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Klein Paradox

Relativistic wave equations admit symmetriclly “positive
frequency” as well as “negative frequency” solutions
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The stability of “positive” or
“negative” states is lost!




Level Crossing Study of the HJ equations

|

Effective potentials - (1)

|

Classical turning point for the particle motion

|

Circular or elliptic orbits (for bound states)

Classical orbits

Particles with imaginary angular momentum

Particles with negative mass (energy) —> Ok at quantum level




Reissner-Nordstrom-de Sitter metric

Charged, static, spherically symmetric solutions of Einstein equations with a cosmological
constant /\ are given by the Reissner-Nordstrom-de Sitter metric:

ds® = =V (r)dt* + V(r)"tdr® + r*dQ?

with
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The function V(r) has three real positive roots:
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Inner BH horizon Outer BH horizon Cosmological horizon




Nariai solution

The charged Nariai solutions are the BH of maximal mass for a given charge:

Mmas = ﬁ\/l + /1 —4Q2A (2 — /1 — 4Q2A)

Geometrically this is equivalent to perform the limit "+ — 7¢ and after a
suitable coordinate transformation:

1
ds® = — (= sin*()dy® + dx*) +
with ¢y e R x € (0,7) B= 222

%(d@Q + sin”(6)d¢?)

(1-V1-4Q°A) A=2A-B

The Nariai geometry has the topology of a de Sitter space times the sphere S?

To study the Dirac equation one needs the generalized Y matrices {7i,7,;} = 29:; for the
Nariai metric:
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Nariai and level crossing

Overlap between £ (7) and Ej (r) > Level crossing

B 2 B
B (x) = Q7 cos(x) + \/ b+ k2 sin(y)

Level crossing is always present:
Ef(r)<E;(0) e >0

EF(0)< Ej(m) e@ <0

Level crossing occurs for energy W:

<w<< E;(0) e@ >0
<w<< Ej(m) eQ <0




Transmission coefficien

transmittec
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To investigate particle creatio
* introduce the solutions of the wave equat

incident fl

ux|

n in presence of a given potential V:
ion;

* build localized wave packets purely ingoing intoV from the past;

* do the same for outgoing states, i.e. states
purely outgoing fromV into the future;

from which one can build localized wave packets

* we will suppose that it has been possible to define meaning fully these ingoing and

outgoing states;

* it is essential that it has been possible to separate those ingoing and outgoing states in

“positive” and “negative” states;

Complete basis of “positive” and “negative” modes
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Transmission coefficient approach |

The quantized field can be expanded as: with
Z azn zn bzn) (x) [aén, (a;,:cn)T]

The in-vacuum is defined as: a:’én‘Om >—= b;::n’()m >=()

= [bi", ()], = o

+ +

One can do the Particle creation:
same thing with the the in-vacuum

out-states

contains out-states

The mean number < N; >=1, of out-particles described by p¢“’ that one will
find in the in-vacuum is:

m out T out|nin with a corresponding
=<0 ‘( ) a; ‘O > expression for antiparticles.

T

+ orthonormallt relations between
E :aznpf;fn bzn nk — E :aout out bout)Tnout )'

’L b and b

out Z out7pk a/?}lcn 4+ (pgut ) (b}f’)T
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Transmission coefficient approach |l

out

To each channel for a decay ni — D,

transmission amplitude:

Tzk _ (p;)ut zn)

with a non vanishing

corresponds a mean number |T;;,|?of particles

created in the mode P;

The mean total number of < N >= Z i =
particles created will be:

In cases where it is possible to choose the in-basis and the out-basis in such a
way that a ni" decays only in a pi°"t

l

there is only one possible channel

l

Tix = T;0; and n; = |T;|?

\ The ingoing states ni" contains the outgoing part Tipi°"t




Second quantizatoin vs Dirac’s sea picture |

The field ¢( ) carries a charge () = ¢(¢, ¢) and energy [/ = (¢, i0;¢) given by:
Q Z zn T zn_l_ebzn(bzn) E = Zw zn T zn_i_w bzn(bzn)

—Z WLT’””L b’bn b’bn_|_Z _Zw znTzn bzn bzn_l_zw—

| |

All the negative state ni" are filled by a wave normalized to
unity which bears a charge € and energy Wy

7 7, po/sﬁﬁ{/g{éé/ In the case of figure

il \% these wave will lake out
of the “negative” see and

/,f)%e W// / appear as an outgoing

STATES

e % ositive wave
e P

When only one out out . 12 _ 1 12
channel is possible: = Ry T T’L with ‘RZ’ =1 ’T%’

outgoing of particles of charge +€ and energy +W; associated to a defect of flux (hole) over the
background sea which will appear as a flux of antiparticles of charge -(+€) and energy -(+Wwy)




Second quantization vs Dirac’s sea picture |l

Rewriting the scattering process as:

out __ R_ 1 wn L R— 1 T outl scattering of a negative mode incident from the future and which
n@' _ 2 nq; 2 ’Lp 7 is in part refracted in the past and in part reflected in the future

12 1 - "
The new reflection coefficient is: ’RZ Ti‘ — > Relative probability for the

1 — Mi creation of the pair ni°"t, pi°“t

The absolute probability is obtained by multiplying the relative
one times the probability pio to get zero pairs in the channel
i, and then the probability pin of n pair for fermions is

1
The normalization condition sz’,n =1 Jleads to

n=0

The persistence of the vacuum is given by:

P() — sz',() — exp(—QImW)

1

and then 2ImW = — Z 10%(1 — 77z‘) —




Nariai in the transmission coefficient approach |

Nariai solution of Einstein equation

Dirac equation ("0, — pu)¥ =0
b

1 .
. _ — 1w
Posing V= (sin x)1/2 (sin 9)1/26 n(x; 1, ®)

|

We obtain the eigenvalue equation Hyn = wn

|

with  H; = hpy ® Is  and hix reduced Hamiltonian

_ |

eQZ COS(X) — 1= sm(x sin(x)0y + \/78111
— sin(x)0y + \/781I1 )k eQA COS(X) \/Z sin(y)

hi =

Then the Dirac equatlon in hamiltonian form:

!
[ ot ) ()< (3)




Nariai in the transmission coefficient approach I
With the change of variable ¥ = ( zil ) = 1% ( 21 )
2 2

The study of such equation can be reduced to the study of an hypergeometric
differential equation for ¢ = ( 2 )

The asymptotic behaviors at infinities (in the coord. x = log tan %) for
the solutions are:

£ (2)" v AcCE-Ie 4 ~ieB-)r ()
£o(z)” ~ Be HeE-wlr 4 pileB-w)z (o)

§1(az)+ ~ Qe ilebFw)r 4 ei(eEer):vO(e—x)

Eo(x)t & DelleBtwlz | pmileBtwleggma)




Nariai in the transmission coefficient approach |l

Imposing C=0 > Incoming wave onlyat & = —OC

A D

Restoring the expression of the constant A, B, C, D given by
the solution of the wave equation:

cosh[m(eQZ — w)] cosh[r(eQE + w)]

d sinh[7(VA — eQZ)] sinh[r(VA + eQZ)]
COSh[W(\/Z —w)] cosh[ﬁ(\/z + w)] an

T (w)|* =
cosh[r(v/A — w)] cosh[r (VA + w)]

[Rip(w)|* =

2 B B
A=t 22y (eQZ)2 As expected |T|2 < 1, it gives the mean number of created pairs for unit time

4 4 and unit volume and the property [Tk (w)|* + |Ri(w)|* =1 holds.

To determine the imaginary part of the effective action we compute:

We sum only over the level-crossing region, only there particle creation is

1
‘/‘/ L= —— g log(]_ — ’Tk (W) ‘2) expected to be present and only there an instability for the vacuum should occur:
B B
2 w _eQZ Sw< GQZ
7 B B T 1
ImW, = —%eQZ log(2 cosh[27V A] — 2 cosh[27reQZ]) ~ o

+ Lip(— expl2n(VA +@)]) — Lia(~ expl2n(VA — eQ 1)) + Lia(~ exp[-2r(VA — Q)

\ Lig(r) = [ -

» Int




The C-function method

/R

Degeneration of A,

5_1Tre_H$dx

Eigenvalues of H

With kernel Ky (2) = Trexp ?

d
— logdet H = d—CH (O) defines the Euclidean effective action
S

Turning back to the The instability is measured by the
Lorentzian signature imaginary part of the effective action




The eigenvalues

|. Compute the eigenvalues of —)? and add the mass square ,u2

2. Exploit the Kaluza-Klein reduction, for the 4D Dirac operator we
have: ) =K +F

3. The part £ depends only on variables of the first 2D factor of the
metric, and J' only on the spherical variables of the 2-sphere factor

4. For the square of the operator we obtain: — [)? = — % — [
5. The eigenvalue A? of D? is the sum of the eigenvalue w? of -E? and
of the eigenvalue b2k? of -F2: )\ = 2 + b?k?

6. b is related to radius of the 2-sphere, in the Nariai case b* = B and
k is the eigenvalue for the angular momentum operator K.

7. Eigenfunctions for —D? + ,u2 are tensor product of eigenfunction

of —FE? andof — 2




Application to the Nariai manifold

The operator % on the first part of the manifolds is:
I = S}?X% (0 + ieE cos x) + VAY (05 + 5 cot x)

Its square, after some changing of variable, is:

A
2
B = —

: (Oy + teE cos X)? + A@i
sin“

. . { cos , ,
+ Ao ( : 2X (Oyp +ieF cosx) + zeE)

sin” 'y

For the eigenvalues problem of -E? we obtain the following couple of
hypergeometric differential equations:

dg_(z
dz

1
+ (—6E+w+ 5T (2eF — 1)z)

Obtained with the position: n+(t) = (1 —1t)




Solution

dz
2(1—2)

We are looking for solutions ( s ) c L*[(0,1), ]? and this condition depends on W

Defining the three parameters of the hypergeometric functions as: l

o = —eF + \/%2 + (eE)2 Three regions can be identified!

2
b_ = —eF — wz—l—(eE)Q 2F1 a, b; c; z
1 1 B
cy =eb—w+g \z\<1\/|z|—1

(a)p =ala+1)(a+2) - (a

—elk <w < ek w > ekl

. . 1—
21 (a4, 045045 2) g+(z) =2~ g+(2) = (1 — 2)*+ @+, Py ey — by, eq — ag;
. 1—c_(1_z)c_—(a_—|—b_) oFi(ay —cp +1,by —cy +1;2—cy52) cy —(ay +byp)+1;1—2)

2F1(1 —a_,1—b_;2—c_;z ) g—(z):(l_z)c__<a_+b_) g_(2) =29 (14+b_ —c_,1+a_ —c_;
JFi(e- —a_c_—b_ic_:2) bl el )

1
M = A(eE +n)? — A(eE)? + 2 + BE*| M = A(w+n+ 5)2 — A(eE)? + u?® + BE?




Definition of the C-function

For the heat kernel we obtain:
K(s)=> g(k)Ky(s)

T I 1
o {2/e dwnzzjoexp [—A((w—l—§+n)2+'uk

E

+ 2eE f: exp [—A ((eE +n)? + %2* = (eE)2> s] — eEexp (—pu}s)

n=0

The zeta function is:

2/:02




The imaginary part of the C-function

After some long computations, summations, integrations and
turning back to the Lorentzian signature through e ' — 1eF

the derivative of the C-function evaluated in zero is:

T

T on

['(eE +iB8)'(eE —if)
2T

{2(6E)2 log A — eElog A+ 2eFE log

2 [Cly(a+iB—1)+ Cy(a— i, —1) }

Its imaginary part is:

%Img,;( ) :% {—eE log (2 cosh[2mV/A] — 2 cosh[27reE])

‘ﬁ —Lia(— exp|~27(VA + eE)]) + Liz(~ exp[2r(VA + ¢E)))

~Lis(— exp[2n(VA — eE)]) + Lia(— exp[-27(VA — eE)])| }

The same result as the one obtained with the
transmission coefficient approach!!!




Finite temperature effects |

Nariai geometry describes a BH manifold with non zero temperature

l

Quantum instability not simply for a vacuum state
(Boulware-like state of standard Schwarzschild solution)

l

Thermal vacuum state of thermofield approach with the temperature equal to the
BH temperature
(corresponds to Hartle-Hawking state for the given solution)

l

Thermofield dynamics gives a straightforward generalization of
quantum instability to the case where “in” and “out” states are
thermal states (at the same temperature) instead than vacuum one




Finite temperature effects |l

Strategy to check if there is instability in the thermal state at the Hawking temperature:

we evaluate the thermal mean of the number of “out” particle (in
the k-mode) minus the number of “in” particles (in the k-mode)

\4

see the net effect of quantum instability

\4

In our case we are considering BH background with a single temperature so f3
is the inverse of BH temperature




Finite temperature effects |l

The “out” creator and annihilator operators are given by:
= 17 ai™ + v (bI™)T  (Bogoliubov transformation)

b7"" = i b — 11 (ai™)"  CCR for fermions leads to: i |? + [y ]? =1

~
~

Introduce thermal state operators «a;(53),a;(3),b;(8), b;(3) and thermal state |O(8) > s.t..

ail(B)|0(B) >= a(B)|0(B) >= bi(B)|0(8) >= bi(B)|O(B) >= 0

Between standard state operators and thermal state operators the following relations hold:

1

- 1 _
a; = s; a)(3) + ¢ al (B) o o

/Tt e[l + oo )]

- \/1 + exp|B(w — p1)]

by = s; bi(B) + ¢, bl (B) o exp[ghlw—oh)] o exp[3B(lwl + o)l

LT Vv 1+exp[Bw— ot LT V1 +exp[B(lw| +¢7))

With " and - chemical potential for particle and antiparticle respectively




Nariai and finite temperature effects

Define: Vout(g) : = (a0%)taomt

Vi

Vi
For the Nariai
geometry

< NP >p= | Th(w)5 (tanh%mw — )] + tanhz A(1w] + so‘)])

where " is assumed for definiteness to be the chemical B
potential for particles in the case of a positively charged black + — oAl — A — 9,02
hole, @~ = p*, particles are electrons with charge -e and: 14 (Ao olo) cQ A

heyv A

In terms of physical (dimensionful) variables, by taking into account that 1}, = ,and that

\/7 27‘(‘]%
Wphys = AW, in such a way that  OppysWphys = 2TW.




Conclusion

* We studied spontaneous emission of charged Dirac particles by the Nariai BH solution;
* the particular geometry allows an exact computation;

* the two different approaches give the same result;
e we performed the same exact computation also for other two geometries (ultracold | and Il)

obtaining perfect accord between the C-function approach and the transmission coefficient

approach;
* we made analogous computation for the scalar case
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Heuristically...

Let consider the eigenproblem: (p — ,LL)\I/ — )\

Then we have (AL + i) = ++/ID? and thus we can formally write:

los(det(p — 1)) = 3 log (det (—u+ /P?) ) + 5 log (det (—u — v7?))

= - log (det (4> ~ %))

The factor 1/2 arises from the double degeneration of each eigenvalue, if D — )Wy =AUy
then, for example, (—M + \/JZ)2) Uy =X\ U,.

It is convenient to define: — log (det (\/JDQ — )) C _$2( )

and then for the Euclidean effective action we get:

1
W = 5€u2p=(0)




