC, means absolutely continuous with compact support, whereas V is
a2 x 2 Hermitian valued function on (a, b), and

Q:(_"l (1))



Further assumptions:
@ w and V are measurable on (a, D)
@ w is positive a.e. in (a, )
© Iwl and IVI are locally integrable

We will say that Ay is regular in a (in b) if a > —oo (b < o0) and such
conditions are satisfied in [a, b) (in (a, b]). Ay is regular if it is regular both
in a and b.

We say that f is locally £2((a, b); w)? (write L((a, b); w)7,) if

(o) € L2((x,9);w)? for any [x.3]  (a,b).

GREEN’S FORMULA: for f, g € Lo((a,b); w)7,. set

[f, 8l = "f(x)Qg(x) =" f(y)Q().

Then the following formula holds

[ 10r.06) ~ . Do) s)wts)ds = .l

X



MAXIMAL REDUCED DIRAC OPERATORS

Set R
D :={f € H|f € AC,Df € H}.

Then, we define on D the maximal reduced Dirac operator Ay as

Ay :D — H, f — Ayf := Df.

PropP. (W1, TH. 3.1)

Iff € Do and g € D then (Avof|g) = (flAvg).

PROOF: if f € Dy let be supp(f) € [x,y] C (a,b). Then we can apply the
Green’s formula. [

This means that Ay is Hermitian but not yet that it is symmetric. To this end
we need to show that Dy is dense in . This will be easily done for regular
operators. Strategy: if [x,y] C (a,b), D}y, is regular.



REGULAR REDUCED DIRAC OPERATOR

Let us consider the case D is regular.
Define D| = {d € D|f(a) = f(b) = 0}. This define the operator
Ay = A|p;:

Ayo C Ay CAy.

ProOP. (W1, TH. 3.3)

If D is regular and f € Dy, g € D then (Avif|g) = (f|lAve).

Again, this means that Ay, is Hermitian.

‘We now need some technical results.



ProP. (W1, TH. 3.4)

If D is regular and \ € C then:
a)Im(Ay; — \) = Ker(Ay — \)*;

b) Im(Ay; — A\)+ = Ker(Ay — \).

PROOF: a) Assume f € Im(Ay; — A) and let & be the unique solution of the
Cauchy problem (D — \)h = f, h(a) = 0. Moreover, let g;, g be the
solution of (D — X\)g = 0 with Cauchy condition g (b) = ({) and

g2(b) = — (1) respectively. Then

(flg:) = (D = Mhlgi) = (D = Mhlgi) — (hl(D — N)gi) = [, gila = he) (b),

where h;), i = 1,2 is the i-th component of the C vector. Then h € D <
J L gi. This proves a).
b) as dim Ker(Ay — \) = 2 < oo we have a) = b). O



Propr. (W1, TH. 3.5)

Let D be regular and o, 3 € C2. Then 3g € D (not unique) s.t. g(a) = a
and g(b) = .

PROOF: Take g1, g» solutions of the Cauchy problems Dg; = 0, i = 1,2 and
g1(b) = — (9), g2(b) = (§) respectively. Then g; € D and any f € KerAy
takes the form f = ug; + vg». In particular we can choose f s.t.

(flgi) = B(- Take h as the unique solution of Dh = £, h(a) = 0. Then:

By = (flgi) = (Dhlgi) = (Dhlg:) — (hDgi) = [h, gile = h(b)

so that h(b) = (.
In the same way construct k € D such that k(a) = «, k(b) = 0.
Theng = h + k. O



Propr. (W1, TH. 3.6)

Let D be regular. Then a) Ay, is symmetric, b) Ay = AI,l, c)Ay, = AI,. In
particular Ay, is closed.

PROOF: a) First we have to prove that D; is dense in H. Letf | Dy and g a
solution of Dg = f, so that f € D. Vh € D| we have

(glAvih) = (Avglh) = (flh) = 0. (1)
Then g | Im(Ay;) = g € Ker(Ay) and then f = 0.

b) Obviously Ay C A{,l. Viceversa take f € D(A;[,I). Seth = A}L,If and solve
Dg = h. Then g € D(T). If k € D, then

(f — glAvik) = (Ay(f — g)[k) =0

sothatf — g € (Im(Ay;))* = Ker(Ay) C D. Thenf € D.



¢) From b) we have AI/IT = AI,. By construction Ay; C A;r/lT, so that
Ay C A},
Now, Ay C Ay = Al, C A}, = Ay. Take f € D(A}). The A},f = Ayf and

(Avflg) = (Alfls) = (flAve) ~ Vg eD.
Then
0= (Avflg) — (flAve) = If.gl,  VgeD.

In particular, choosing g; € D's. t, gi(a) = 0 and g;(b) = — (9).

g2 (b) = (§). we get f(b) = 0. In a similar way f(a) = 0. Then f € D; and
Ay; = A},

The closure of Ay; follows from the next exercise. O



THE GENERAL CASE

EXERCISE: Shew that a densely defined operator A is closable iff AT is
adjointable and then A = AfT

Prop. (W1, TH. 3.7)

Let D arbitrary. Then Ay is symmetric and A;r,o CAy.

PROOF: For any I = [x,y] C (a, b) define Ay; ; as D on the domain
Di;={f € D|f(x) =0V x € (a,x]U[y,b)}. Then Dy ; = L,(I;w)?. The
density of Dy follows from Dy = U;D ;.

Assume f € D(Al,) and g € Dy ;. Then (A}f|g) = (flAvog) = (flAvi.g)
so that

flieD(A v11)|1—D1 =1{f € Ly(I; w) If € AC, Dfecz(l w) b, =
(Alof) = (D) = Df = Alf € H.



EXERCISE: Shew that if D is regular then Ay = Ay = AJ{,OT.

< i
In the general case Ay := Ayg = A{L,O .

Pror. (W1, TH. 3.9)

AI/O = AI/I =Ay.

PROOF: The first identity is obvious. Also we know thatATV0 C Ay. On the
other hand from (Avof|g) = (flAvg) Vf € Dy, g € D and the density of Dy
it follows g € D(AI,O). O



TECHNICAL TOOLS

The Wronskian of two solutions f,  of Dg = \g is

o) e det [ FO® hay(x) N e oL
W= (003 GO0 ) =1er

NOTE: f and h determine a fundamental system for Dg = \g iff
W(f, h;x) # 0 for some x € (a,b).

wn
)
N’

Pror. (W1, TH

Assume h, k fundamental system of Dg = \g and assume |wf| is locally
integrable in (a,b). Then all solutions of (D — \)g = f have the form

g(x) = a(x)h(x) + b(x)k(x )
—ao—/ Wk, k; $) =" (R(s). £ (s))w(s)ds

b(x) = bo + / Wk, k;s) " (R(s).F(s))w(s)ds, ¢ € (ab).




PROOF. Variation of constant: R
5(x) = a(x)h(x) + b(x)k(x) and (D — \)g = f imply

hi k da/dx \
( bk ) ( dbdx ) =i

((dorde) = ) (e

so that



If h and k are a fundamental system for (D—\)g=0, then
y(x) = h(x)/W(h, k;x) and x(x) = k(x)/W(h, k; x) solve (D — \)g = 0.

PROOF: [Q0; + V(x) — w(x)AJh(x) = 0 = [Q0; + V(x) — w(x)AA(x) = 0.
Then dW (h, k; x) /dx = —(k(x), (V(x) — V(x))h(x)) gives

WD N = K (V) =~ V(i)
VW) = V) g = 200
Q and V(x)

V(x) antisymmetric imply (h(x), z(x)) = 0. By definition of
0.

W (k(x), ); Then z(x) € {h(x), k(x)}+ = 0. 0



ProOP. (W1, TH. 5.3)

Assume 3 \g € C s.t. all solutions of (D — \o)g = 0 and (D — \o)g = 0 lie
right in Lo((a, b); w)?. Then it holds for every \ € C.

PROOF: Write (D — \)g = 0 as (D — X\o)g = (A — X\o)g. Choose a
fundamental system £, k for (D — A\g)g = 0. Then

) = ah(x) +bok(x) (A= 20 [ W) ), l6))ds
£ =) [ w600, ¢(9)as.
By hyp. v, € La((c, b); w)?. Set
M= 2= Pl B + xR, A =Maxlaol, ol

Using Cauchy and some manipulations we get

80> < 24%(|h(x)| + [k(x)])? + M(h(x)| + [k(x) /Ig (s)Pw(



As [h(x)| + |k(x)| € L2((c,b),w)? itexists d € (c,b) such that

b
[ 1+ e Ptelas < 5

so that

/@ F(Mwﬂﬁ/ﬂﬂﬂﬂm X)dx + 2 /w () Pwlx

As this is true for any z > d = g € L((d, b); w)>. O



DEFICIENCY INDICES

Define the deficiency indices m* = dimK® where

K* =Ker(Ay Ti) =Im(Ay, £i)*.

LEMMA (VON NEUMANN [; W2, TH. 8.12)

D=D &Kt K.

PROOF: Assume g € D. As Ay is closed Im(Ay; + i) is closed and we can
write Im(Ay + i) = Im(Ay; +i) © Im(Ay + i) N (Im(Ay; +i))*. Then
(Ayi +i)go + &1, &1 € (Im(Ay; +1i))*. Set g = ig/2. Then one easily sees
thatg_ :=g—g0—g+ € K . Theng=go+g- +g+.

Finally we see that g = 0 = g9 = g4+ = g—. Indeed,

0=g=A}g0+igs —ig_.

Then (Ay; — i)go = 2ig—. But g_ € (Im(Ay; — i))* then g_ = 0. Similarly
g+ = 0O and then gy = 0. O



Define the right deficiency indices

my = dim{g € Ker(D 1) | g € L2((a,b); W)7igni}-

ml'ermb_ > 2.

PROOF: Let D, and D, the maximal and the closed minimal operators
associated to D in £5((c, b);w)?, a < ¢ < b. D is regular in [c, d], then 3
h,k € Dy such that h(x) = k(x) = 0 for x > d and h(c) = ¥, k(c) = ¥, are a
basis for C2. Thus follows

D(D) + L(h,k)c € D(D,)

sothatdim( (D.)/D ( c0)) > 2. But from von Neumann I,
m} +m, = dim(D(D.)/D(Dy)). O



WEYL’S ALTERNATIVE

PrOP. (WEYL’S ALTERNATIVE)

Suppose D real (V = V), and consider the equation (ﬁ —AN)g=0. Then
either
@ V) € Call solutions lie right in L((a, b); w) (limit circle case LCC) or

@ VA € C\R 3\, up to a multiplicative constant, solution which lies right
in L£5((a,b); w) (limit point case LPC)

PROOF: D is real = if g is a solution for a given ), than g is for A. Then, as
dim Ker(D — A) = 2 it suffices to show that if A € C\R then exists at least a
a solution. As D is real then m;” =m, > 1. O

Obviously similar results hold true in a.



PROP.
If A is a closed symmetric operator and Im(A £ i) = 'H, then A is selfadjoint.

PROOF: Take y € D(AT). By hypothesis 3 x+ € D(A) s.t.
(AT £i)y = (A£i)xs. As A = Af|p(4) we have (AT +i)(y —x4) = 0. But
Ker(AT +i) = (Im(AT £i))* = 0. Theny = x4 € D(A). ThenA = A, [J

Propr. (W1, TH. 5.8(1))

Let D be real and \ € R. Ifb is LPC at both a and b then Ay = Ay, is the
only selfadjoint extension of Ay.

PRrROOF: Using the same methogls as in the last Lemma, it is easy to show
that m* = mff + mf — 2. As D is real, and is LPC at both hands, then
m™ =m~ = 0. Then Im(Ay, + i) = H and Ay, is selfadjoint. |



PrOP. (W1, TH. 6.8)

Let D be real. If the non vanishing constant functions 1 do not lie right in
Li((a,b);w), then D is LPC at b.

PROOF: Take a fundamental system £, k for Dg = 0 and set
W := |W(h, k;x)|. It is easy to check that W is constant (as D is real). Then

Ww(x) < w(x)([hke| + [hoki]) < wlx)[R(x)[[k(x)] < %W(JC)(Ih(X)I2 + k(x)).

Then, if w does not lie right in £ ((a, b); w), h and k cannot lie both right in
Li((a,b);w). O



Physical applications



DIRAC OPERATOR ON A SPACETIME MANIFOLD

M, g four dimensional manifold with Lorentzian metric

g = gudx" ®dx¥ = nge® ® e’ n = diag{—1,1,1,1}.

FLAT DIRAC MATRICES: I'%, a = 0,1,2,3 and T, = 1,,I"” satisfy
{Fa7l“b} = _277ab-

CURVED DIRAC MATRICES: v, = €'y = {74, 7w} = —280-

S — M principal spin bundle with infinitesimal Levi-Civita connection w,
P — M principal U(1) bundle with infinitesimal connection A.

In local gauge S ® P — M the Dirac equation for a field ) having charge ¢
and mass p is

1
{—W (au + @Dl + iqAH> T ,ucz} »=0.
C



TIME EVOLUTION: ihd;h = Hap, w.rt. a chosen foliation 3, of M. Unitary
evolution requires H Hermitian operator.
If M, g is a stationary spacetime then H is time independent.

PROBLEM: consider selfadjointness of H in H = L (%, u)* where p induced
by

(010) = | V=5 (.1 0)ax
where (, ) is the usual sesquilinear product in C*.

STRATEGY: Exploit variable separation to reduce the problem to the one of
a reduced Dirac operator.



DIRAC OPERATOR ON REISSNER-NORDSTROM ADS

Reissner-Nordstrom anti de Sitter black hole manifold (c = 1, A = 1)

1
g = ~f(ndr + 7odr + 7,
P 2M  Q?
J) =145 - —=+5:  1€R re(r,0) Q€S
0

r4 is the larger root of f(r).
Gamma matrices

o_ (1 O = 7
*-(o 5) (%)

where & are the Pauli matrices. Choose the vierbein

eO:\/fd[, el :}"d@7 ezzdi‘/\/f7 63 :}"Sined¢.



Set D, := 0, + jw™T . Then
99 _ if (T°T2D, + VI popig
r r

. 1
H = _izw?bral—‘b +

+I0Vf(ruc,

L:= —i(Dy + il*sinODy).

The Hilbert space is
H = Lo((r4,00) x (0,7) x (0,2n);sin> 072f(r) " 2dr db dp).

EXERCISE: Let compute the spin connection coefficients wff’ . Recall

de® + wab A nacec _ 0, wah + wba —=0.



SEPARATION OF VARIABLES

We want to look at essential selfadjointness of H on the domain
D, =C>((ry,00) x (0,7) x (0,27)). Here one easily verify that both H
and L are symmetric (D, is dense in H). This can be achieved by setting

e
P(r,0,¢) = Rz(r)S§(9:¢)
Ri(r)$1(0,9)

EXERCISE: Shew that the angular operator L then reduces to the operator
l:red = —i(Dg + sin 00’3D¢),

on C>((0,7) x (0,2m)), which is dense in
Ho = L2((0,7) x (0,27); sin® dOd o).



It is easy to see that the spherical spinors £ ., j € Z + % are a complete set
for Hy and diagonalize I:,ed, with eigenvalues of the form k, k € Z + %
Then (Im(Zred +i))+ =0, and then Lyq is essentially selfadjoint.

This means that we can reduce to consider the reduced Hamiltonians

ko \/fﬂﬁ-g —f8,+k4
red fOo,+ kL —Fu+ 2

with domain C°((r4, 00))? dense in Lo ((r+, 00); f(r)~'dr)?, where we

have defined Ri(") |
1\r _
() ) = gromtn

This is a reduced Dirac operator with w = 1/f and V of class C* in (r4, 00).



To look at r ~ r introduce tortoise coordinate y so that
- =—z y € (0,00),

where » = ry correspond to y = co. In this coordinate the measure function
becomes w(y) = 1 and

Vi
P Ak )
-9, +kr‘(§) —fur+ %

Asw =1, at y ~ oo constant functions are not in £; right and we are in
LPC.

Near r ~ 0o w(r) ~ L*/r? so we cannot use the same argument.
EXERCISE: Shew that near r ~ oo the eigenvalue equation (HX; — A9,
takes the form

dy,ed L 1
,(/;V MiUZwred + O( )




From this it follows that a fundamental set of solutions is

Yiir) = 2 (14 00)

if2uL ¢ N, and

1) = (14 00)),
Gaalr) = rH(1+ O(2)) + ey (r) log(r/L),

-
if 2uL is integer. Thus, ¥, lies right in £,, whereas v, does not iff
2ul > 1.

Thus, H is essentially selfadjoint iff L > 1.



DIRAC OPERATOR ON KERR-NEWMAN ADS

Metric
A, asin’ 6 2
g—f? {dzf = dd)} Adr +A—0d0
-2 2 2 2
ML {adzf ta d¢} ,
P =
where
P
p* =1’ +a*cos?f , E:Ifl—27
2 2 r 2
A, =(r +a)<1+lz>2mr+z ,
&
Ag—l**COS 0, Z=q +q,.

lZ



Electromagnetic potential
ger o gmeost

A= _
VA p/Bgsing

where we introduced the vierbein

VA, in?
0 (dt_asm 9d¢>7

e = —
p =

: 2, 2
ol — VAgsinf (adt—r +a dqb) ’

—
—

p
ezz\/pAidr,
=L ap.

Mass, angular momentum, electric and magnetic charge are

m am qe
szz, ]:a’ Qe:*a Qm:

—
—
—

m$

(1]



Choose gamma matrices

o_ (0 -I . (0 -7
F_<—H(D) - P=ls o )

and a Newman-Penrose frame

p 1 L[ W) asin” ¢ ar
o' = et gt (e ) + 575
_ 1 NG asin’f ;)\ _ _dr
02 — E|Z(r, 0)] Z(r,0) (dH— = d(b) W(’”)} ,
o % X(0) 24 sin 6d6
0° = BAO 70 (“d’ T E d(b) TX(0) ] ’

0 =63

)



with
Z(r0) = TS0 gy _ VB gy - YBesind
Then
ds* = —2(0'0* — 0°0*) ,
and
) _¢2|le9>| IVLIVE)) 0" +0%) + fjggw oh
where



EXERCISE: Set

i r—iacosf
B(r,0) = —log ————
(r.0) 4 Ogr—l—iacos@7

Perform the transformation v +— S~ ', with
S = Z idiag(e'®, e, e 7B ) |
and introduce the new wave function
D= (Do) Thy
Shew that then the Dirac equation takes the form

(R(r) + A(6))Y =0,

where
ipr 0 —VAD, 0
R 0 —iur 0 —VAD_
| -VAD_ 0 —ipr 0 ’

0 —VAD, 0 ipr



—aycos 0 0 —iv/ Ao L_
A 0 apcos  —i/AgLy 0
- 0 —iv/ApL_  —apcosf 0 ’
—iv/AgL 0 0 apicos

and

1
Dy =0, % (7 +a)0, — a0, + ieqer) .

| .
L1 =09+ =coth + !

3 Ay sind (E@¢ — asin® 09, + ieq,, cos ()) .



From the exercise it follows

—1

A, a®sin’0 VA, asinf - ~
H= 1_7ﬁ H“_iﬁBC (R+A),
Ng (12 + a?) VAgr?+a
where
0 0 1 0 £ 0 0 0
5 VA0 0 0 1 N 0 —£&: 0 0
TT2xaz | 1 0 0 0 0 0 —& 0
0 1 0 0 0 0 0 £_
0 0 i 0 0 —-M_ 0 0
d— ap cos 0/ A, 0 0o 0 i i My 0 0 0
=T aia - 0 0 0 0 0 0 M_ ’
0 —i 0 0 0 0 -My 0
A, aZ eqer
£ O F 0 £ ;
* a2+r2[ N IA,J
VAN Ay 1 i= eqy cot 0
My = I6] —coth £+ 0, s
+ 2+ [ 9+2Lo Ag sin 6 s F Ay
0 0 —i 0 0 0 0
0 0 0 i 0 0 —i 0
B=14% o o o] € 0 i 0 0
0 —i 0 0 —-i 0 0 0

satisfy [B,C] = 0, B = C? = 1.



The Hilbert space is H(, = £ := (L*((r4, 00) x §%;dp))* with measure

2+ a2 sinf

A VA,

dy = =L drdbdo,

and scalar product

27 .
r +a s1n9 A, asinf -
0 I + ———B )
/ dr/ d/ a3 e (”eruaz C)x

PROBLEM: Complete separability is made difficult by the presence of the
matrix

VA, asinf

=2
= 0):=1 —BC.
(n) =L+ % Vg 1 +a?

To solve it, let us introduce a second Hilbert space
H(y = L* := (L*((r4, 00) x % dp))*, with scalar product

° 4 T2 44 sind
Pl :/ dr/ de/ d 'w*x:/du’w*x.
W) re Jo 0 Ay VA




EXERCISE: Shew that =2 is indeed an Hermitian bounded positive matrix
function with bounded inverse, so that its positive square root = is well
defined as well as =—!. Next, shew that the map

Vet Hy = Ho,
defined by (V=1)(r, 0, ¢) is an isomorphism of Hilbert spaces.

From such an isomorphism, it follows that essential selfadjointness of H on
a domain D C 'Hy is equivalent to essential selfadjointness of V=H Vgl on
V=D C H().

Now, set

H() = 2H=7§,+A

[1]



H is essentially selfadjoint on D C H if and only if Hy is essentially
selfadjoint on D C H).

PROOF: The isomorphism Vz implies that essential selfadjointness of H on
D is equivalent to essential selfadjointness of V=H VE_l =Z="'Hy="" on

V=D, where 2~ is the multiplication operator by Z~! in over Hy. AsEis

real, bounded with bounded inverse, then = 1is selfadjoint over ’H(). Then

(" HE")T = -

(1
[1)>

—1¢yt
0

It is convenient to introduce the unitary map V : H¢y — Hy:

and then to consider the operator VH, V' on VD.



EXERCISE: Shew that

VH Y = 2+2(’9~Aao+94e’jrﬂ’\/7) | 2+2£)]I+ 2o U 7
2+’u o1 + Pt U —z (ia20¢ + eqer — ury/ A1
o ~acos(0) /300 + b co6) + o) ).
iv/Bg (g + § cot(8) — g)) pacos(0)

Separation of variable is now obtained by looking at solutions of the
eigenvalue problem of the form ¢ (r, 6, ¢) = Vx(r, 8, ¢), with

x(r,0,0) =e(¢)

where £(¢) € C>(0,27), R(r) := ( Ro(r) ) € C>(ry,00)? and

S(0) = ( i;gzg ) € C(0,7)2.



We now look at essential selfadjointness of VHyV* on the domain

D =C((ry,00) x §7)* C Hy.

The first reduction arises by looking at the operator i0g on C°((0, 27)), with
anti-periodic boundary conditions at 0 and at 2. It is obviously essentially
selfadjoint and the subspace L; spanned by the eigenfunctions e~*?,

k € Z+ § is such that L*((ry, 00), “Zdr)* @ L2((0,7), 2 d6)? @ Ly is

a reducing subspace for VH,V*.

The restriction Uy ® I of U to C5°(0, )% @ Ly (I is the identity operator on
Lk) 18

U — ( —pacos(6) iv/Dg(0p + 1 cot(8) + bi(0)) )
T\ iR (0 + 1 cot(6) — by(6)) pacos(0) ’

where by (0) := mEk - Ai@qme cot(6).



Uy is essentially self adjoint on C°(0, )2 for any k = n + % ne7Zif
it c Z.

PROOF-EXERCISE: Uy has the form of a reduced Dirac operator acting on
S(0) := ( ? Ezg > € C>°(0, m)?. Consider the unitary transformations
2

W= (3") and R - L2((0, 7). \i2d6)” — L2((0,m), /i=db)?

(RS)(0) := (sin(6))25(h) =: O(h).

Shew that near 8; := 0 and 6, := m, the eigenvalue equation for RWUj WiRt
takes the form

(6 — 6,)090 = N;© + O((6 — 9)),

with

—k + e 0 k + e 0




Then, impose the LPC condition at both § = 0 and = 7 to complete the
proof. O

Indeed, one can prove that U, has a purely discrete spectrum, which is
simple. Let us then introduce its (normalized) eigenfunctions

oy [ Siei(®) ) ,
Sii(0) := ( ) with eigenvalues A,;. Then

Hyij = L*((ry, 00), ’2+“2dr) ® My j, where My ; := {Fy;(0, ¢)}, with
Fj(0,¢) == Sk,;(6) = \ﬁ is a reducing subspace for VHyV*. There, it acts as

hyi = rZJlra2 (Cl:k +eqer + pry r) r2+a28 + r2+a2 )\kd
J r2+a2 oy + \7/;2 Akyj r24l-a2 (aZk + eqer — purv/A,)

over Dy j := C°(ry,00)?



isz is essentially selfadjoint on C3°(r., 00)? iff ul > %

PROOF: Choose the tortoise coordinate y € (0, co) defined by

2, .2
dy:—r ;—a dr.

Then, y — oo < r — ry T and

mi=( g &)+ Voo

As constants are not in £; right the limit point case holds for 7 j at y = oo.
To look at r — oo, set x = % The eigenvalue equation takes the form

x0:X = G(x)X,

where the smooth matrix G(x) is regular as x — 07 and

. (0l
Jim, G(x) = ( pl 0 )



This has a singularity of the first kind, with eigenvalues wy = +pul. It
follows that the limit point case occurs at r = oo iff

< d
r
TriZ;LZ = 0.
¢ T

For 1 > 0 this imply the assert. O
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