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RESUMEN

As it is well known, the Hénon-Heiles model was introduced in 1964 with
the purpose of studying the appearance of chaos in the motion of stars
end galaxies. One of the features of this model is that it is not
integrable. This is due to the fact there are not enough constants of the
motion. In this contribution we analyze this situation within the
framework of Eisenhart’s geometric formulation of classical mechanics,
based on the equivalence between the Lagrange equations of motion and
the geodesic equations of a suitable riemannian manifold. This approach
will enable us to make use of geometric tools to study the symmetries,
and the associated constants of the motion, of mechanical systems. In
particular wi will focus our attention on the Killing vectors fields, affine
collineations, killing tensors and their associated conserved quantities.
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INTRODUCCION

Once that General Relativity gained popularity, it was quite natural for
theoretical physicists to become interested in the geometrization of
mechanics. Therefore, the attempts to achieve a Riemannian formulation
of classical dynamics date back to the first decades of the past century.
The general idea of geometrization is based on the observation that the
trajectories of classical systems in configuration space can be viewed
geodesics of a suitable Riemannian manifold.
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Hamilton’s principle states that the natural motions of a hamiltonian
system are the extremal curves of the functional

S =

∫
L dt (1)

where L is the lagrangian function of the system. On the other hand, the
geodesics of a riemannian manifold are the extremal curves of the length
functional

l =

∫
ds (2)

where s is the arc-length parameter.
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If, by choosing a suitable metric, it is possible to establish a relationship
between length and action, then it becomes possible to identify geodesics
with physical trajectories.
Eisenhart metric has been used successfully to attain an understanding of
the origin of chaos in Hamiltonian systems, relating the stability of the
trajectories to the stability of the geodesics, which is completely
determined by the curvature of the manifold.
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BASIC CONCEPTS ON SYMMETRIES IN GENERAL
RELATIVITY

In riemannian spaces various symmetries, described by the properties of
infinitesimal transformation xa = xa

0 + ξa δs, exist and some of them
have a geometrical interpretation.

Motions, i.e. killing vectors ξ satisfying:

$ξ gab = ξ(a;b) = 0 (3)

preserve the metric tensor (isometry). As usual $ξ denotes the Lie
derivative, semicolon covariant derivative and (, ) symmetrization.
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The conformal motions, ξ, satisfying

$ξ gab = 2 σ(x) gab (4)

preserve the angles between two directions at a point and map null
geodesics into null geodesics. If σ(x) = const. then we have a
homothetic motion.
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The affine collineation, ξ, satisfying:

$ξ Γa
bc = ξ(a;b;c) = 0 (5)

preserves the affine parameter on the geodesic, i.e. the geodesic equation
structure remains unaltered by such a transformation.
Another type of symmetry of the metric is given by the existence of a
symmetric tensor Kab

The Killing Tensor, Kab, satisfying:

Kab;c = 0 (6)
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Associated to these symmetries there exist constants of the motion:

For Killing vectors

J = ξaPa (7)

For affine collineations

C1 = ma;b PaPb (8)

C2 = ma Pa − s C1 (9)

are constant of the motion.
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Associated to the Killing tensor there also exist conserved quantities

For the Killing Tensor

J(µ) = Kµ
abP

aPb (10)

Since, in this riemannian manifold geodesic lines coincide with the actual
paths of a given dynamical system, we can establish a direct
correspondence between the first integral, involving killing vectors or
affine collineations on the geodesics, and the first integrals of the
dynamical system.
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THE EISENHART FORMULATION

Consider a system of n degrees of freedom described by qi (i = 1, ..., n)
generalized coordinates, the kinetic energy has the general form

T =
1

2
gij (qr , t) q̇i q̇j + Di (qr , t) q̇i + C (qr , t) (11)

As usual, repeated indices are summed. We assume that the n× n matrix
gij is not degenerate, i.e. det g 6= 0; then we may consider gij as a metric
in the configuration space. The contravariant metric is defined by
g ijgij = δi

j to describe the kinetic energy in tensor language, we consider

n + 1 dimensional space V n+1 with coordinates qi , qn+1, where we set

qn+1 = t =⇒ q̇n+1 = 1 (12)
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Then the kinetic energy is written as

T =
1

2
gij (qr , t) q̇i q̇j + gi n+1 (qr , t) q̇i +

1

2
gn+1 n+1 (qr , t) (13)

where
gi n+1 = Di , gn+1 n+1 = 2C (14)

The lagrangian of the system is

L(qr , q̇r , t) = T−V =
1

2
gij (qr , t) q̇i q̇j+gi n+1 (qr , t) q̇i+

1

2
gn+1 n+1 (qr , t)−V

(15)
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We can write Lagrange equations,
d

dt

(
∂L

∂ q̇i

)
=

∂L

∂qi
, using the notation

of riemannian geometry:

q̈i +Γi
jk q̇j q̇k +g ir [j n + 1, r ] q̇j +g ijgj n+1,n+1−

1

2
g ij [gn+1 n+1 − 2V ],j = 0

(16)
where ”,” indicates partial derivative,

Γi
jk = g il [jk, l ] (17)

and

[jk, l ] =
1

2
(gjl,k + gkl,j − gjk,l) (18)

The time t has no equation of motion because it is not a dynamical
variable.
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Let us consider now a n + 2 dimensional space with coordinate functions(
qi , t, u

)
endowed with a metric defined by

ds2 = gij dqidqj + 2gi n+1dqidt + A dt2 + 2 dt du (19)

If we define
A = gn+1 n+1 − 2V (20)

then the geodesic equations

d2qi

ds2
+ Γi

jk

dqj

ds

dqk

ds
= 0 (21)

of the V n+2 space with metric (19) are:
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Lagrange equations of motion of the dynamical system:

q̈i + Γi
jk q̇j q̇k + g ir [j t, r ] q̇j + g ijgj t,t −

1

2
g ij [gtt − 2V ],j = 0 (22)

where we have written t for the index n + 1.

The equation which relates the coordinate t to the arc-length s along the
geodesic

t = a s (23)

The equation which relates the coordinate u to the coordinates qi and t

u(qi , t) =
1

2

t

a2
−
∫

Ldt + b (24)
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THE HÉNON-HEILES MODEL

For a two-dimensional Lagrangian with the following form

L =
1

2
ẋ2 +

1

2
ẏ2 − V (x , y)

the Eisenhart metric reads

ds2 = dx2 + dy2 − 2V (x , t)dt2 + 2dtdu (25)

The Killing equations for this metric are

ξx
,x = 0

ξx
,y + ξy

,x = 0

ξx
,t − 2V (x , y)ξt

,x + ξu
,x = 0
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ξx
,u + ξt

,x = 0

ξy
,y = 0

ξy
,t − 2V (x , y)ξt

,y + ξu
,y = 0

ξy
,u + ξt

,y = 0

−ξxV (x , y),x − ξyV (x , y),y − 2V (x , y)ξt
,t + ξu

,t = 0

−2V (x , y)ξt
,u + ξu

,u + ξt
,t = 0

ξt
,u = 0

For the special case of the Hénon-Heiles potential

The Hénon-Heiles potential

V (x , y) =
1

2
x2 +

1

2
y2 + x2y − 1

3
y2 (26)

Umberto L. Percoco Viviana M. Viña Cervantes GEOMETRIC APPROACH TO THE HÉNON-HEILES MODEL



Solving the Killing equations for the above potential, we obtain the
following solution

Solution

ξx = 0 (27)

ξy = 0 (28)

ξt = α (29)

ξu = β (30)

Substituting in (7) and reminding that Pa =
dxa

ds
=

dxa

dt
we have that

Px = ẋ

Py = ẏ

P t = 1

Pu = u̇ =
1

2
− L
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therefore,

the associated coserved quantities are

J(1) =
1

2
− 1

2
ẋ2 +

1

2
ẏ2 + V = 1− E (31)

J(2) = 1 (32)

We can see that the only non-trivial conserved quantitie is the ENERGY
of the system.
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For the Hénon-Heiles potential the non-zero components of the
conections are

Γx
tt = x + xy

Γy
tt = y +

1

2
x2 − 1

2
y2

Γu
xt = −x − 2xy

Γu
yt = y + x2 − y2

Substituting these expressions in (5), and solving the system of 40
equations we find

The Affine Collineations

ηx(x , y , t, u) = 0 (33)

ηy (x , y , t, u) = 0 (34)

ηt(x , y , t, u) = C (35)

ηu(x , y , t, u) = k1t + k2 (36)
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Substituting this in (8) and (9), we can see that

the associated coserved quantities are

C1 = k1 (37)

C2 = C [
1

2
− (T + V )] (38)

Also in this case, we notice that the only non-trivial conserved quantity is
the ENERGY.
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Now, to compute the Killing tensor, we use (6) we obtain a system of
twenty coupled PDEs whose solution will give ten components of the
Killing tensor. After a very cumbersome computation we find that the
Eisenhart metric associated to the Henon-Heiles potential admits three
Killing tensors given by

1 Kxx = c1 , Kyy = c1, Ktt = c1(x2 + 2x2y − 2
3y3 + y2), Ktu = 0

2 Kxx = 0, Kyy = 0, Ktt = −2c2(x2 + 2x2y − 2
3y3 + y2), Ktu = c2

3 Kxx = 0, Kyy = 0, Ktt = c3, Ktu = 0
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Associated to the Killing tensors we have conserved quantities whose
expression is given by

J(µ) = K
(µ)
ab PaPb

Applying the above definition to the Henon-Heiles potential we find that
the only conserved associated to the existence of Killing tensors is the
ENERGY.
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CONCLUSION

As it is well known, the only constant of the motion of the Henon-Heiles
system is the energy. In this contribution, following a completely different
approach, based on the equivalence between the geodesic equation and
the Lagrange equations, find the same result. This fact provides, from a
geometric point of view, an additional evidence of the non integrability of
the system.
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