WEYL ALTERNATIVE, SEPARATION OF VARIABLES AND SELFADJOINTNESS OF THE DIRAC OPERATOR

Sergio Luigi Cacciatori

Dipartimento di Fisica e Matematica, Università dell' Insubria di Como
Bogotà, May 31 2010- June 42010

PART I

Mathematical tools

Adjointable, Symmetric and Self Adjoint OPERATORS

\mathcal{H} : complex separable Hilbert space, with sesquilinear product (|);
$A \equiv\left(A, D_{A}\right)$ linear operator in $O(\mathcal{H})$ if

- D_{A} is a linear subset of \mathcal{H},
- $A: D_{A} \rightarrow \mathcal{H}$ is a linear map
A is adjointable if densely defined: $\bar{D}_{A}=\mathcal{H}$.
Set $D_{A^{\dagger}}=\left\{x \in \mathcal{H} \mid D_{A} \rightarrow \mathbb{C}, z \mapsto(x \mid A z)\right.$ is continuous $\}$.
Riesz theorem: \exists !y s.t. $(y \mid z)=(x \mid A z)$. Then A^{\dagger} on $D_{A^{\dagger}}$ is defined by $y=: A^{\dagger} x$.
A is symmetric if $A \subseteq A^{\dagger}\left(D_{A} \subseteq D_{A^{\dagger}}\right.$ and $\left.A^{\dagger} x=A x \forall x \in D_{A}\right)$.
A is selfadjoint if $A=A^{\dagger}$.

CLOSABLE OPERATORS AND CLOSURE

The graphic of $A \in O(\mathcal{H})$ is the set $\mathcal{G}_{A}=\left\{(x, y) \in \mathcal{H} \times \mathcal{H} \mid x \in D_{A}, y=A x\right\}$.
EXERCISE: \mathcal{G} is the graphic of an operator iff it is a linear subset of $\mathcal{H} \times \mathcal{H}$ and $(0, y) \in \mathcal{G} \Leftrightarrow y=0$.
A is closed if G_{A} is closed. A is closable if \bar{G}_{A} is a graphic; then $\bar{G}_{A}=: G_{\bar{A}}$ defines \bar{A}, the closure of A.

ExERCISE: A is closable iff for any sequence $\left\{x_{n}\right\} \subset D_{A}$, $x_{n} \rightarrow 0 \Rightarrow A x_{n} \rightarrow 0$.
A is essentially selfadjoint if A is closable and $\bar{A}=\bar{A}^{\dagger}$
Exercise: If A is closed then $\operatorname{Im} A$ is closed.

Minimal reduced Dirac operators

On $\mathcal{H}:=\mathcal{L}_{2}((a, b) ; w)^{2}$, where $-\infty \leq a<b \leq+\infty, w$ is a positive function on (a, b), and

$$
(f \mid g)=\int_{a}^{b} w(x)(f(x), g(x)) d x
$$

Here $($,$) denotes the usual scalar product in \mathbb{C}^{2}$. Let us define the minimal reduced Dirac operator $A_{V 0}$

$$
\begin{aligned}
A_{V 0}: D_{0} & \longrightarrow \mathcal{H}, f \mapsto \frac{1}{w}\left(\Omega \frac{d f}{d x}+V f\right)
\end{aligned} \begin{aligned}
& \equiv \hat{D} f \\
D_{0}=\left\{f \in \mathcal{A C}_{c}\left((a, b), \mathbb{C}^{2}\right) \mid A_{V 0}(f)\right. & \in \mathcal{H}\}
\end{aligned}
$$

Here $\mathcal{A C}_{c}$ means absolutely continuous with compact support, whereas V is a 2×2 Hermitian valued function on (a, b), and

$$
\Omega=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Further assumptions:
(1) w and V are measurable on (a, b)
(2) w is positive a.e. in (a, b)
(3) $|\mathrm{w}|$ and $\mid \mathrm{VI}$ are locally integrable

We will say that $A_{V 0}$ is regular in a (in $\left.b\right)$ if $a>-\infty(b<\infty)$ and such conditions are satisfied in $[a, b)$ (in $(a, b])$. $A_{V 0}$ is regular if it is regular both in a and b.
We say that f is locally $\mathcal{L}_{2}((a, b) ; w)^{2}$ (write $\mathcal{L}_{2}((a, b) ; w)_{\text {loc }}^{2}$) if $\left.f\right|_{(x, y)} \in \mathcal{L}_{2}((x, y) ; w)^{2}$ for any $[x, y] \subset(a, b)$.

GREEN'S FORMULA: for $f, g \in \mathcal{L}_{2}((a, b) ; w)_{\text {loc }}^{2}$ set

$$
[f, g]_{x}^{y}:={ }^{t} \bar{f}(x) \Omega g(x)-^{t} \bar{f}(y) \Omega g(y)
$$

Then the following formula holds

$$
\int_{x}^{y}[(\hat{D} f, g)(s)-(f, \hat{D} g)(s)] w(s) d s=[f, g]_{x}^{y}
$$

MAXIMAL REDUCED DIRAC OPERATORS

Set

$$
D:=\{f \in \mathcal{H} \mid f \in \mathcal{A C}, \hat{D} f \in \mathcal{H}\} .
$$

Then, we define on D the maximal reduced Dirac operator A_{V} as

$$
A_{V}: D \longrightarrow \mathcal{H}, f \mapsto A_{V} f:=\hat{D} f
$$

PRop. (W1, TH. 3.1)

If $f \in D_{0}$ and $g \in D$ then $\left(A_{V 0} f \mid g\right)=\left(f \mid A_{V} g\right)$.
Proof: if $f \in D_{0}$ let be $\operatorname{supp}(f) \in[x, y] \subset(a, b)$. Then we can apply the Green's formula.

This means that $A_{V 0}$ is Hermitian but not yet that it is symmetric. To this end we need to show that D_{0} is dense in \mathcal{H}. This will be easily done for regular operators. Strategy: if $[x, y] \subset(a, b),\left.\hat{D}\right|_{[x, y]}$ is regular.

REGULAR REDUCED DIRAC OPERATOR

Let us consider the case \hat{D} is regular.
Define $D_{1}=\{d \in D \mid f(a)=f(b)=0\}$. This define the operator $A_{V 1}=\left.A_{\nu}\right|_{D_{1}}:$

$$
A_{V 0} \subseteq A_{V 1} \subseteq A_{V} .
$$

PROP. (W1, TH. 3.3)
If \hat{D} is regular and $f \in D_{1}, g \in D$ then $\left(A_{V 1} f \mid g\right)=\left(f \mid A_{V} g\right)$.

Again, this means that $A_{V 1}$ is Hermitian.
We now need some technical results.

Prop. (W1, Th. 3.4)

If \hat{D} is regular and $\lambda \in \mathbb{C}$ then:
a) $\operatorname{Im}\left(A_{V 1}-\lambda\right)=\operatorname{Ker}\left(A_{V}-\bar{\lambda}\right)^{\perp}$;
b) $\operatorname{Im}\left(A_{V 1}-\lambda\right)^{\perp}=\operatorname{Ker}\left(A_{V}-\bar{\lambda}\right)$.

Proof: a) Assume $f \in \operatorname{Im}\left(A_{V 1}-\lambda\right)$ and let h be the unique solution of the Cauchy problem $(\hat{D}-\lambda) h=f, h(a)=0$. Moreover, let g_{1}, g_{2} be the solution of $(\hat{D}-\bar{\lambda}) g=0$ with Cauchy condition $g_{1}(b)=\binom{1}{0}$ and $g_{2}(b)=-\binom{0}{1}$ respectively. Then

$$
\left(f \mid g_{i}\right)=\left((\hat{D}-\lambda) h \mid g_{i}\right)=\left((\hat{D}-\lambda) h \mid g_{i}\right)-\left(h \mid(\hat{D}-\bar{\lambda}) g_{i}\right)=\left[h, g_{i}\right]_{a}^{b}=\bar{h}_{(i)}(b),
$$

where $h_{(i)}, i=1,2$ is the i-th component of the \mathbb{C} vector. Then $h \in D_{1} \Leftrightarrow$ $f \perp g_{i}$. This proves a).
b) as $\operatorname{dim} \operatorname{Ker}\left(A_{V}-\bar{\lambda}\right)=2<\infty$ we have a) \Rightarrow b).

Prop. (W1, TH. 3.5)

Let \hat{D} be regular and $\alpha, \beta \in \mathbb{C}^{2}$. Then $\exists g \in D$ (not unique) s.t. $g(a)=\alpha$ and $g(b)=\beta$.

PROOF: Take g_{1}, g_{2} solutions of the Cauchy problems $\hat{D} g_{i}=0, i=1,2$ and $g_{1}(b)=-\binom{0}{1}, g_{2}(b)=\binom{1}{0}$ respectively. Then $g_{i} \in D$ and any $f \in \operatorname{Ker} A_{V}$ takes the form $f=\mu g_{1}+\nu g_{2}$. In particular we can choose f s.t. $\left(f \mid g_{i}\right)=\bar{\beta}_{(i)}$. Take h as the unique solution of $\hat{D} h=f, h(a)=0$. Then:

$$
\bar{\beta}_{(i)}=\left(f \mid g_{i}\right)=\left(\hat{D} h \mid g_{i}\right)=\left(\hat{D} h \mid g_{i}\right)-\left(h \mid \hat{D} g_{i}\right)=\left[h, g_{i}\right]_{a}^{b}=\bar{h}(b)_{(i)}
$$

so that $h(b)=\beta$.
In the same way construct $k \in D$ such that $k(a)=\alpha, k(b)=0$. Then $g=h+k$.

Prop. (W1, TH. 3.6)

Let \hat{D} be regular. Then a) $A_{V 1}$ is symmetric, b) $A_{V}=A_{V 1}^{\dagger}$, c) $A_{V 1}=A_{V}^{\dagger}$. In particular $A_{V 1}$ is closed.

Proof: a) First we have to prove that D_{1} is dense in \mathcal{H}. Let $f \perp D_{1}$ and g a solution of $\hat{D} g=f$, so that $f \in D . \forall h \in D_{1}$ we have

$$
\begin{equation*}
\left(g \mid A_{V 1} h\right)=\left(A_{V} g \mid h\right)=(f \mid h)=0 . \tag{1}
\end{equation*}
$$

Then $g \perp \operatorname{Im}\left(A_{V 1}\right) \Rightarrow g \in \operatorname{Ker}\left(A_{V}\right)$ and then $f=0$.
b) Obviously $A_{V} \subseteq A_{V 1}^{\dagger}$. Viceversa take $f \in D\left(A_{V 1}^{\dagger}\right)$. Set $h=A_{V 1}^{\dagger} f$ and solve $\hat{D} g=h$. Then $g \in D(T)$. If $k \in D_{1}$ then

$$
\left(f-g \mid A_{V 1} k\right)=\left(A_{V}(f-g) \mid k\right)=0
$$

so that $f-g \in\left(\operatorname{Im}\left(A_{V 1}\right)\right)^{\perp}=\operatorname{Ker}\left(A_{V}\right) \subset D$. Then $f \in D$.
c) From b) we have ${A_{V 1}^{\dagger}}^{\dagger}=A_{V}^{\dagger}$. By construction $A_{V 1} \subseteq{A_{V 1}^{\dagger}}^{\dagger}$, so that $A_{V 1} \subseteq A_{V}^{\dagger}$.
Now, $A_{V 1} \subset A_{V} \Rightarrow A_{V}^{\dagger} \subset A_{V 1}^{\dagger}=A_{V}$. Take $f \in D\left(A_{V}^{\dagger}\right)$. The $A_{V}^{\dagger} f=A_{V} f$ and

$$
\left(A_{V} f \mid g\right)=\left(A_{V}^{\dagger} f \mid g\right)=\left(f \mid A_{V} g\right) \quad \forall g \in D .
$$

Then

$$
0=\left(A_{V} f \mid g\right)-\left(f \mid A_{V} g\right)=[f, g]_{a}^{b} \quad \forall g \in D
$$

In particular, choosing $g_{i} \in D$ s. t, $g_{i}(a)=0$ and $g_{1}(b)=-\binom{0}{1}$, $g_{2}(b)=\binom{1}{0}$, we get $f(b)=0$. In a similar way $f(a)=0$. Then $f \in D_{1}$ and $A_{V 1}=A_{V}^{\dagger}$.
The closure of $A_{V 1}$ follows from the next exercise.

THE GENERAL CASE

EXERCISE: Shew that a densely defined operator A is closable iff A^{\dagger} is adjointable and then $\bar{A}=A^{\dagger}{ }^{\dagger}$.

Prop. (W 1, Th. 3.7)

Let \hat{D} arbitrary. Then $A_{V 0}$ is symmetric and $A_{V 0}^{\dagger} \subseteq A_{V}$.
Proof: For any $I \equiv[x, y] \subset(a, b)$ define $A_{V 1, I}$ as \hat{D} on the domain $D_{1, I}=\{f \in D \mid f(x)=0 \forall x \in(a, x] \cup[y, b)\}$. Then $\bar{D}_{1, I}=\mathcal{L}_{2}(I ; w)^{2}$. The density of D_{0} follows from $D_{0}=\cup_{I} D_{1, I}$.
Assume $f \in D\left(A_{V 0}^{\dagger}\right)$ and $g \in D_{1, I}$. Then $\left(A_{V 0}^{\dagger} f \mid g\right)=\left(f \mid A_{V 0} g\right)=\left(f \mid A_{V 1, I} g\right)$ so that

$$
\begin{aligned}
& \left.\left.f\right|_{I} \in D\left(A_{V 1, I}^{\dagger}\right)\right|_{I}=D_{I}:=\left\{f \in \mathcal{L}_{2}(I ; w)^{2} \mid f \in \mathcal{A C}, \hat{D} f \in \mathcal{L}_{2}(I ; w)^{2}\right\}, \Rightarrow \\
& \left(A_{V 0}^{\dagger} f\right)_{I}=\left.(\hat{D} f)\right|_{I} \Rightarrow \hat{D} f=A_{V 0}^{\dagger} f \in \mathcal{H} .
\end{aligned}
$$

EXERCISE: Shew that if \hat{D} is regular then $A_{V 1}=\bar{A}_{V 0}=A_{V 0}^{\dagger}{ }^{\dagger}$.
In the general case $A_{V 1}:=\bar{A}_{V 0}=A_{V 0}^{\dagger}{ }^{\dagger}$.

PROP. (W1, Th. 3.9)

$A_{V 0}^{\dagger}=A_{V 1}^{\dagger}=A_{V}$.
Proof: The first identity is obvious. Also we know that $A_{V 0}^{\dagger} \subseteq A_{V}$. On the other hand from $\left(A_{V 0} f \mid g\right)=\left(f \mid A_{V} g\right) \forall f \in D_{0}, g \in D$ and the density of D_{0} it follows $g \in D\left(A_{V 0}^{\dagger}\right)$.

TECHNICAL TOOLS

The Wronskian of two solutions f, h of $\hat{D} g=\lambda g$ is

$$
W(f, h ; x):=\operatorname{det}\left(\begin{array}{cc}
f_{(1)}(x) & h_{(1)}(x) \\
f_{(2)}(x) & h_{(2)}(x)
\end{array}\right)=[f, g x .
$$

NOTE: f and h determine a fundamental system for $\hat{D} g=\lambda g$ iff $W(f, h ; x) \neq 0$ for some $x \in(a, b)$.

PROP. (W1, TH. 5.2)

Assume h, k fundamental system of $\hat{D} g=\lambda g$ and assume $|w f|$ is locally integrable in (a, b). Then all solutions of $(\hat{D}-\lambda) g=f$ have the form

$$
\begin{aligned}
& g(x)=a(x) h(x)+b(x) k(x) \\
& a(x)=a_{0}-\int_{c}^{x} W(h, k ; s)^{-1}(\bar{k}(s), f(s)) w(s) d s \\
& b(x)=b_{0}+\int_{c}^{x} W(h, k ; s)^{-1}(\bar{h}(s), f(s)) w(s) d s, \quad c \in(a, b)
\end{aligned}
$$

Proof. Variation of constant:
$g(x)=a(x) h(x)+b(x) k(x)$ and $(\hat{D}-\lambda) g=f$ imply

$$
\left(\begin{array}{ll}
h_{1} & k_{1} \\
h_{2} & k_{2}
\end{array}\right)\binom{d a / d x}{d b / d x}=-w \Omega f,
$$

so that

$$
\binom{d a / d x}{d b / d x}=\frac{w(x)}{W(h, k ; x)}\left(\begin{array}{cc}
-k_{1} & -k_{2} \\
h_{1} & h_{2}
\end{array}\right) f .
$$

PROP.

If h and k are a fundamental system for $(\hat{D}-\lambda) g=0$, then $y(x)=\bar{h}(x) / \bar{W}(h, k ; x)$ and $\chi(x)=\bar{k}(x) / \bar{W}(h, k ; x)$ solve $(\hat{D}-\bar{\lambda}) g=0$.

PROOF: $\left[\Omega \partial_{x}+V(x)-w(x) \lambda\right] h(x)=0 \Rightarrow\left[\Omega \partial_{x}+\bar{V}(x)-w(x) \bar{\lambda}\right] \bar{h}(x)=0$. Then $d W(h, k ; x) / d x=-(\bar{k}(x),(V(x)-\bar{V}(x)) h(x))$ gives

$$
\begin{aligned}
w(x)(\hat{D}-\bar{\lambda}) \frac{\bar{h}(x)}{\bar{W}(h, k ; x)} & =-\frac{\Omega}{\bar{W}(h, k ; x)^{2}} \bar{h}(x)(k(x),(V(x)-\bar{V}(x)) \bar{h}(x)) \\
& +(V(x)-\bar{V}(x)) \frac{\bar{h}(x)}{\bar{W}(h, k ; x)}=: z(x) .
\end{aligned}
$$

Ω and $V(x)-\bar{V}(x)$ antisymmetric imply $(h(x), z(x))=0$. By definition of $W(k(x), z)=0$. Then $z(x) \in\{h(x), k(x)\}^{\perp}=0$.

Prop. (W1, TH. 5.3)

Assume $\exists \lambda_{0} \in \mathbb{C}$ s.t. all solutions of $\left(\hat{D}-\lambda_{0}\right) g=0$ and $\left(\hat{D}-\bar{\lambda}_{0}\right) g=0$ lie right in $\mathcal{L}_{2}((a, b) ; w)^{2}$. Then it holds for every $\lambda \in \mathbb{C}$.

Proof: Write $(\hat{D}-\lambda) g=0$ as $\left(\hat{D}-\lambda_{0}\right) g=\left(\lambda-\lambda_{0}\right) g$. Choose a fundamental system h, k for $\left(\hat{D}-\lambda_{0}\right) g=0$. Then

$$
\begin{aligned}
g(x)=a_{0} h(x)+b_{0} k(x) & -\left(\lambda-\lambda_{0}\right) k(x) \int_{c}^{x} w(s)(\chi(s), g(s)) d s \\
& +\left(\lambda-\lambda_{0}\right) h(x) \int_{c}^{x} w(s)(y(s), g(s)) d s
\end{aligned}
$$

By hyp. $y, \chi \in \mathcal{L}_{2}((c, b) ; w)^{2}$. Set
$M:=2\left|\lambda-\lambda_{0}\right|^{2}\left[\int_{c}^{b}\left(|y(s)|^{2}+|\chi(s)|^{2}\right) w(s) d s\right], \quad A=\operatorname{Max}\left\{\left|a_{0}\right|,\left|b_{0}\right|\right\}$.
Using Cauchy and some manipulations we get

$$
|g(x)|^{2} \leq 2 A^{2}(|h(x)|+|k(x)|)^{2}+M(|h(x)|+|k(x)|)^{2} \int_{c}^{x}|g(s)|^{2} w(s) d s
$$

As $|h(x)|+|k(x)| \in \mathcal{L}_{2}((c, b), w)^{2}$ it exists $d \in(c, b)$ such that

$$
\int_{d}^{b}(|h(x)|+|k(x)|)^{2} w(x) d x \leq \frac{1}{2 M}
$$

so that
$\int_{d}^{z}|g(x)|^{2} w(x) d x \leq 2 A^{2} \int_{d}^{b}(|h(x)|+|k(x)|)^{2} w(x) d x+\frac{1}{2} \int_{c}^{z}|g(x)|^{2} w(x) d x$.
As this is true for any $z>d \Rightarrow g \in \mathcal{L}_{2}((d, b) ; w)^{2}$.

DEFICIENCY INDICES

Define the deficiency indices $m^{ \pm}=\operatorname{dim} K^{ \pm}$where

$$
K^{ \pm}=\operatorname{Ker}\left(A_{V} \mp i\right)=\operatorname{Im}\left(A_{V 1} \pm i\right)^{\perp} .
$$

Lemma (von Neumann I; W2, Th. 8.12)

$D=D_{1} \oplus K^{+} \oplus K^{-}$.
Proof: Assume $g \in D$. As $A_{V 1}$ is closed $\operatorname{Im}\left(A_{V 1}+i\right)$ is closed and we can write $\operatorname{Im}\left(A_{V}+i\right)=\operatorname{Im}\left(A_{V 1}+i\right) \oplus \operatorname{Im}\left(A_{V}+i\right) \cap\left(\operatorname{Im}\left(A_{V 1}+i\right)\right)^{\perp}$. Then $\left(A_{V 1}+i\right) g_{0}+g_{1}, g_{1} \in\left(\operatorname{Im}\left(A_{V 1}+i\right)\right)^{\perp}$. Set $g_{+}=i g / 2$. Then one easily sees that $g_{-}:=g-g_{0}-g_{+} \in K^{-}$. Then $g=g_{0}+g_{-}+g_{+}$.
Finally we see that $g=0 \Rightarrow g_{0}=g_{+}=g_{-}$. Indeed,

$$
0=g=A_{V 1}^{\dagger} g_{0}+i g_{+}-i g_{-} .
$$

Then $\left(A_{V 1}-i\right) g_{0}=2 i g_{-}$. But $g_{-} \in\left(\operatorname{Im}\left(A_{V 1}-i\right)\right)^{\perp}$ then $g_{-}=0$. Similarly $g_{+}=0$ and then $g_{0}=0$.

Define the right deficiency indices

$$
m_{b}^{ \pm}:=\operatorname{dim}\left\{g \in \operatorname{Ker}(\hat{D} \mp i) \mid g \in \mathcal{L}_{2}((a, b) ; w)_{\text {right }}^{2}\right\} .
$$

LEMMA

$m_{b}^{+}+m_{b}^{-} \geq 2$.
Proof: Let \hat{D}_{c} and $\hat{D}_{c 0}$ the maximal and the closed minimal operators associated to \hat{D} in $\mathcal{L}_{2}((c, b) ; w)^{2}, a<c<b . \hat{D}$ is regular in $[c, d]$, then \exists $h, k \in \hat{D}_{0}$ such that $h(x)=k(x)=0$ for $x>d$ and $h(c)=\vec{v}_{1}, k(c)=\vec{v}_{2}$ are a basis for \mathbb{C}^{2}. Thus follows

$$
D\left(\hat{D}_{c 0}\right)+L(h, k)_{\mathbb{C}} \subset D\left(\hat{D}_{c}\right)
$$

so that $\operatorname{dim}\left(D\left(\hat{D}_{c}\right) / D\left(\hat{D}_{c 0}\right)\right) \geq 2$. But from von Neumann I, $m_{b}^{+}+m_{b}^{-}=\operatorname{dim}\left(D\left(\hat{D}_{c}\right) / D\left(\hat{D}_{c 0}\right)\right)$.

WEYL'S ALTERNATIVE

PROP. (WEYL'S ALTERNATIVE)

Suppose \hat{D} real $(\bar{V}=V)$, and consider the equation $(\hat{D}-\lambda) g=0$. Then either
(1) $\forall \lambda \in \mathbb{C}$ all solutions lie right in $\mathcal{L}_{2}((a, b) ; w)$ (limit circle case LCC) or
(2) $\forall \lambda \in \mathbb{C} \backslash \mathbb{R} \exists$!, up to a multiplicative constant, solution which lies right in $\mathcal{L}_{2}((a, b) ; w)$ (limit point case LPC)

Proof: \hat{D} is real \Rightarrow if g is a solution for a given λ, than \bar{g} is for λ. Then, as $\operatorname{dim} \operatorname{Ker}(\hat{D}-\lambda)=2$ it suffices to show that if $\lambda \in \mathbb{C} \backslash \mathbb{R}$ then exists at least a a solution. As \hat{D} is real then $m_{b}^{+}=m_{b}^{-} \geq 1$.

Obviously similar results hold true in a.

PROP.

If A is a closed symmetric operator and $\operatorname{Im}(A \pm i)=\mathcal{H}$, then A is selfadjoint.
PROOF: Take $y \in D\left(A^{\dagger}\right)$. By hypothesis $\exists x_{ \pm} \in D(A)$ s.t.
$\left(A^{\dagger} \pm i\right) y=(A \pm i) x_{ \pm}$. As $A=\left.A^{\dagger}\right|_{D(A)}$ we have $\left(A^{\dagger} \pm i\right)\left(y-x_{ \pm}\right)=0$. But
$\operatorname{Ker}\left(A^{\dagger} \pm i\right)=\left(\operatorname{Im}\left(A^{\dagger} \pm i\right)\right)^{\perp}=0$. Then $y=x_{ \pm} \in D(A)$. Then $A=A^{\dagger}$.

PROP. (W1, TH. 5.8(I))

Let \hat{D} be real and $\lambda \in \mathbb{R}$. If \hat{D} is LPC at both a and b then $A_{V}=A_{V 1}$ is the only selfadjoint extension of $A_{V 1}$.

Proof: Using the same methods as in the last Lemma, it is easy to show that $m^{ \pm}=m_{a}^{ \pm}+m_{b}^{ \pm}-2$. As \hat{D} is real, and is LPC at both hands, then $m^{+}=m^{-}=0$. Then $\operatorname{Im}\left(A_{V 1} \pm i\right)=\mathcal{H}$ and $A_{V 1}$ is selfadjoint.

PROP. (W1, TH. 6.8)

Let \hat{D} be real. If the non vanishing constant functions 1 do not lie right in $\mathcal{L}_{1}((a, b) ; w)$, then \hat{D} is LPC at b.

Proof: Take a fundamental system h, k for $\hat{D} g=0$ and set $W:=|W(h, k ; x)|$. It is easy to check that W is constant (as \hat{D} is real). Then

$$
W w(x) \leq w(x)\left(\left|h_{1} k_{2}\right|+\left|h_{2} k_{1}\right|\right) \leq w(x)|h(x)||k(x)| \leq \frac{1}{2} w(x)\left(|h(x)|^{2}+|k(x)|^{2}\right) .
$$

Then, if w does not lie right in $\mathcal{L}_{1}((a, b) ; w), h$ and k cannot lie both right in $\mathcal{L}_{1}((a, b) ; w)$.

PART II

Physical applications

DIRAC OPERATOR ON A SPACETIME MANIFOLD

M, \mathbf{g} four dimensional manifold with Lorentzian metric
$\mathbf{g}=g_{\mu \nu} d x^{\mu} \otimes d x^{\nu}=\eta_{a b} e^{a} \otimes e^{b}, \eta=\operatorname{diag}\{-1,1,1,1\}$.
Flat Dirac matrices: $\Gamma^{a}, a=0,1,2,3$ and $\Gamma_{a}=\eta_{a b} \Gamma^{b}$ satisfy
$\left\{\Gamma_{a}, \Gamma_{b}\right\}=-2 \eta_{a b}$.
Curved Dirac matrices: $\gamma_{\mu}=e_{\mu}^{a} \Gamma_{a} \Rightarrow\left\{\gamma_{\mu}, \gamma_{\nu}\right\}=-2 g_{\mu \nu}$.
$S \rightarrow M$ principal spin bundle with infinitesimal Levi-Civita connection ω,
$P \rightarrow M$ principal $U(1)$ bundle with infinitesimal connection A.
In local gauge $S \otimes P \rightarrow M$ the Dirac equation for a field ψ having charge q and mass μ is

$$
\left[-i \hbar \gamma^{\mu}\left(\partial_{\mu}+\frac{1}{4} \omega_{\mu}^{a b} \Gamma_{a} \Gamma_{b}+i \frac{q}{c} A_{\mu}\right)+\mu c^{2}\right] \psi=0
$$

Time evolution: $i \hbar \partial_{t} \psi=\hat{H} \psi$, w.r.t. a chosen foliation Σ_{t} of M. Unitary evolution requires \hat{H} Hermitian operator.
If M, \mathbf{g} is a stationary spacetime then \hat{H} is time independent.
Problem: consider selfadjointness of \hat{H} in $\mathcal{H}=\mathcal{L}_{2}(\vec{x}, \mu)^{4}$ where μ induced by

$$
(\psi \mid \phi)=\int_{\Sigma} \sqrt{-g}\left(\psi, \Gamma^{0} \gamma^{t} \phi\right) d x^{3}
$$

where $($,$) is the usual sesquilinear product in \mathbb{C}^{4}$.
Strategy: Exploit variable separation to reduce the problem to the one of a reduced Dirac operator.

DIRAC OPERATOR ON REISSNER-NORDSTRÖM ADS

Reissner-Nordström anti de Sitter black hole manifold ($c=1, \hbar=1$)

$$
\begin{aligned}
& \mathbf{g}=-f(r) d t^{2}+\frac{1}{f(r)} d r^{2}+r^{2} d \Omega^{2}, \\
& f(r)=1+\frac{r^{2}}{L^{2}}-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}} ; \quad t \in \mathbb{R}, r \in\left(r_{+}, \infty\right), \Omega \in S^{2}, \\
& A_{\mu}=\delta_{\mu}^{t} \frac{Q}{r} .
\end{aligned}
$$

r_{+}is the larger root of $f(r)$.
Gamma matrices

$$
\Gamma^{0}=\left(\begin{array}{cc}
\mathbb{I} & \mathbb{O} \\
\mathbb{O} & -\mathbb{I}
\end{array}\right), \quad \vec{\Gamma}=\left(\begin{array}{cc}
\mathbb{O} & \vec{\sigma} \\
-\vec{\sigma} & \mathbb{O}
\end{array}\right),
$$

where $\vec{\sigma}$ are the Pauli matrices. Choose the vierbein $e^{0}=\sqrt{f} d t, e^{1}=r d \theta, e^{2}=d r / \sqrt{f}, e^{3}=r \sin \theta d \phi$.

Set $D_{\mu}:=\partial_{\mu}+\frac{1}{4} \omega_{\mu}^{a b} \Gamma_{a} \Gamma_{b}$. Then

$$
\begin{aligned}
\hat{H}= & -i \frac{1}{4} \omega_{t}^{a b} \Gamma_{a} \Gamma_{b}+\frac{q Q}{r}-i f(r) \Gamma^{0} \Gamma^{2} D_{r}+\frac{\sqrt{f(r)}}{r} \Gamma^{0} \Gamma^{1} \hat{L} \\
& +\Gamma^{0} \sqrt{f(r)} \mu c^{2}, \\
\hat{L}:= & -i\left(D_{\theta}+i \Gamma^{2} \sin \theta D_{\phi}\right) .
\end{aligned}
$$

The Hilbert space is
$\mathcal{H}=\mathcal{L}_{2}\left(\left(r_{+}, \infty\right) \times(0, \pi) \times(0,2 \pi) ; \sin ^{2} \theta r^{2} f(r)^{-\frac{1}{2}} d r d \theta d \phi\right)$.
EXERCISE: Let compute the spin connection coefficients $\omega_{\mu}^{a b}$. Recall

$$
d e^{a}+\omega^{a b} \wedge \eta_{a c} e^{c}=0, \quad \omega^{a b}+\omega^{b a}=0
$$

SEPARATION OF VARIABLES

We want to look at essential selfadjointness of \hat{H} on the domain $D_{c}=\mathcal{C}_{c}^{\infty}\left(\left(r_{+}, \infty\right) \times(0, \pi) \times(0,2 \pi)\right)$. Here one easily verify that both \hat{H} and \hat{L} are symmetric (D_{c} is dense in \mathcal{H}). This can be achieved by setting

$$
\psi(r, \theta, \phi)=\left(\begin{array}{c}
R_{1}(r) S_{1}(\theta, \phi) \\
R_{2}(r) S_{2}(\theta, \phi) \\
R_{2}(r) S_{2}(\theta, \phi) \\
R_{1}(r) S_{1}(\theta, \phi)
\end{array}\right) .
$$

EXERCISE: Shew that the angular operator \hat{L} then reduces to the operator

$$
\hat{L}_{\text {red }}=-i\left(D_{\theta}+\sin \theta \sigma_{3} D_{\phi}\right),
$$

on $C_{c}^{\infty}((0, \pi) \times(0,2 \pi))$, which is dense in
$\mathcal{H}_{\theta}=\mathcal{L}_{2}\left((0, \pi) \times(0,2 \pi) ; \sin ^{2} \theta d \theta d \phi\right)$.

It is easy to see that the spherical spinors $\Omega_{j, l, m}, j \in \mathbb{Z}+\frac{1}{2}$ are a complete set for \mathcal{H}_{θ} and diagonalize $\hat{L}_{r e d}$, with eigenvalues of the form $k, k \in \mathbb{Z}+\frac{1}{2}$. Then $\left(\operatorname{Im}\left(\hat{L}_{\text {red }} \pm i\right)\right)^{\perp}=0$, and then $\hat{L}_{\text {red }}$ is essentially selfadjoint. This means that we can reduce to consider the reduced Hamiltonians

$$
\hat{H}_{r e d}^{k}:=\left(\begin{array}{cc}
\sqrt{f} \mu+\frac{q Q}{r} & -f \partial_{r}+k \frac{\sqrt{f}}{r} \\
f \partial_{r}+k \frac{\sqrt{f}}{r} & -\sqrt{f} \mu+\frac{q Q}{r}
\end{array}\right)
$$

with domain $C_{c}^{\infty}\left(\left(r_{+}, \infty\right)\right)^{2}$ dense in $\mathcal{L}_{2}\left(\left(r_{+}, \infty\right) ; f(r)^{-1} d r\right)^{2}$, where we have defined

$$
\binom{R_{1}(r)}{R_{2}(r)}=\frac{1}{r f^{\frac{1}{4}}} \psi_{r e d}(r)
$$

This is a reduced Dirac operator with $w=1 / f$ and V of class \mathcal{C}^{∞} in $\left(r_{+}, \infty\right)$.

To look at $r \sim r_{+}$introduce tortoise coordinate y so that

$$
\frac{d y}{d r}=-\frac{1}{f(r)}, \quad y \in(0, \infty),
$$

where $r=r_{+}$correspond to $y=\infty$. In this coordinate the measure function becomes $w(y)=1$ and

$$
\hat{H}_{r e d}^{k}:=\left(\begin{array}{cc}
\sqrt{f} \mu+\frac{q Q}{r(v)} & \partial_{y}+k \frac{\sqrt{f}}{r(y)} \\
-\partial_{y}+k \frac{\sqrt{f}}{r(y)} & -\sqrt{f} \mu+\frac{q Q}{r(y)}
\end{array}\right) .
$$

As $w=1$, at $y \sim \infty$ constant functions are not in \mathcal{L}_{1} right and we are in LPC.

Near $r \sim \infty w(r) \sim L^{2} / r^{2}$ so we cannot use the same argument. EXERCISE: Shew that near $r \sim \infty$ the eigenvalue equation $\left(\hat{H}_{\text {red }}^{k}-\lambda\right) \psi_{\text {red }}$ takes the form

$$
\frac{d \psi_{r} e d}{d r}=\frac{\mu L}{r} \sigma_{2} \psi_{\text {red }}+O\left(\frac{1}{r^{2}}\right) .
$$

From this it follows that a fundamental set of solutions is

$$
\psi_{\text {red }}^{ \pm}(r)=\frac{1}{r^{ \pm \mu L}}\left(1+O\left(\frac{1}{r}\right)\right)
$$

if $2 \mu L \notin \mathbb{N}$, and

$$
\begin{aligned}
& \psi_{\text {red }}^{+}(r)=\frac{1}{r^{\mu L}}\left(1+O\left(\frac{1}{r}\right)\right), \\
& \psi_{\text {red }}^{-}(r)=r^{\mu L}\left(1+O\left(\frac{1}{r}\right)\right)+c \psi_{\text {red }}^{+}(r) \log (r / L),
\end{aligned}
$$

if $2 \mu L$ is integer. Thus, $\psi_{\text {red }}^{+}$lies right in \mathcal{L}_{2}, whereas $\psi_{\text {red }}^{-}$does not iff $2 \mu L \geq 1$. Thus, \hat{H} is essentially selfadjoint iff $\mu L \geq \frac{1}{2}$.

Dirac operator on Kerr-Newman AdS

Metric

$$
\begin{aligned}
\mathbf{g}= & -\frac{\Delta_{r}}{\rho^{2}}\left[d t-\frac{a \sin ^{2} \theta}{\Xi} d \phi\right]^{2}+\frac{\rho^{2}}{\Delta_{r}} d r^{2}+\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2} \\
& +\Delta_{\theta} \frac{\sin ^{2} \theta}{\rho^{2}}\left[a d t-\frac{r^{2}+a^{2}}{\Xi} d \phi\right]^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \quad \Xi=1-\frac{a^{2}}{l^{2}} \\
& \Delta_{r}=\left(r^{2}+a^{2}\right)\left(1+\frac{r^{2}}{l^{2}}\right)-2 m r+z^{2} \\
& \Delta_{\theta}=1-\frac{a^{2}}{l^{2}} \cos ^{2} \theta, \quad z^{2}=q_{e}^{2}+q_{m}^{2}
\end{aligned}
$$

Electromagnetic potential

$$
A=-\frac{q_{e} r}{\rho \sqrt{\Delta_{r}}} e^{0}-\frac{q_{m} \cos \theta}{\rho \sqrt{\Delta_{\theta}} \sin \theta} e^{1},
$$

where we introduced the vierbein

$$
\begin{aligned}
e^{0} & =\frac{\sqrt{\Delta_{r}}}{\rho}\left(d t-\frac{a \sin ^{2} \theta}{\Xi} d \phi\right), \\
e^{1} & =\frac{\sqrt{\Delta_{\theta}} \sin \theta}{\rho}\left(a d t-\frac{r^{2}+a^{2}}{\Xi} d \phi\right), \\
e^{2} & =\frac{\rho}{\sqrt{\Delta_{r}}} d r \\
e^{3} & =\frac{\rho}{\sqrt{\Delta_{\theta}}} d \theta
\end{aligned}
$$

Mass, angular momentum, electric and magnetic charge are

$$
M=\frac{m}{\Xi^{2}}, \quad J=\frac{a m}{\Xi^{2}}, \quad Q_{e}=\frac{q_{e}}{\Xi}, \quad Q_{m}=\frac{q_{m}}{\Xi} .
$$

Choose gamma matrices

$$
\Gamma^{0}=\left(\begin{array}{cc}
\mathbb{O} & -\mathbb{I} \\
-\mathbb{I} & \mathbb{O}
\end{array}\right), \quad \vec{\Gamma}=\left(\begin{array}{cc}
\mathbb{O} & -\vec{\sigma} \\
\vec{\sigma} & \mathbb{O}
\end{array}\right)
$$

and a Newman-Penrose frame

$$
\begin{aligned}
\theta^{1} & =\frac{1}{\sqrt{2}}|Z(r, \theta)|^{\frac{1}{2}}\left[\frac{W(r)}{Z(r, \theta)}\left(d t+\frac{a \sin ^{2} \theta}{\Xi} d \phi\right)+\frac{d r}{W(r)}\right] \\
\theta^{2} & =\frac{1}{\sqrt{2}}|Z(r, \theta)|^{\frac{1}{2}}\left[\frac{W(r)}{Z(r, \theta)}\left(d t+\frac{a \sin ^{2} \theta}{\Xi} d \phi\right)-\frac{d r}{W(r)}\right] \\
\theta^{3} & =\frac{1}{\sqrt{2}}|Z(r, \theta)|^{\frac{1}{2}}\left[\frac{X(\theta)}{Z(r, \theta)}\left(a d t-\frac{r^{2}+a^{2}}{\Xi} d \phi\right)+i \frac{\sin \theta d \theta}{X(\theta)}\right] \\
\theta^{4} & =\bar{\theta}^{3}
\end{aligned}
$$

with

$$
Z(r, \theta)=\frac{r^{2}+a^{2} \cos ^{2} \theta}{\Xi}, \quad W(r)=\frac{\sqrt{\Delta_{r}}}{\Xi^{\frac{1}{2}}}, \quad X(\theta)=\frac{\sqrt{\Delta_{\theta}} \sin \theta}{\Xi^{\frac{1}{2}}} .
$$

Then

$$
d s^{2}=-2\left(\theta^{1} \theta^{2}-\theta^{3} \theta^{4}\right),
$$

and

$$
A=-\frac{1}{\sqrt{2|Z(r, \theta)|}}\left[\frac{H(r)}{W(r)}\left(\theta^{1}+\theta^{2}\right)+\frac{G(\theta)}{X(\theta)}\left(\theta^{3}+\theta^{4}\right)\right]
$$

where

$$
H(r)=Q_{e} r, \quad G(\theta)=Q_{m} \cos \theta .
$$

Exercise: Set

$$
\mathcal{B}(r, \theta)=\frac{i}{4} \log \frac{r-i a \cos \theta}{r+i a \cos \theta},
$$

Perform the transformation $\psi \mapsto S^{-1} \psi$, with

$$
S=Z^{-\frac{1}{4}} \operatorname{diag}\left(e^{i \mathcal{B}}, e^{i \mathcal{B}}, e^{-i \mathcal{B}}, e^{-i \mathcal{B}}\right)
$$

and introduce the new wave function

$$
\tilde{\psi}=\left(\Delta_{\theta} \Delta_{r}\right)^{\frac{1}{4}} S^{-1} \psi .
$$

Shew that then the Dirac equation takes the form

$$
(\mathcal{R}(r)+\mathcal{A}(\theta)) \tilde{\psi}=0
$$

where

$$
\mathcal{R}=\left(\begin{array}{cccc}
i \mu r & 0 & -\sqrt{\Delta_{r}} \mathcal{D}_{+} & 0 \\
0 & -i \mu r & 0 & -\sqrt{\Delta_{r}} \mathcal{D}_{-} \\
-\sqrt{\Delta_{r}} \mathcal{D}_{-} & 0 & -i \mu r & 0 \\
0 & -\sqrt{\Delta_{r}} \mathcal{D}_{+} & 0 & i \mu r
\end{array}\right)
$$

$$
\mathcal{A}=\left(\begin{array}{cccc}
-a \mu \cos \theta & 0 & 0 & -i \sqrt{\Delta_{\theta}} \mathcal{L}_{-} \\
0 & a \mu \cos \theta & -i \sqrt{\Delta_{\theta}} \mathcal{L}_{+} & 0 \\
0 & -i \sqrt{\Delta_{\theta}} \mathcal{L}_{-} & -a \mu \cos \theta & 0 \\
-i \sqrt{\Delta_{\theta}} \mathcal{L}_{+} & 0 & 0 & a \mu \cos \theta
\end{array}\right)
$$

and

$$
\begin{aligned}
& \mathcal{D}_{ \pm}=\partial_{r} \pm \frac{1}{\Delta_{r}}\left(\left(r^{2}+a^{2}\right) \partial_{t}-a \Xi \partial_{\phi}+i e q_{e} r\right) \\
& \mathcal{L}_{ \pm}=\partial_{\theta}+\frac{1}{2} \cot \theta \pm \frac{i}{\Delta_{\theta} \sin \theta}\left(\Xi \partial_{\phi}-a \sin ^{2} \theta \partial_{t}+i e q_{m} \cos \theta\right)
\end{aligned}
$$

From the exercise it follows

$$
H=\left[\left(1-\frac{\Delta_{r}}{\Delta_{\theta}} \frac{a^{2} \sin ^{2} \theta}{\left(r^{2}+a^{2}\right)^{2}}\right)^{-1}\left(\mathbb{I}_{4}-\frac{\sqrt{\Delta_{r}}}{\sqrt{\Delta_{\theta}}} \frac{a \sin \theta}{r^{2}+a^{2}} B C\right)\right](\tilde{\mathcal{R}}+\tilde{\mathcal{A}}),
$$

where

$$
\begin{aligned}
& \tilde{\mathcal{R}}=-\frac{\mu r \sqrt{\Delta_{r}}}{r^{2}+a^{2}}\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
\mathcal{E}_{-} & 0 & 0 & 0 \\
0 & -\mathcal{E}_{+} & 0 & 0 \\
0 & 0 & -\mathcal{E}_{+} & 0 \\
0 & 0 & 0 & \mathcal{E}_{-}
\end{array}\right), \\
& \tilde{\mathcal{A}}=\frac{a \mu \cos \theta \sqrt{\Delta_{r}}}{r^{2}+a^{2}}\left(\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & i \\
-i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & -\mathcal{M}_{-} & 0 & 0 \\
\mathcal{M}_{+} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathcal{M}_{-} \\
0 & 0 & -\mathcal{M}_{+} & 0
\end{array}\right) \text {, } \\
& \mathcal{E}_{ \pm}=i \frac{\Delta_{r}}{a^{2}+r^{2}}\left[\partial_{r} \mp \frac{a \Xi}{\Delta_{r}} \partial_{\phi} \pm i \frac{e q_{e} r}{\Delta_{r}}\right], \\
& \mathcal{M}_{ \pm}=\frac{\sqrt{\Delta_{r}} \sqrt{\Delta_{\theta}}}{r^{2}+a^{2}}\left[\partial_{\theta}+\frac{1}{2} \cot \theta \pm \frac{i \Xi}{\Delta_{\theta} \sin \theta} \partial_{\phi} \mp \frac{e q_{m} \cot \theta}{\Delta_{\theta}}\right], \\
& B=\left(\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) \text {. }
\end{aligned}
$$

satisfy $[B, C]=0, B^{2}=C^{2}=\mathbb{I}_{4}$.

The Hilbert space is $\mathcal{H}_{\langle \rangle}=\mathcal{L}^{2}:=\left(L^{2}\left(\left(r_{+}, \infty\right) \times S^{2} ; d \mu\right)\right)^{4}$ with measure

$$
d \mu=\frac{r^{2}+a^{2}}{\Delta_{r}} \frac{\sin \theta}{\sqrt{\Delta_{\theta}}} d r d \theta d \phi,
$$

and scalar product
$\langle\tilde{\psi} \mid \tilde{\chi}\rangle=\int_{r_{+}}^{\infty} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \frac{r^{2}+a^{2}}{\Delta_{r}} \frac{\sin \theta}{\sqrt{\Delta_{\theta}}}{ }^{t} \tilde{\psi}^{*}\left(\mathbb{I}_{4}+\frac{\sqrt{\Delta_{r}}}{\sqrt{\Delta_{\theta}}} \frac{a \sin \theta}{r^{2}+a^{2}} B C\right) \tilde{\chi}$.
Problem: Complete separability is made difficult by the presence of the matrix

$$
\Xi^{2}(r, \theta):=\mathbb{I}_{4}+\frac{\sqrt{\Delta_{r}}}{\sqrt{\Delta_{\theta}}} \frac{a \sin \theta}{r^{2}+a^{2}} B C .
$$

To solve it, let us introduce a second Hilbert space $\mathcal{H}_{()}=\mathcal{L}^{2}:=\left(L^{2}\left(\left(r_{+}, \infty\right) \times S^{2} ; d \mu\right)\right)^{4}$, with scalar product

$$
(\psi \mid \chi)=\int_{r_{+}}^{\infty} d r \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \phi \frac{r^{2}+a^{2}}{\Delta_{r}} \frac{\sin \theta}{{\sqrt{\Delta_{\theta}}}^{t} \psi^{*} \chi=\int d \mu^{t} \psi^{*} \chi}
$$

EXERCISE: Shew that Ξ^{2} is indeed an Hermitian bounded positive matrix function with bounded inverse, so that its positive square root Ξ is well defined as well as Ξ^{-1}. Next, shew that the map

$$
V_{\Xi}: \mathcal{H}_{\langle \rangle} \mapsto \mathcal{H}_{()}
$$

defined by $\left(V_{\Xi} \psi\right)(r, \theta, \phi)$ is an isomorphism of Hilbert spaces.
From such an isomorphism, it follows that essential selfadjointness of \hat{H} on a domain $D \subset \mathcal{H}_{\langle \rangle}$is equivalent to essential selfadjointness of $V_{\Xi} \hat{H} V_{\Xi}^{-1}$ on $V_{\Xi} D \subset \mathcal{H}_{()}$.
Now, set

$$
\hat{H}_{0}:=\Xi^{2} \hat{H}=\tilde{\mathcal{R}}+\tilde{\mathcal{A}} .
$$

PROP.

\hat{H} is essentially selfadjoint on $D \subset \mathcal{H}_{\langle \rangle}$if and only if \hat{H}_{0} is essentially selfadjoint on $D \subset \mathcal{H}_{()}$.

Proof: The isomorphism V_{Ξ} implies that essential selfadjointness of \hat{H} on D is equivalent to essential selfadjointness of $V_{\Xi} \hat{H} V_{\Xi}^{-1}=\hat{\Xi}^{-1} \hat{H}_{0} \hat{\Xi}^{-1}$ on $V_{\Xi} D$, where $\hat{\Xi}^{-1}$ is the multiplication operator by Ξ^{-1} in over $\mathcal{H}_{()}$. As Ξ is real, bounded with bounded inverse, then $\hat{\Xi}^{-1}$ is selfadjoint over $\mathcal{H}_{()}$. Then

$$
\left(\hat{\Xi}^{-1} \hat{H}_{0} \hat{\Xi}^{-1}\right)^{\dagger}=\hat{\Xi}^{-1} \hat{H}_{0}^{\dagger} \hat{\Xi}^{-1}
$$

It is convenient to introduce the unitary map $V: \mathcal{H}_{()} \rightarrow \mathcal{H}_{()}$:

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
0 & -i & 0 & i \\
i & 0 & -i & 0 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0
\end{array}\right)
$$

and then to consider the operator $V \hat{H}_{0} V^{\dagger}$ on $V D$.

EXERCISE: Shew that

$$
\begin{aligned}
& V H_{0} V^{*}=\left(\begin{array}{cc}
\frac{1}{r^{2}+a^{2}}\left(i a \Xi \partial_{\phi}+e q_{e} r+\mu r \sqrt{\Delta_{r}}\right) \mathbb{I} & \frac{\Delta_{r}}{r^{2}+a^{2}} \partial_{r} \mathbb{I}+\frac{\sqrt{\Delta_{r}}}{r^{2}+a^{2}} \mathbb{U} \\
-\frac{\Delta_{r}}{r^{2}+a^{2}} \partial_{r} \mathbb{I}+\frac{\sqrt{\Delta_{r}}}{r^{2}+a^{2}} \mathbb{U} & \frac{1}{r^{2}+a^{2}}\left(i a \Xi \partial_{\phi}+e q_{e} r-\mu r \sqrt{\Delta_{r}}\right) \mathbb{I}
\end{array}\right), \\
& \mathbb{U}=\left(\begin{array}{cc}
-\mu a \cos (\theta) & i \sqrt{\Delta_{\theta}}\left(\partial_{\theta}+\frac{1}{2} \cot (\theta)+g\right) \\
\left.i \sqrt{\Delta_{\theta}}\left(\partial_{\theta}+\frac{1}{2} \cot (\theta)-g\right)\right) & \mu a \cos (\theta)
\end{array}\right) .
\end{aligned}
$$

Separation of variable is now obtained by looking at solutions of the eigenvalue problem of the form $\psi(r, \theta, \phi)=V \chi(r, \theta, \phi)$, with

$$
\chi(r, \theta, \phi)=\varepsilon(\phi)\left(\begin{array}{l}
R_{1}(r) S_{2}(\theta) \\
R_{2}(r) S_{1}(\theta) \\
R_{2}(r) S_{2}(\theta) \\
R_{1}(r) S_{1}(\theta)
\end{array}\right)
$$

where $\varepsilon(\phi) \in C_{c}^{\infty}(0,2 \pi), R(r):=\binom{R_{1}(r)}{R_{2}(r)} \in C_{c}^{\infty}\left(r_{+}, \infty\right)^{2}$ and $S(\theta):=\binom{S_{1}(\theta)}{S_{2}(\theta)} \in C_{c}^{\infty}(0, \pi)^{2}$.

We now look at essential selfadjointness of $V \hat{H}_{0} V^{*}$ on the domain $D=\mathcal{C}_{c}^{\infty}\left(\left(r_{+}, \infty\right) \times S^{2}\right)^{4} \subset \mathcal{H}_{()}$.
The first reduction arises by looking at the operator $i \partial_{\phi}$ on $\mathcal{C}_{c}^{\infty}((0,2 \pi))$, with anti-periodic boundary conditions at 0 and at 2π. It is obviously essentially selfadjoint and the subspace L_{k} spanned by the eigenfunctions $e^{-i k \phi}$, $k \in \mathbb{Z}+\frac{1}{2}$ is such that $L^{2}\left(\left(r_{+}, \infty\right), \frac{r^{2}+a^{2}}{\Delta_{r}} d r\right)^{2} \otimes L^{2}\left((0, \pi), \frac{\sin (\theta)}{\sqrt{\Delta_{\theta}}} d \theta\right)^{2} \otimes L_{k}$ is a reducing subspace for $V \hat{H}_{0} V^{*}$.

The restriction $\hat{\mathbb{U}}_{k} \otimes I_{k}$ of \mathbb{U} to $C_{0}^{\infty}(0, \pi)^{2} \otimes L_{k}\left(I_{k}\right.$ is the identity operator on L_{k}) is
$\mathbb{U}_{k}=\left(\begin{array}{cc}-\mu a \cos (\theta) & i \sqrt{\Delta_{\theta}}\left(\partial_{\theta}+\frac{1}{2} \cot (\theta)+b_{k}(\theta)\right) \\ i \sqrt{\Delta_{\theta}}\left(\partial_{\theta}+\frac{1}{2} \cot (\theta)-b_{k}(\theta)\right) & \mu a \cos (\theta)\end{array}\right)$,
where $b_{k}(\theta):=\frac{1}{\Delta_{\theta} \sin (\theta)} \Xi k-\frac{1}{\Delta_{\theta}} q_{m} e \cot (\theta)$.

PROP.

$\hat{\mathbb{U}}_{k}$ is essentially self adjoint on $C_{c}^{\infty}(0, \pi)^{2}$ for any $k=n+\frac{1}{2}, n \in \mathbb{Z}$ iff $\frac{q_{m} e}{\Xi} \in \mathbb{Z}$.

Proof-ExERCISE: \mathbb{U}_{k} has the form of a reduced Dirac operator acting on $S(\theta):=\binom{S_{1}(\theta)}{S_{2}(\theta)} \in C_{c}^{\infty}(0, \pi)^{2}$. Consider the unitary transformations $W=\binom{0-i}{10}$ and $R: L^{2}\left((0, \pi), \frac{\sin (\theta)}{\sqrt{\Delta_{\theta}}} d \theta\right)^{2} \rightarrow L^{2}\left((0, \pi), \frac{1}{\sqrt{\Delta_{\theta}}} d \theta\right)^{2}$

$$
(R S)(\theta):=(\sin (\theta))^{\frac{1}{2}} S(\theta)=: \Theta(\theta)
$$

Shew that near $\theta_{1}:=0$ and $\theta_{2}:=\pi$, the eigenvalue equation for $R W \mathbb{U}_{k} W^{\dagger} R^{\dagger}$ takes the form

$$
\left(\theta-\theta_{i}\right) \partial_{\theta} \Theta=N_{i} \Theta+O\left(\left(\theta-\theta_{i}\right)\right),
$$

with

$$
N_{1}:=\left(\begin{array}{cc}
-k+\frac{q_{m} e}{\Xi} & 0 \\
0 & k-\frac{q_{m} e}{\Xi}
\end{array}\right), \quad N_{2}:=\left(\begin{array}{cc}
k+\frac{q_{m} e}{\Xi} & 0 \\
0 & -k-\frac{q_{m e} e}{\Xi}
\end{array}\right) .
$$

Then, impose the LPC condition at both $\theta=0$ and $\theta=\pi$ to complete the proof.

Indeed, one can prove that \mathbb{U}_{k} has a purely discrete spectrum, which is simple. Let us then introduce its (normalized) eigenfunctions $S_{k ; j}(\theta):=\binom{S_{1 k ; j}(\theta)}{S_{k_{k j}}(\theta)}$ with eigenvalues $\lambda_{k ; j}$. Then $\mathcal{H}_{k, j}:=L^{2}\left(\left(r_{+}, \infty\right), \frac{r^{2}+a^{2}}{\Delta_{r}} d r\right)^{2} \otimes M_{k, j}$, where $M_{k, j}:=\left\{F_{k ; j}(\theta, \phi)\right\}$, with $F_{k ; j}(\theta, \phi):=S_{k ; j}(\theta) \frac{e^{-i k \phi}}{\sqrt{2 \pi}}$, is a reducing subspace for $V \hat{H}_{0} V^{*}$. There, it acts as
$h_{k, j}:=\left(\begin{array}{cc}\frac{1}{r^{2}+a^{2}}\left(a \Xi k+e q_{e} r+\mu r \sqrt{\Delta_{r}}\right) & \frac{\Delta_{r}}{r^{2}+a^{2}} \partial_{r}+\frac{\sqrt{\Delta_{r}}}{r^{2}+a^{2}} \lambda_{k ; j} \\ -\frac{\Delta r}{r^{2}+a^{2}} \partial_{r}+\frac{\sqrt{\Delta_{r}}}{r^{2}+a^{2}} \lambda_{k ; j} & \frac{1}{r^{2}+a^{2}}\left(a \Xi k+e q_{e} r-\mu r \sqrt{\Delta_{r}}\right)\end{array}\right)$
over $D_{k, j}:=C_{c}^{\infty}\left(r_{+}, \infty\right)^{2}$

PROP.

$\hat{h}_{k, j}$ is essentially selfadjoint on $C_{0}^{\infty}\left(r_{+}, \infty\right)^{2}$ iff $\mu l \geq \frac{1}{2}$.
Proof: Choose the tortoise coordinate $y \in(0, \infty)$ defined by

$$
d y=-\frac{r^{2}+a^{2}}{\Delta_{r}} d r
$$

Then, $y \rightarrow \infty \Leftrightarrow r \rightarrow r_{+}{ }^{+}$and

$$
h_{k, j}=\left(\begin{array}{cc}
0 & -\partial_{y} \\
\partial_{y} & 0
\end{array}\right)+V(r(y)) .
$$

As constants are not in \mathcal{L}_{1} right the limit point case holds for $h_{k, j}$ at $y=\infty$. To look at $r \rightarrow \infty$, set $x=\frac{1}{r}$. The eigenvalue equation takes the form

$$
x \partial_{x} X=G(x) X,
$$

where the smooth matrix $G(x)$ is regular as $x \rightarrow 0^{+}$and

$$
\lim _{x \rightarrow 0^{+}} G(x)=\left(\begin{array}{cc}
0 & \mu l \\
\mu l & 0
\end{array}\right)
$$

This has a singularity of the first kind, with eigenvalues $w_{ \pm}= \pm \mu l$. It follows that the limit point case occurs at $r=\infty$ iff

$$
\int_{c}^{\infty} \frac{d r}{r^{2}} r^{ \pm 2 \mu l}=\infty
$$

For $\mu>0$ this imply the assert.

BIBLIOGRAPHY

图［W1］
Weidmann，J．：Spectral Theory of Ordinary Differential Operators． Lecture Notes in Mathematics 1258．Berlin：Springer－Verlag， 1987.
［W2］
Weidmann，J．：Linear Operators in Hilbert Spaces．Graduate Texts in Mathematics 68．Berlin：Springer－Verlag， 1980.
［BC1］
F．Belgiorno，S．L．Cacciatori，＂Quantum Effects for the Dirac Field in Reissner－Nordstrom－AdS Black Hole Background，＂published in Class．Quant．Grav．25：105013，2008．
目［BC2］
F．Belgiorno，S．L．Cacciatori，＂The Dirac Equation in Kerr－Newman－AdS Black Hole Background，＂J．Math．Phys．51， 033517 （2010）．

