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Klein Paradox
Relativistic wave equations admit symmetriclly “positive 

frequency” as well as “negative frequency” solutions

ω = ±(µ2 + k2)1/2 ω = εV ± (µ2 + k2)1/2

Positive state are 
stable. Ignore 

“negative” states

The stability of “positive” or 
“negative” states is lost!



Level Crossing

E±0 (r)Effective potentials

Classical turning point for the particle motion

Study of the HJ equations

Circular or elliptic orbits (for bound states)

E > E+
0 (r)

E−0 (r) < E < E+
0 (r)

E < E−0 (r)

Classical orbits

Particles with imaginary angular momentum

Particles with negative mass (energy) Ok at quantum level



Reissner-Nordström-de Sitter metric
Charged, static, spherically symmetric solutions of  Einstein equations with a cosmological 
constant Λ are given by the Reissner-Nordström-de Sitter metric:

ds2 = −V (r)dt2 + V (r)−1dr2 + r2dΩ2

V (r) = 1− 2µ

r
+

Q2

r2
− Λ2

3
r2

The function V(r) has three real positive roots:

r− < r+ < rc

with

Inner BH horizon Outer BH horizon Cosmological horizon



ds2 =
1
A

(− sin2(χ)dψ2 + dχ2) +
1
B

(dθ2 + sin2(θ)dφ2)

Nariai solution
The charged Nariai solutions are the BH of maximal mass for a given charge†:

Mmax =
1

3
√

2Λ

√
1 +

√
1− 4Q2Λ

(
2−

√
1− 4Q2Λ

)

Geometrically this is equivalent to perform the limit                  and after a 
suitable coordinate transformation:

r+ → rc

ψ ∈ R χ ∈ (0, π) B =
1

2Q2

(
1−

√
1− 4Q2Λ

)
A = 2Λ−Bwith

The Nariai geometry has the topology of a de Sitter space times the sphere S2

To study the Dirac equation one needs the generalized γ matrices                           for the 
Nariai metric:

{γi, γj} = 2gij

γ0 =
sin(χ)√

A
γ̃0 γ0 = −

√
A

sin(χ)
γ̃0

γ1 =
1√
A

γ̃1 γ1 =
√

Aγ̃1

γ2 =
1√
B

γ̃2 γ2 =
√

Bγ̃2

γ3 =
sin(θ)√

B
γ̃3 γ3 =

√
B

sin(θ)
γ̃3,

†Belgiorno, F.; 
Cacciatori, S.L. 
“Massive Dirac 
particles on the 
background of 
charged de-Sitter 
black hole manifolds”.  
PRD 79 124024 
(2009).
 ArXiv: 0810.1642.



Nariai and level crossing
Overlap between             and   E−0 (r) E+

0 (r) Level crossing

Level crossing is always present:
E+

0 (π) < E−0 (0) eQ > 0

E+
0 (0) < E−0 (π) eQ < 0

E±0 (χ) = eQ
B

A
cos(χ)±

√
µ2

A
+ k2

B

A
sin(χ)

Level crossing occurs for energy ω:

E+
0 (π) ≤ ω ≤ E−0 (0) eQ > 0

E+
0 (0) ≤ ω ≤ E−0 (π) eQ < 0



Transmission coefficient approach I

|T |2 =
|transmitted flux|

|incident flux|
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Complete basis of “positive” and “negative” modes

To investigate particle creation in presence of a given potential V:
• introduce the solutions of the wave equation;
• build localized wave packets purely ingoing into V from the past;
• do the same for outgoing states, i.e. states from which one can build localized wave packets 
purely outgoing from V into the future;
• we will suppose that it has been possible to define meaning fully these ingoing and 
outgoing states;
• it is essential that it has been possible to separate those ingoing and outgoing states  in 
“positive” and “negative” states;
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Particle creation: 
the in-vacuum 

contains out-states

Transmission coefficient approach II
The quantized field can be expanded as: with

ain
i |0in >= bin

i |0in >= 0The in-vacuum is defined as:

One can do the 
same thing with the 

out-states

The mean number                    of out-particles described by         that one  will 
find in the in-vacuum is:

< Ni >= ηi pout
i

with a corresponding 
expression for antiparticles.

+ orthonormality relations between 

a, a†, b and b†

ηi =
∑

k

|
(
pout

i , nin
k

)
|2



Transmission coefficient approach III

Tik = (pout
i , nin

k )

Tik = Tiδik

< N >=
∑

i

ηi =
∑

i,k

|Tik|2

ηi = |Ti|2

To each channel for a decay                    with a non vanishing 
transmission amplitude:

nin
k → pout

i

|Tik|2corresponds a mean number         of particles 

created in the mode pout
i

The mean total number of 
particles created will be:

In cases where it is possible to choose the in-basis and the out-basis in such a 
way that a niin decays only in a piout

there is only one possible channel

and

The ingoing states niin contains the outgoing part Tipiout



Second quantizatoin vs Dirac’s sea picture I
The field           carries a charge                       and energy                        given by:φ(x) Q = ε(φ, φ) E = (φ, i∂tφ)

Q =
∑
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All the negative state niin are filled by a wave normalized to 
unity which bears a charge ε and energy ωi-

In the case of figure 
these wave will lake out 
of the “negative” see and 

appear as an outgoing 
positive wave

When only one 
channel is possible: nin

i = Rin
out
i + Tip

out
i with |Ri|2 = 1− |Ti|2

outgoing of particles of charge +ε and energy +ωi- associated to a  defect of flux (hole) over the 
background sea which will appear as a flux of antiparticles of charge -(+ε) and energy -(+ωi-)



Second quantization vs Dirac’s sea picture II
Rewriting the scattering process as:

nout
i = R−1

i nin
i −R−1

i Tip
out
i

|R−1
i Ti|2 =

ηi

1− ηi

pi,n = pi,0
ηn

i

(1− ηi)n

1∑

n=0

pi,n = 1 pi,0 = 1− ηi

P0 =
∏

i

pi,0 = exp(−2ImW )

scattering of a negative mode incident from the future and which 
is in part refracted in the past and in part reflected in the future

The new reflection coefficient is: Relative probability for the 
creation of the pair niout, piout

The absolute probability is obtained by multiplying the relative 
one times the probability pi,0 to get zero pairs in the channel 

i, and then the probability pi,n of n pair for fermions is

The normalization condition leads to

The persistence of the vacuum is given by:

and then 2ImW = −
∑

i

log(1− ηi) =
∑

i

∞∑

k=1

1
k

ηk
i



Nariai in the transmission coefficient approach I
Nariai solution of Einstein equation

Then the Dirac equation in hamiltonian form:

Dirac equation (γµ∂µ − µ)Ψ = 0

Posing Ψ =
1

(sinχ)1/2

1
(sin θ)1/2

e−iωψη(χ, η,ϕ)

We obtain the eigenvalue equation Hkη = ωη

and hk reduced Hamiltonianwith Hk = hk ⊗ I2



 eQB
A cos(χ)− µ√

A
sin(χ) sin(χ)∂χ +

√
B
A sin(χ)k

− sin(χ)∂χ +
√

B
A sin(χ)k eQB

A cos(χ) + µ√
A

sin(χ)




(

ψ1

ψ2

)
= ω

(
ψ1

ψ2

)

hk =



 eQB
A cos(χ)− µ√

A
sin(χ) sin(χ)∂χ +

√
B
A sin(χ)k

− sin(χ)∂χ +
√

B
A sin(χ)k eQB

A cos(χ) + µ√
A

sin(χ)







Nariai in the transmission coefficient approach II

The study of such equation can be reduced to the study of an hypergeometric 
differential equation for 

With the change of variable Ψ =
(

ψ1

ψ2

)
= e−i π

4 σ1

(
ξ1

ξ2

)

ξ =
(

ξ1

ξ2

)

The asymptotic behaviors at infinities (in the coord.                     ) for 
the solutions are:

x = log tan
χ

2

ξ1(x)+ ≈ Ce−i(eE+ω)x + ei(eE+ω)xO(e−x)

ξ2(x)+ ≈ Dei(eE+ω)x + e−i(eE+ω)xO(e−x)

ξ1(x)− ≈ Aei(eE−ω)x + e−i(eE−ω)xO(ex)

ξ2(x)− ≈ Be−i(eE−ω)x + ei(eE−ω)xO(ex)

x→∞

x→ −∞



Nariai in the transmission coefficient approach III
Imposing C=0 Incoming wave only at x = −∞

R =
A

B
T =

D

B
and

Restoring the expression of the constant A, B, C, D given by 
the solution of the wave equation:

|Rk(ω)|2 =
sinh[π(

√
∆− eQB

A )] sinh[π(
√

∆ + eQB
A )]

cosh[π(
√

∆− ω)] cosh[π(
√

∆ + ω)]and|Tk(ω)|2 =
cosh[π(eQB

A − ω)] cosh[π(eQB
A + ω)]

cosh[π(
√

∆− ω)] cosh[π(
√

∆ + ω)]

∆ =
µ2

A
+

B

A
k2 + (eQ

B

A
)2 As expected               , it gives the mean number of created pairs for unit time 

and unit volume and the property                                       holds.
|T |2 < 1

|Tk(ω)|2 + |Rk(ω)|2 = 1

To determine the imaginary part of the effective action we compute:

Wk = −1
2

∑

ω

log(1− |Tk(ω)|2)
We sum only over the level-crossing region, only there particle creation is 
expected to be present and only there an instability for the vacuum should occur:
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The ζ-function method

ζH(s) =
∞∑

n=0

dn

λs
n

=
1

Γ(s)

∫ ∞

0
xs−1Tre−Hxdx

Degeneration of λn

Eigenvalues of H

− log detH =
d

ds
ζH(0) defines the Euclidean effective action

Turning back to the 
Lorentzian signature

The instability is measured by the 
imaginary part of the effective action

With kernel KH(x) = Tr exp−Hx

W =
1
2
ζ ′µ2−/D2(0)



The eigenvalues
1. Compute the eigenvalues of         and add the mass square 

2. Exploit the Kaluza-Klein reduction, for the 4D Dirac operator we 

have:

3. The part      depends only on variables of the first 2D factor of the 

metric, and     only on the spherical variables of the 2-sphere factor

4. For the square of the operator we obtain:

5. The eigenvalue λ2 of D2 is the sum of the eigenvalue ω2 of -E2 and 

of the eigenvalue b2k2 of -F2: 

6. b is related to radius of the 2-sphere, in the Nariai case               and 

k is the eigenvalue for the angular momentum operator K.

7. Eigenfunctions for                     are tensor product of eigenfunction 

of             and of

µ2

/D = /E + /F

/E

/F

−D2 = −E2 − F 2

λ2 = ω2 + b2k2

b2 = B

−D2 + µ2

−E2 −F 2

−/D2



Application to the Nariai manifold

/E =
√

A
sin χ γ̃0 (∂ψ + ieE cos χ) +

√
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∂χ + 1

2 cot χ
)
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(
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+

(
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1
2
− (2eE + 1)z
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+
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+
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−eE + ω +

1
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+ (2eE − 1)z
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dg−(z)
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+
w2

A
g−(z) = 0

The operator     on the first part of the manifolds is:/E

Its square, after some changing of variable, is:

η±(t) = (1− t)
±eE±ω

2 (1 + t)
±eE∓ω

2 g±(t)

For the eigenvalues problem of -E2 we obtain the following couple of 
hypergeometric differential equations:

Obtained with the position:



a+ = eE +

√
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A
+ (eE)2

b+ = eE −
√
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A
+ (eE)2

c+ = eE − ω +
1
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A
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√
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Solution
We are looking for solutions                                                   and this condition depends on ω

(
η+

η−

)
∈ L2[(0, 1),

dz

z(1− z)
]2

Three regions can be identified!

Defining the three parameters of the hypergeometric functions as:

ω > eE−eE < ω < eE ω < −eE

g+(z) = 2F1(a+, b+; c+; z)

g−(z) = z1−c−(1− z)c−−(a−+b−)

2F1(1− a−, 1− b−; 2− c−; z)

g+(z) = z1−c+

2F1(a+ − c+ + 1, b+ − c+ + 1; 2− c+; z)

g−(z) = (1− z)c−−(a−+b−)

2F1(c− − a−, c− − b−; c−; z)
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2F1(c+ − b+, c+ − a+;

c+ − (a+ + b+) + 1; 1− z)
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a− + b− + 1− c−; 1− z)
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2
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(a)k(b)kzk

(c)kk!
,

|z| < 1 ∨ |z| = 1 ∧ #(c− a− b) > 0

(a)n = a(a + 1)(a + 2) · · · (a + n− 1) =
Γ(a + n)

Γ(a)



Definition of the ς-function

K(s) =
∑
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For the heat kernel we obtain:

The zeta function is:



After some long computations, summations, integrations and 
turning back to the Lorentzian signature through                    
the derivative of the ς-function evaluated in zero is:

eE → ieE

The imaginary part of the ς-function

1
2
ζ ′(0) =

T
2π

{
2(eE)2 log A− eE log A + 2eE log

Γ(eE + iβ)Γ(eE − iβ)
2π

+ eE log(µ2
k) + (2 + log A) [ζH(α + iβ,−1) + ζH(α− iβ,−1)]

− 2 [ζ ′
H(α + iβ,−1) + ζ ′

H(α− iβ,−1)]
}

Its imaginary part is:

The same result as the one obtained with the 
transmission coefficient approach!!!
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Finite temperature effects I

Nariai geometry describes a BH manifold with non zero temperature

Quantum instability not simply for a vacuum state
(Boulware-like state of standard Schwarzschild solution)

Thermal vacuum state of thermofield approach with the temperature equal to the 
BH temperature

(corresponds to Hartle-Hawking state for the given solution)

Thermofield dynamics gives a straightforward generalization of 
quantum instability to the case where “in” and “out” states are 

thermal states (at the same temperature) instead than vacuum one



Finite temperature effects II
Strategy to check if there is instability in the thermal state at the Hawking temperature:

we evaluate the thermal mean of the number of “out” particle (in 
the k-mode) minus the number of  “in” particles (in the k-mode)

see the net effect of quantum instability

In our case we are considering BH background with a single temperature so β 
is the inverse of BH temperature



Finite temperature effects III
The “out” creator and annihilator operators are given by:

|µl|2 + |νl|2 = 1

aout
l = µl ain

l + νl (bin
l )†

bout
l = µl bin

l − νl (ain
l )†

(Bogoliubov transformation)

CCR for fermions leads to:

al(β)|O(β) >= ãl(β)|O(β) >= bl(β)|O(β) >= b̃l(β)|O(β) >= 0

|O(β) >al(β), ãl(β), bl(β), b̃l(β)Introduce thermal state operators                                      and thermal state              s.t.:

“in” and “out”

Between standard state operators and thermal state operators the following relations hold:

c−l : =
1√

1 + exp[β(|ω| + ϕ−)]
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exp[ 12β(|ω| + ϕ−)]

√
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al = s+
l al(β) + c+

l ã†l (β)

bl = s−l bl(β) + c−l b̃†l (β)

With φ+ and φ- chemical potential for particle and antiparticle respectively



Define: N̄out
l (a) : = (aout
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l − (ain

l )†ain
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= |νl|2(1− (c+
l )2 − (c−l )2)

= |νl|2
1
2

(
tanh[

1
2
β(ω − ϕ+)] + tanh[

1
2
β(|ω| + ϕ−)]

)

Nariai and finite temperature effects

For the Nariai 
geometry

< N̄out
k >β= |Tk(ω)|2 1

2

(
tanh[

1
2
β(ω − ϕ+)] + tanh[

1
2
β(|ω| + ϕ−)]

)

where φ+ is assumed for definiteness to be the chemical 
potential for particles in the case of a positively charged black 
hole, φ- = φ+, particles are electrons with charge -e and:

ϕ+ = −e(A0|π −A0|0) = −2eQ
B

A

In terms of physical (dimensionful) variables, by taking into account that                         , and that                          

                      ,  in such a way that                                    .

Th =
!c
√

A

2πkb
ωphys =

√
Aω βphysωphys = 2πω



Conclusion

• We studied spontaneous emission of charged Dirac particles by the Nariai BH solution;
• the particular geometry allows an exact computation;
• the two different approaches give the same result;
• we performed the same exact computation also for other two geometries (ultracold I and II) 
obtaining perfect accord between the ζ-function approach and the transmission coefficient 
approach;
• we made analogous computation for the scalar case
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Heuristically...
(/D − µ)Ψ = λΨ

(λ± + µ) = ±
√

/D2

log(det(/D − µ)) =
1
2

log
(
det

(
−µ +

√
/D2

))
+

1
2

log
(
det

(
−µ−

√
/D2

))

=
1
2

log
(
det

(
µ2 − /D2

))

− log
(
det

(√
/D2 − µ

))
=

1
2
ζ ′µ2−/D2(0)

W =
1
2
ζ ′µ2−/D2(0)

Let consider the eigenproblem:

Then we have and thus we can formally write:

(/D − µ)Ψ± = λ±Ψ±(
−µ +

√
/D2

)
Ψ± = λ+Ψ±

The factor 1/2 arises from the double degeneration of each eigenvalue, if 

then, for example,                                       .

It is convenient to define:

and then for the Euclidean effective action we get:


