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PART I

Mathematical tools



ADJOINTABLE, SYMMETRIC AND SELF ADJOINT

OPERATORS

H: complex separable Hilbert space, with sesquilinear product (|);
A ≡ (A,DA) linear operator in O(H) if

DA is a linear subset ofH,
A : DA → H is a linear map

A is adjointable if densely defined: D̄A = H.
Set DA† = {x ∈ H|DA → C, z 7→ (x|Az) is continuous }.
Riesz theorem: ∃!y s.t. (y|z) = (x|Az). Then A† on DA† is defined by
y =: A†x.
A is symmetric if A ⊆ A† (DA ⊆ DA† and A†x = Ax ∀x ∈ DA ).
A is selfadjoint if A = A†.



CLOSABLE OPERATORS AND CLOSURE

The graphic of A ∈ O(H) is the set GA = {(x, y) ∈ H ×H|x ∈ DA, y = Ax}.

EXERCISE: G is the graphic of an operator iff it is a linear subset ofH×H
and (0, y) ∈ G ⇔ y = 0.

A is closed if GA is closed. A is closable if ḠA is a graphic; then ḠA =: GĀ
defines Ā, the closure of A.

EXERCISE: A is closable iff for any sequence {xn} ⊂ DA,
xn → 0 ⇒ Axn → 0.

A is essentially selfadjoint if A is closable and Ā = Ā†

EXERCISE: If A is closed then ImA is closed.



MINIMAL REDUCED DIRAC OPERATORS

OnH := L2((a, b); w)2, where −∞ ≤ a < b ≤ +∞, w is a positive
function on (a, b), and

(f |g) =
∫ b

a
w(x)(f (x), g(x))dx.

Here (, ) denotes the usual scalar product in C2.
Let us define the minimal reduced Dirac operator AV0

AV0 : D0 −→ H, f 7→ 1
w

(Ω
df
dx

+ Vf ) ≡ D̂f ,

D0 = {f ∈ ACc((a, b),C2)|AV0(f ) ∈ H}.

Here ACc means absolutely continuous with compact support, whereas V is
a 2× 2 Hermitian valued function on (a, b), and

Ω =
(

0 1
−1 0

)
.



Further assumptions:
1 w and V are measurable on (a, b)
2 w is positive a.e. in (a, b)
3 |w| and |V| are locally integrable

We will say that AV0 is regular in a (in b) if a > −∞ (b <∞) and such
conditions are satisfied in [a, b) (in (a, b]). AV0 is regular if it is regular both
in a and b.
We say that f is locally L2((a, b); w)2 (write L2((a, b); w)2

loc) if
f |(x,y) ∈ L2((x, y); w)2 for any [x, y] ⊂ (a, b).

GREEN’S FORMULA: for f , g ∈ L2((a, b); w)2
loc set

[f , g]yx := t f̄ (x)Ωg(x)−t f̄ (y)Ωg(y).

Then the following formula holds∫ y

x
[(D̂f , g)(s)− (f , D̂g)(s)]w(s)ds = [f , g]yx.



MAXIMAL REDUCED DIRAC OPERATORS

Set
D := {f ∈ H|f ∈ AC, D̂f ∈ H}.

Then, we define on D the maximal reduced Dirac operator AV as

AV : D −→ H, f 7→ AV f := D̂f .

PROP. (W1, TH. 3.1)

If f ∈ D0 and g ∈ D then (AV0f |g) = (f |AVg).

PROOF: if f ∈ D0 let be supp(f ) ∈ [x, y] ⊂ (a, b). Then we can apply the
Green’s formula.

This means that AV0 is Hermitian but not yet that it is symmetric. To this end
we need to show that D0 is dense inH. This will be easily done for regular
operators. Strategy: if [x, y] ⊂ (a, b), D̂|[x,y] is regular.



REGULAR REDUCED DIRAC OPERATOR

Let us consider the case D̂ is regular.
Define D1 = {d ∈ D|f (a) = f (b) = 0}. This define the operator
AV1 = Av|D1 :

AV0 ⊆ AV1 ⊆ AV .

PROP. (W1, TH. 3.3)

If D̂ is regular and f ∈ D1, g ∈ D then (AV1f |g) = (f |AVg).

Again, this means that AV1 is Hermitian.

We now need some technical results.



PROP. (W1, TH. 3.4)

If D̂ is regular and λ ∈ C then:
a) Im(AV1 − λ) = Ker(AV − λ̄)⊥;
b) Im(AV1 − λ)⊥ = Ker(AV − λ̄).

PROOF: a) Assume f ∈ Im(AV1 − λ) and let h be the unique solution of the
Cauchy problem (D̂− λ)h = f , h(a) = 0. Moreover, let g1, g2 be the
solution of (D̂− λ̄)g = 0 with Cauchy condition g1(b) =

(
1
0

)
and

g2(b) = −
(

0
1

)
respectively. Then

(f |gi) = ((D̂− λ)h|gi) = ((D̂− λ)h|gi)− (h|(D̂− λ̄)gi) = [h, gi]ba = h̄(i)(b),

where h(i), i = 1, 2 is the i-th component of the C vector. Then h ∈ D1 ⇔
f ⊥ gi. This proves a).
b) as dim Ker(AV − λ̄) = 2 <∞ we have a)⇒ b).



PROP. (W1, TH. 3.5)

Let D̂ be regular and α, β ∈ C2. Then ∃g ∈ D (not unique) s.t. g(a) = α
and g(b) = β.

PROOF: Take g1, g2 solutions of the Cauchy problems D̂gi = 0, i = 1, 2 and
g1(b) = −

(
0
1

)
, g2(b) =

(
1
0

)
respectively. Then gi ∈ D and any f ∈ KerAV

takes the form f = µg1 + νg2. In particular we can choose f s.t.
(f |gi) = β̄(i). Take h as the unique solution of D̂h = f , h(a) = 0. Then:

β̄(i) = (f |gi) = (D̂h|gi) = (D̂h|gi)− (h|D̂gi) = [h, gi]ba = h̄(b)(i)

so that h(b) = β.
In the same way construct k ∈ D such that k(a) = α, k(b) = 0.
Then g = h + k.



PROP. (W1, TH. 3.6)

Let D̂ be regular. Then a) AV1 is symmetric, b) AV = A†V1, c) AV1 = A†V . In
particular AV1 is closed.

PROOF: a) First we have to prove that D1 is dense inH. Let f ⊥ D1 and g a
solution of D̂g = f , so that f ∈ D. ∀h ∈ D1 we have

(g|AV1h) = (AVg|h) = (f |h) = 0. (1)

Then g ⊥ Im(AV1)⇒ g ∈ Ker(AV) and then f = 0.

b) Obviously AV ⊆ A†V1. Viceversa take f ∈ D(A†V1). Set h = A†V1f and solve
D̂g = h. Then g ∈ D(T). If k ∈ D1 then

(f − g|AV1k) = (AV(f − g)|k) = 0

so that f − g ∈ (Im(AV1))⊥ = Ker(AV) ⊂ D. Then f ∈ D.



c) From b) we have A†V1
†

= A†V . By construction AV1 ⊆ A†V1
†
, so that

AV1 ⊆ A†V .
Now, AV1 ⊂ AV ⇒ A†V ⊂ A†V1 = AV . Take f ∈ D(A†V). The A†V f = AV f and

(AV f |g) = (A†V f |g) = (f |AVg) ∀ g ∈ D.

Then

0 = (AV f |g)− (f |AVg) = [f , g]ba ∀ g ∈ D.

In particular, choosing gi ∈ D s. t, gi(a) = 0 and g1(b) = −
(

0
1

)
,

g2(b) =
(

1
0

)
, we get f (b) = 0. In a similar way f (a) = 0. Then f ∈ D1 and

AV1 = A†V .
The closure of AV1 follows from the next exercise.



THE GENERAL CASE

EXERCISE: Shew that a densely defined operator A is closable iff A† is
adjointable and then Ā = A†

†.

PROP. (W1, TH. 3.7)

Let D̂ arbitrary. Then AV0 is symmetric and A†V0 ⊆ AV .

PROOF: For any I ≡ [x, y] ⊂ (a, b) define AV1,I as D̂ on the domain
D1,I = {f ∈ D|f (x) = 0 ∀ x ∈ (a, x] ∪ [y, b)}. Then D̄1,I = L2(I; w)2. The
density of D0 follows from D0 = ∪ID1,I .
Assume f ∈ D(A†V0) and g ∈ D1,I . Then (A†V0f |g) = (f |AV0g) = (f |AV1,Ig)
so that

f |I ∈ D(A†V1,I)|I = DI := {f ∈ L2(I; w)2|f ∈ AC, D̂f ∈ L2(I; w)2}, ⇒

(A†V0f )I = (D̂f )|I ⇒ D̂f = A†V0f ∈ H.



EXERCISE: Shew that if D̂ is regular then AV1 = ĀV0 = A†V0
†
.

In the general case AV1 := ĀV0 = A†V0
†
.

PROP. (W1, TH. 3.9)

A†V0 = A†V1 = AV .

PROOF: The first identity is obvious. Also we know that A†V0 ⊆ AV . On the
other hand from (AV0f |g) = (f |AVg) ∀ f ∈ D0, g ∈ D and the density of D0

it follows g ∈ D(A†V0).



TECHNICAL TOOLS

The Wronskian of two solutions f , h of D̂g = λg is

W(f , h; x) := det
(

f(1)(x) h(1)(x)
f(2)(x) h(2)(x)

)
= [f , gx.

NOTE: f and h determine a fundamental system for D̂g = λg iff
W(f , h; x) 6= 0 for some x ∈ (a, b).

PROP. (W1, TH. 5.2)

Assume h, k fundamental system of D̂g = λg and assume |wf | is locally
integrable in (a, b). Then all solutions of (D̂− λ)g = f have the form

g(x) = a(x)h(x) + b(x)k(x),

a(x) = a0 −
∫ x

c
W(h, k; s)−1(k̄(s), f (s))w(s)ds

b(x) = b0 +
∫ x

c
W(h, k; s)−1(h̄(s), f (s))w(s)ds, c ∈ (a, b).



PROOF. Variation of constant:
g(x) = a(x)h(x) + b(x)k(x) and (D̂− λ)g = f imply(

h1 k1
h2 k2

)(
da/dx
db/dx

)
= −wΩf ,

so that (
da/dx
db/dx

)
=

w(x)
W(h, k; x)

(
−k1 −k2
h1 h2

)
f .



PROP.

If h and k are a fundamental system for (D̂− λ)g = 0, then
y(x) = h̄(x)/W̄(h, k; x) and χ(x) = k̄(x)/W̄(h, k; x) solve (D̂− λ̄)g = 0.

PROOF: [Ω∂x + V(x)− w(x)λ]h(x) = 0⇒ [Ω∂x + V̄(x)− w(x)λ̄]h̄(x) = 0.
Then dW(h, k; x)/dx = −(k̄(x), (V(x)− V̄(x))h(x)) gives

w(x)(D̂− λ̄)
h̄(x)

W̄(h, k; x)
= − Ω

W̄(h, k; x)2 h̄(x)(k(x), (V(x)− V̄(x))h̄(x))

+(V(x)− V̄(x))
h̄(x)

W̄(h, k; x)
=: z(x).

Ω and V(x)− V̄(x) antisymmetric imply (h(x), z(x)) = 0. By definition of
W (k(x), z) = 0. Then z(x) ∈ {h(x), k(x)}⊥ = 0.



PROP. (W1, TH. 5.3)

Assume ∃ λ0 ∈ C s.t. all solutions of (D̂− λ0)g = 0 and (D̂− λ̄0)g = 0 lie
right in L2((a, b); w)2. Then it holds for every λ ∈ C.

PROOF: Write (D̂− λ)g = 0 as (D̂− λ0)g = (λ− λ0)g. Choose a
fundamental system h, k for (D̂− λ0)g = 0. Then

g(x) = a0h(x) + b0k(x) − (λ− λ0)k(x)
∫ x

c
w(s)(χ(s), g(s))ds

+ (λ− λ0)h(x)
∫ x

c
w(s)(y(s), g(s))ds.

By hyp. y, χ ∈ L2((c, b); w)2. Set

M := 2|λ− λ0|2[
∫ b

c
(|y(s)|2 + |χ(s)|2)w(s)ds], A = Max{|a0|, |b0|}.

Using Cauchy and some manipulations we get

|g(x)|2 ≤ 2A2(|h(x)|+ |k(x)|)2 + M(|h(x)|+ |k(x)|)2
∫ x

c
|g(s)|2w(s)ds.



As |h(x)|+ |k(x)| ∈ L2((c, b),w)2 it exists d ∈ (c, b) such that∫ b

d
(|h(x)|+ |k(x)|)2w(x)dx ≤ 1

2M

so that∫ z

d
|g(x)|2w(x)dx ≤ 2A2

∫ b

d
(|h(x)|+ |k(x)|)2w(x)dx +

1
2

∫ z

c
|g(x)|2w(x)dx.

As this is true for any z > d⇒ g ∈ L2((d, b); w)2.



DEFICIENCY INDICES

Define the deficiency indices m± = dimK± where

K± = Ker(AV ∓ i) = Im(AV1 ± i)⊥.

LEMMA (VON NEUMANN I; W2, TH. 8.12)

D = D1 ⊕ K+ ⊕ K−.

PROOF: Assume g ∈ D. As AV1 is closed Im(AV1 + i) is closed and we can
write Im(AV + i) = Im(AV1 + i)⊕ Im(AV + i) ∩ (Im(AV1 + i))⊥. Then
(AV1 + i)g0 + g1, g1 ∈ (Im(AV1 + i))⊥. Set g+ = ig/2. Then one easily sees
that g− := g− g0 − g+ ∈ K−. Then g = g0 + g− + g+.
Finally we see that g = 0⇒ g0 = g+ = g−. Indeed,

0 = g = A†V1g0 + ig+ − ig−.

Then (AV1 − i)g0 = 2ig−. But g− ∈ (Im(AV1 − i))⊥ then g− = 0. Similarly
g+ = 0 and then g0 = 0.



Define the right deficiency indices

m±b := dim{g ∈ Ker(D̂∓ i) | g ∈ L2((a, b); w)2
right}.

LEMMA

m+
b + m−b ≥ 2.

PROOF: Let D̂c and D̂c0 the maximal and the closed minimal operators
associated to D̂ in L2((c, b); w)2, a < c < b. D̂ is regular in [c, d], then ∃
h, k ∈ D̂0 such that h(x) = k(x) = 0 for x > d and h(c) = ~v1, k(c) = ~v2 are a
basis for C2. Thus follows

D(D̂c0) + L(h, k)C ⊂ D(D̂c)

so that dim(D(D̂c)/D(D̂c0)) ≥ 2. But from von Neumann I,
m+

b + m−b = dim(D(D̂c)/D(D̂c0)).



WEYL’S ALTERNATIVE

PROP. (WEYL’S ALTERNATIVE)

Suppose D̂ real (V̄ = V), and consider the equation (D̂− λ)g = 0. Then
either

1 ∀λ ∈ C all solutions lie right in L2((a, b); w) (limit circle case LCC) or
2 ∀λ ∈ C\R ∃!, up to a multiplicative constant, solution which lies right

in L2((a, b); w) (limit point case LPC)

PROOF: D̂ is real⇒ if g is a solution for a given λ, than ḡ is for λ. Then, as
dim Ker(D̂− λ) = 2 it suffices to show that if λ ∈ C\R then exists at least a
a solution. As D̂ is real then m+

b = m−b ≥ 1.

Obviously similar results hold true in a.



PROP.

If A is a closed symmetric operator and Im(A± i) = H, then A is selfadjoint.

PROOF: Take y ∈ D(A†). By hypothesis ∃ x± ∈ D(A) s.t.
(A† ± i)y = (A± i)x±. As A = A†|D(A) we have (A† ± i)(y− x±) = 0. But
Ker(A† ± i) = (Im(A† ± i))⊥ = 0. Then y = x± ∈ D(A). Then A = A†.

PROP. (W1, TH. 5.8(I))

Let D̂ be real and λ ∈ R. If D̂ is LPC at both a and b then AV = AV1 is the
only selfadjoint extension of AV1.

PROOF: Using the same methods as in the last Lemma, it is easy to show
that m± = m±a + m±b − 2. As D̂ is real, and is LPC at both hands, then
m+ = m− = 0. Then Im(AV1 ± i) = H and AV1 is selfadjoint.



PROP. (W1, TH. 6.8)

Let D̂ be real. If the non vanishing constant functions 1 do not lie right in
L1((a, b); w), then D̂ is LPC at b.

PROOF: Take a fundamental system h, k for D̂g = 0 and set
W := |W(h, k; x)|. It is easy to check that W is constant (as D̂ is real). Then

Ww(x) ≤ w(x)(|h1k2|+ |h2k1|) ≤ w(x)|h(x)||k(x)| ≤ 1
2

w(x)(|h(x)|2 + |k(x)|2).

Then, if w does not lie right in L1((a, b); w), h and k cannot lie both right in
L1((a, b); w).



PART II

Physical applications



DIRAC OPERATOR ON A SPACETIME MANIFOLD

M, g four dimensional manifold with Lorentzian metric
g = gµνdxµ ⊗ dxν = ηabea ⊗ eb, η = diag{−1, 1, 1, 1}.
FLAT DIRAC MATRICES: Γa, a = 0, 1, 2, 3 and Γa = ηabΓb satisfy
{Γa,Γb} = −2ηab.
CURVED DIRAC MATRICES: γµ = ea

µΓa ⇒ {γµ, γν} = −2gµν .
S→ M principal spin bundle with infinitesimal Levi-Civita connection ω,
P→ M principal U(1) bundle with infinitesimal connection A.
In local gauge S⊗ P→ M the Dirac equation for a field ψ having charge q
and mass µ is[

−i~γµ
(
∂µ +

1
4
ωab
µ ΓaΓb + i

q
c

Aµ

)
+ µc2

]
ψ = 0.



TIME EVOLUTION: i~∂tψ = Ĥψ, w.r.t. a chosen foliation Σt of M. Unitary
evolution requires Ĥ Hermitian operator.
If M, g is a stationary spacetime then Ĥ is time independent.

PROBLEM: consider selfadjointness of Ĥ inH = L2(~x, µ)4 where µ induced
by

(ψ|φ) =
∫

Σ

√
−g (ψ,Γ0γtφ)dx3.

where (, ) is the usual sesquilinear product in C4.

STRATEGY: Exploit variable separation to reduce the problem to the one of
a reduced Dirac operator.



DIRAC OPERATOR ON REISSNER-NORDSTRÖM ADS

Reissner-Nordström anti de Sitter black hole manifold (c = 1, ~ = 1)

g = −f (r)dt2 +
1

f (r)
dr2 + r2dΩ2,

f (r) = 1 +
r2

L2 −
2M
r

+
Q2

r2 ; t ∈ R, r ∈ (r+,∞), Ω ∈ S2,

Aµ = δt
µ

Q
r
.

r+ is the larger root of f (r).
Gamma matrices

Γ0 =
(

I O
O −I

)
, ~Γ =

(
O ~σ
−~σ O

)
,

where ~σ are the Pauli matrices. Choose the vierbein
e0 =

√
f dt, e1 = r dθ, e2 = dr/

√
f , e3 = r sin θdφ.



Set Dµ := ∂µ + 1
4ω

ab
µ ΓaΓb. Then

Ĥ = −i
1
4
ωab

t ΓaΓb +
qQ
r
− if (r)Γ0Γ2Dr +

√
f (r)
r

Γ0Γ1L̂

+ Γ0
√

f (r)µc2,
L̂ := −i(Dθ + iΓ2 sin θDφ).

The Hilbert space is
H = L2((r+,∞)× (0, π)× (0, 2π); sin2 θr2f (r)−

1
2 dr dθ dφ).

EXERCISE: Let compute the spin connection coefficients ωab
µ . Recall

dea + ωab ∧ ηacec = 0, ωab + ωba = 0.



SEPARATION OF VARIABLES

We want to look at essential selfadjointness of Ĥ on the domain
Dc = C∞c ((r+,∞)× (0, π)× (0, 2π)). Here one easily verify that both Ĥ
and L̂ are symmetric (Dc is dense inH). This can be achieved by setting

ψ(r, θ, φ) =


R1(r)S1(θ, φ)
R2(r)S2(θ, φ)
R2(r)S2(θ, φ)
R1(r)S1(θ, φ)

 .

EXERCISE: Shew that the angular operator L̂ then reduces to the operator

L̂red = −i(Dθ + sin θσ3Dφ),

on C∞c ((0, π)× (0, 2π)), which is dense in
Hθ = L2((0, π)× (0, 2π); sin2 θdθdφ).



It is easy to see that the spherical spinors Ωj,l,m, j ∈ Z + 1
2 are a complete set

forHθ and diagonalize L̂red, with eigenvalues of the form k, k ∈ Z + 1
2 .

Then (Im(L̂red ± i))⊥ = 0, and then L̂red is essentially selfadjoint.
This means that we can reduce to consider the reduced Hamiltonians

Ĥk
red :=

( √
fµ+ qQ

r −f∂r + k
√

f
r

f∂r + k
√

f
r −

√
fµ+ qQ

r

)

with domain C∞c ((r+,∞))2 dense in L2((r+,∞); f (r)−1dr)2, where we
have defined (

R1(r)
R2(r)

)
=

1

rf
1
4
ψred(r).

This is a reduced Dirac operator with w = 1/f and V of class C∞ in (r+,∞).



To look at r ∼ r+ introduce tortoise coordinate y so that

dy
dr

= − 1
f (r)

, y ∈ (0,∞),

where r = r+ correspond to y =∞. In this coordinate the measure function
becomes w(y) = 1 and

Ĥk
red :=

( √
fµ+ qQ

r(y) ∂y + k
√

f
r(y)

−∂y + k
√

f
r(y) −

√
fµ+ qQ

r(y)

)
.

As w = 1, at y ∼ ∞ constant functions are not in L1 right and we are in
LPC.

Near r ∼ ∞ w(r) ∼ L2/r2 so we cannot use the same argument.
EXERCISE: Shew that near r ∼ ∞ the eigenvalue equation (Ĥk

red − λ)ψred

takes the form

dψred
dr

=
µL
r
σ2ψred + O(

1
r2 ).



From this it follows that a fundamental set of solutions is

ψ±red(r) =
1

r±µL (1 + O(
1
r

))

if 2µL /∈ N, and

ψ+
red(r) =

1
rµL (1 + O(

1
r

)),

ψ−red(r) = rµL(1 + O(
1
r

)) + cψ+
red(r) log(r/L),

if 2µL is integer. Thus, ψ+
red lies right in L2, whereas ψ−red does not iff

2µL ≥ 1.
Thus, Ĥ is essentially selfadjoint iff µL ≥ 1

2 .



DIRAC OPERATOR ON KERR-NEWMAN ADS

Metric

g = −∆r

ρ2

[
dt − a sin2 θ

Ξ
dφ
]2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2

+ ∆θ
sin2 θ

ρ2

[
adt − r2 + a2

Ξ
dφ
]2

,

where

ρ2 = r2 + a2 cos2 θ , Ξ = 1− a2

l2
,

∆r = (r2 + a2)
(

1 +
r2

l2

)
− 2mr + z2 ,

∆θ = 1− a2

l2
cos2 θ , z2 = q2

e + q2
m .



Electromagnetic potential

A = − qer
ρ
√

∆r
e0 − qm cos θ

ρ
√

∆θ sin θ
e1 ,

where we introduced the vierbein

e0 =
√

∆r

ρ

(
dt − a sin2 θ

Ξ
dφ
)
,

e1 =
√

∆θ sin θ
ρ

(
adt − r2 + a2

Ξ
dφ
)
,

e2 =
ρ√
∆r

dr ,

e3 =
ρ√
∆θ

dθ .

Mass, angular momentum, electric and magnetic charge are

M =
m
Ξ2 , J =

am
Ξ2 , Qe =

qe

Ξ
, Qm =

qm

Ξ
.



Choose gamma matrices

Γ0 =
(

O −I
−I O

)
, ~Γ =

(
O −~σ
~σ O

)
,

and a Newman-Penrose frame

θ1 =
1√
2
|Z(r, θ)| 12

[
W(r)

Z(r, θ)

(
dt +

a sin2 θ

Ξ
dφ
)

+
dr

W(r)

]
,

θ2 =
1√
2
|Z(r, θ)| 12

[
W(r)

Z(r, θ)

(
dt +

a sin2 θ

Ξ
dφ
)
− dr

W(r)

]
,

θ3 =
1√
2
|Z(r, θ)| 12

[
X(θ)

Z(r, θ)

(
adt − r2 + a2

Ξ
dφ
)

+ i
sin θdθ
X(θ)

]
,

θ4 = θ̄3 ,



with

Z(r, θ) =
r2 + a2 cos2 θ

Ξ
, W(r) =

√
∆r

Ξ
1
2
, X(θ) =

√
∆θ sin θ

Ξ
1
2

.

Then

ds2 = −2(θ1θ2 − θ3θ4) ,

and

A = − 1√
2|Z(r, θ)|

[
H(r)
W(r)

(θ1 + θ2) +
G(θ)
X(θ)

(θ3 + θ4)
]
,

where

H(r) = Qer , G(θ) = Qm cos θ .



EXERCISE: Set

B(r, θ) =
i
4

log
r − ia cos θ
r + ia cos θ

,

Perform the transformation ψ 7→ S−1ψ, with

S = Z−
1
4 diag(eiB, eiB, e−iB, e−iB) ,

and introduce the new wave function

ψ̃ = (∆θ∆r)
1
4 S−1ψ .

Shew that then the Dirac equation takes the form

(R(r) +A(θ))ψ̃ = 0 ,

where

R =


iµr 0 −

√
∆rD+ 0

0 −iµr 0 −
√

∆rD−
−
√

∆rD− 0 −iµr 0
0 −

√
∆rD+ 0 iµr

 ,



A =


−aµ cos θ 0 0 −i

√
∆θL−

0 aµ cos θ −i
√

∆θL+ 0
0 −i

√
∆θL− −aµ cos θ 0

−i
√

∆θL+ 0 0 aµ cos θ

 ,

and

D± = ∂r ±
1

∆r

(
(r2 + a2)∂t − aΞ∂φ + ieqer

)
,

L± = ∂θ +
1
2

cot θ ± i
∆θ sin θ

(
Ξ∂φ − a sin2 θ∂t + ieqm cos θ

)
.



From the exercise it follows

H =

[(
1− ∆r

∆θ

a2 sin2 θ

(r2 + a2)2

)−1(
I4 −

√
∆r√
∆θ

a sin θ
r2 + a2 BC

)]
(R̃+ Ã) ,

where

R̃ = −
µr
√

∆r

r2 + a2

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

+

 E− 0 0 0
0 −E+ 0 0
0 0 −E+ 0
0 0 0 E−

 ,

Ã =
aµ cos θ

√
∆r

r2 + a2

 0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

+

 0 −M− 0 0
M+ 0 0 0

0 0 0 M−
0 0 −M+ 0

 ,

E± = i
∆r

a2 + r2

[
∂r ∓

aΞ

∆r
∂φ ± i

eqer
∆r

]
,

M± =

√
∆r
√

∆θ

r2 + a2

[
∂θ +

1
2

cot θ ±
iΞ

∆θ sin θ
∂φ ∓

eqm cot θ
∆θ

]
,

B =

 0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , C =

 0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 .

satisfy [B,C] = 0, B2 = C2 = I4.



The Hilbert space isH〈〉 = L2 := (L2((r+,∞)× S2; dµ))4 with measure

dµ =
r2 + a2

∆r

sin θ√
∆θ

drdθdφ,

and scalar product

〈ψ̃|χ̃〉 =
∫ ∞

r+
dr
∫ π

0
dθ
∫ 2π

0
dφ

r2 + a2

∆r

sin θ√
∆θ

tψ̃∗
(

I4 +
√

∆r√
∆θ

a sin θ
r2 + a2 BC

)
χ̃ .

PROBLEM: Complete separability is made difficult by the presence of the
matrix

Ξ2(r, θ) := I4 +
√

∆r√
∆θ

a sin θ
r2 + a2 BC.

To solve it, let us introduce a second Hilbert space
H() = L2 := (L2((r+,∞)× S2; dµ))4, with scalar product

(ψ|χ) =
∫ ∞

r+
dr
∫ π

0
dθ
∫ 2π

0
dφ

r2 + a2

∆r

sin θ√
∆θ

tψ∗χ =
∫

dµtψ∗χ .



EXERCISE: Shew that Ξ2 is indeed an Hermitian bounded positive matrix
function with bounded inverse, so that its positive square root Ξ is well
defined as well as Ξ−1. Next, shew that the map

VΞ : H〈〉 7→ H(),

defined by (VΞψ)(r, θ, φ) is an isomorphism of Hilbert spaces.

From such an isomorphism, it follows that essential selfadjointness of Ĥ on
a domain D ⊂ H〈〉 is equivalent to essential selfadjointness of VΞĤV−1

Ξ on
VΞD ⊂ H().
Now, set

Ĥ0 := Ξ2Ĥ = R̃+ Ã.



PROP.

Ĥ is essentially selfadjoint on D ⊂ H〈〉 if and only if Ĥ0 is essentially
selfadjoint on D ⊂ H().

PROOF: The isomorphism VΞ implies that essential selfadjointness of Ĥ on
D is equivalent to essential selfadjointness of VΞĤV−1

Ξ = Ξ̂−1Ĥ0Ξ̂−1 on
VΞD, where Ξ̂−1 is the multiplication operator by Ξ−1 in overH(). As Ξ is
real, bounded with bounded inverse, then Ξ̂−1 is selfadjoint overH(). Then

(Ξ̂−1Ĥ0Ξ̂−1)† = Ξ̂−1Ĥ†0 Ξ̂−1.

It is convenient to introduce the unitary map V : H() → H():

V =
1√
2


0 −i 0 i
i 0 −i 0
0 −1 0 −1
−1 0 −1 0

 ,

and then to consider the operator VĤ0V† on VD.



EXERCISE: Shew that

VH0V∗ =

 1
r2+a2 (iaΞ∂φ + eqer + µr

√
∆r)I ∆r

r2+a2 ∂rI +
√

∆r
r2+a2 U

− ∆r
r2+a2 ∂rI +

√
∆r

r2+a2 U 1
r2+a2 (iaΞ∂φ + eqer − µr

√
∆r)I

 ,

U =

(
−µa cos(θ) i

√
∆θ(∂θ + 1

2 cot(θ) + g)
i
√

∆θ(∂θ + 1
2 cot(θ)− g)) µa cos(θ)

)
.

Separation of variable is now obtained by looking at solutions of the
eigenvalue problem of the form ψ(r, θ, φ) = Vχ(r, θ, φ), with

χ(r, θ, φ) = ε(φ)


R1(r)S2(θ)
R2(r)S1(θ)
R2(r)S2(θ)
R1(r)S1(θ)

 ,

where ε(φ) ∈ C∞c (0, 2π), R(r) :=
(

R1(r)
R2(r)

)
∈ C∞c (r+,∞)2 and

S(θ) :=
(

S1(θ)
S2(θ)

)
∈ C∞c (0, π)2.



We now look at essential selfadjointness of VĤ0V∗ on the domain
D = C∞c ((r+,∞)× S2)4 ⊂ H().
The first reduction arises by looking at the operator i∂φ on C∞c ((0, 2π)), with
anti-periodic boundary conditions at 0 and at 2π. It is obviously essentially
selfadjoint and the subspace Lk spanned by the eigenfunctions e−ikφ,
k ∈ Z + 1

2 is such that L2((r+,∞), r2+a2

∆r
dr)2 ⊗ L2((0, π), sin(θ)√

∆θ
dθ)2 ⊗ Lk is

a reducing subspace for VĤ0V∗.

The restriction Ûk ⊗ Ik of U to C∞0 (0, π)2 ⊗ Lk (Ik is the identity operator on
Lk) is

Uk =
(

−µa cos(θ) i
√

∆θ(∂θ + 1
2 cot(θ) + bk(θ))

i
√

∆θ(∂θ + 1
2 cot(θ)− bk(θ)) µa cos(θ)

)
,

where bk(θ) := 1
∆θ sin(θ)Ξk − 1

∆θ
qme cot(θ).



PROP.

Ûk is essentially self adjoint on C∞c (0, π)2 for any k = n + 1
2 , n ∈ Z iff

qme
Ξ ∈ Z.

PROOF-EXERCISE: Uk has the form of a reduced Dirac operator acting on

S(θ) :=
(

S1(θ)
S2(θ)

)
∈ C∞c (0, π)2. Consider the unitary transformations

W =
(

0
1
−i
0

)
and R : L2((0, π), sin(θ)√

∆θ
dθ)2 → L2((0, π), 1√

∆θ
dθ)2

(RS)(θ) := (sin(θ))
1
2 S(θ) =: Θ(θ).

Shew that near θ1 := 0 and θ2 := π, the eigenvalue equation for RWUkW†R†

takes the form

(θ − θi)∂θΘ = NiΘ + O((θ − θi)),

with

N1 :=
(
−k + qme

Ξ 0
0 k − qme

Ξ

)
, N2 :=

(
k + qme

Ξ 0
0 −k − qme

Ξ

)
.



Then, impose the LPC condition at both θ = 0 and θ = π to complete the
proof.

Indeed, one can prove that Uk has a purely discrete spectrum, which is
simple. Let us then introduce its (normalized) eigenfunctions

Sk;j(θ) :=
(

S1 k;j(θ)
S2 k;j(θ)

)
with eigenvalues λk;j. Then

Hk,j := L2((r+,∞), r2+a2

∆r
dr)2 ⊗Mk,j, where Mk,j := {Fk;j(θ, φ)}, with

Fk;j(θ, φ) := Sk;j(θ) e−ikφ
√

2π
, is a reducing subspace for VĤ0V∗. There, it acts as

hk,j :=

(
1

r2+a2 (aΞk + eqer + µr
√

∆r) ∆r
r2+a2 ∂r +

√
∆r

r2+a2λk;j

− ∆r
r2+a2 ∂r +

√
∆r

r2+a2λk;j
1

r2+a2 (aΞk + eqer − µr
√

∆r)

)

over Dk,j := C∞c (r+,∞)2



PROP.

ĥk,j is essentially selfadjoint on C∞0 (r+,∞)2 iff µl ≥ 1
2 .

PROOF: Choose the tortoise coordinate y ∈ (0,∞) defined by

dy = − r2 + a2

∆r
dr.

Then, y→∞⇔ r → r+
+ and

hk,j =
(

0 −∂y

∂y 0

)
+ V(r(y)).

As constants are not in L1 right the limit point case holds for hk,j at y =∞.
To look at r →∞, set x = 1

r . The eigenvalue equation takes the form

x∂xX = G(x)X,

where the smooth matrix G(x) is regular as x→ 0+ and

lim
x→0+

G(x) =
(

0 µl
µl 0

)
.



This has a singularity of the first kind, with eigenvalues w± = ±µl. It
follows that the limit point case occurs at r =∞ iff∫ ∞

c

dr
r2 r±2µl =∞.

For µ > 0 this imply the assert.
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