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Geometric Swimming

Swimming

The ability of a deformable body to alter its location or orientation
relative to an ambient space by controlling variations in its shape.
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Geometric Swimming

Shape Space

C

Ambient Space

g(C)

Geometric Swimming

Location/Orientation of object is only
dependent on the sequence of shape
changes (i.e., independent of time,
external forces, etc...)
After a complete cycle C of shape
changes, object undergoes a net action
g(C) of a symmetry group of the
ambient space (e.g., Euclidean group)
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Some Examples
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Geometric Swimming

Shape Space

C

Ambient Space

g(C)

Two properties:

Scallop Theorem: Swimming
cycle requires enclosing net areas
in shape space
Helix Theorem: Swimming cycle
will generally involve both
rotations and translations
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Naive Treatment

Configuration Description

“The Body in Space”: N mass points in manifold M
Configuration Space: Q =MN ≡M×M× . . .M

Configuration Variable Split

q ∈ Q = (qint, qext)
qext: “External Variables (e.g., Center of Mass Position, Euler
Angles)
qint: “Internal Variables (e.g., relative positions, etc.)

Constraints

Fi(qint, qext, q̇int, q̇ext, t) = 0 yield qext(t) in terms of history of the
qint(t).
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Gauge Treatment

q

q' = g q

g

Symmetry group

G: a symmetry group of M
e.g. E(d) for Rd

Action:
GQ = GNMN ≡ GM×GM× . . . GM

Shapes

”Same Shape” ER: q ∼ q′ if q′ = gq for
some g ∈ G
”Shape Space”: S ≡ Q/ ∼
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Gauge Treatment

g(t)

s(t)

q(t)

S(t)

Motion Described by

A curve in Shape Space S(t) ∈ S
An associated curve s(t) ∈ Q of
representative configurations:
S(t) = [s(t)]
A curve g(t) ∈ G linked to s(t) though
non-holonomic constraints
q(t) = g(t)s(t).

Gauge Freedom

For s′ = h(S)s, with h ∈ G
q(t) = g′(t)s′(t) with g′ = gh−1
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Gauge Treatment

Fiber Bundle Description

Replace Q by Principal Bundle P = P (S, G)
Constraints define connection on TP

s(t) = σ(S(t)) with σ a local section of P
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Gauge Treatment

The Connection one-form

For given σ, constraints define connection one-forms A on T ∗S valued
on the Lie-Algebra g of G.

g(t) Satisfies the equation

g−1dg

dt
= 〈A, d

dt
〉

If q(0) = s(0), integrates on a curve C in shape space to

gC = P exp
(∫

C
A
)

(P : reverse path ordering)
Under change of section s′ = h(S)s,

A′ = hAh−1 − dhh−1
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Gauge Treatment

Field Strength Two-Form

From A one defines the curvature two-form F

F = DA = dA + A ∧A

Under change of section F′ = hFh−1

For a small, closed loop C = ∂S in Shape Space

gC = P exp
(∮

C
A
)
' exp

(∫
S
F
)
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Gauge Treatment

Shape Space

q1

q2

Dq1

Dq2

Swimming

Swimming is possible
only if F 6= 0.

F =
∑
i<j

Fijdθi ∧ dθj
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Gauge Treatment

Translational vs. Rotational Swimming

In many cases, g = t⊕ r where
t generates ”translations”
r generates ”rotations”

[r, r] ⊂ r [r, t] ⊂ t [t, t] ⊂ r

Thus, A and F split as

A = ATrans + ARot

F = FTrans + FRot

with

FTrans = dATrans + 2ARot ∧ATrans

FRot = dARot + ARot ∧ARot + ATrans ∧ATrans
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Example: Free Rotational Swimming

Free Fixed Body in Euclidean 3-Space

A free body in Euclidean space conserves angular momentum with
respect to CM

~L =
∑
n

mn~xn × ~̇xn , with
∑
n

mn~xn = 0

Gauge Description

Configuration Space: Q = (R3)N/T
Gauge group: G = SO(3)
Define Section: s(t) = (~z1, ~z2, . . . , ~zN ) with s(0) = q(0)

~xn(t) = R(t)~zn(θ(t))
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Example: Free Rotational Swimming

Connection (solely rotational)

A ≡ ~A · ~M , with Mi standard generator matrices of SO(3)

To obtain connection:

R(t) satisfies R−1Ṙ(t) = ~ω · ~M
When ~L = 0,∑

n

mn~xn × ~̇xn = 0 ⇒ ~ω = −I−1
∑
n

mn~zn × ~̇zn

Hence
~A = −I−1

∑
n

mn~zn × d~zn
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Example: Free Rotational Swimming

R (t)rel

Two Concentric Spheres

Shape Space is SO(3) for
relative orientation
Arel = (dRrel)R−1

rel

A = − I2
I1+I2

Arel

F = − I1I2
I1+I2

Arel ∧Arel 6= 0
Net orientation change of the
body is possible by a sequence of
relative rotations.
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Killing Fields and Symmetric Spaces

Killing Fields

A symmetric space M admits a set of k ≤ d(d+ 1)/2 Killing
vector fields K(a) such that

£
K

(a)g = 0

“Geometry is the same along integral curves of K(a)”

Killing equation

K(a)
µ;ν +K(a)

ν;µ = 0
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Killing Fields and Symmetric Spaces

Symmetry

The Killing fields span the Lie Algebra of Iso(M), the isometry
group of M.
Maximally symmetric spaces: k = d(d+ 1)/2 independent Killing
fields
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Conservation Laws

Invariance

Let q = (x1, x2, . . . xN )
Let the Lagrangian of the body be of the form

L(q, q̇) =
1
2

∑
n

gµν ẋ
µ
nẋ

ν
n + V (x1, . . . xN )

Suppose that L is invariant under

q → exp(sK)q ∀K ∈ Iso(M)

Conservation Laws

Then the quantities
P (a) ≡

∑
n

mnK
(a)
µ ẋµn,

are constants of the motion.
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Swimming in Symmetric Spaces

Gauge description

Symmetry Group: G = Iso(M)
Shape Space: S =MN/G, with coordinates θi

Section: xn = g zn(θ)⇒ s = (z1 . . . zN )

A = A(a) ⊗K(a)
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Swimming in Symmetric Spaces

Swimming connection

Using conserved quantities P (a) = 0,

P (a) = 0 ⇒
∑
n

mnK
(a)
µ (zn)

[
d

dt
+ g−1ġ

]
zµn = 0 .

Hence,

A(b)
∑

mnK
(a)
µ (zn)K(b)(zµ) +

∑
n

mnK
(a)
µ (zn)dzµn = 0
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Swimming in Symmetric Spaces

Swimming connection

Putting Everything together we obtain

A(a) = −(M−1)ab
∑
n

mnK
(a)
µ (zn)dzµn

Interpret as “Body-Averaged Killing field” where “Inertia Matrix”

Mab ≡
∑
n

mn

(
K(a) ·K(b)

)
(zn)
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Example: Euclidean Space

Killing Vectors

Translation: T i = ∂
∂xi

Rotation: M i = εijkx
j ∂
∂xk

Generate E(3)

Gauge

Choose gauge so that
∑

nmnz
i
n = 0

Split A = ATrans + ARot
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Example: Euclidean Space

Inertia Matrix

M =
(
m1 0
0 ICM

)
m =

∑
n

mn

∑
nmnT

(i)
µ dzµn = d(

∑
nmnz

i) = 0∑
nmnM

(i)
µ dzµn = εijk

∑
nmnz

jdzj
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Example: Euclidean Space

Connections

ATrans = 0
~ARot = −I−1

CM

∑
nmn~zn × d~zn

Swimming

FTrans = 0
~FRot = d~ARot + 1

2
~ARot × ~ARot (“Falling cat”)
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Maximally Symmetric 3-Spaces

Constant Curvature Spaces

M Iso(M)
K > 0 S3 SO(4)
K < 0 Hyp(3) SO(3, 1)
K = 0 R3 E(3)

Riemann Tensor:

Rµνλσ = K(gµλgνσ − gµσgνλ)
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Maximally Symmetric 3-Spaces

Quasi-Euclidean Coordinates ~x

Locally: ds2 = d~x · d~x+ K
1−Kr2 (~x · d~x)2

(Euclidean dot product, r2 = ~x · ~x)

Killing Vectors

Translation: T i =
√

1−Kr2 ∂
∂xi

Rotation: M i = εijkx
j ∂
∂xk
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Maximally Symmetric 3-Spaces

Gauge

Choose gauge so that∑
n

mn

√
1−Kr2n zin = 0

Inertia Matrix

M =
(
m1−KICM 0

0 ICM

)

∑
nmnT

(i)
µ dzµn =

∑
nmn

√
1−Kr2n dzi

∑
nmnM

(i)
µ dzµn = εijk

∑
nmnz

jdzj
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Maximally Symmetric 3-Spaces

Connections

~ATrans = −(m+KICM )−1
∑

nmn

√
1−Kr2n d~z

~ARot = −I−1
CM

∑
nmn~zn × d~zn (same as Euclidean)

Swimming

~FTrans = d~ATrans + ~ARot × ~ATrans

~FRot = d~ARot + 1
2
~ARot × ~ARot + K

2
~ATrans × ~ATrans
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Small Bodies

“Small”

|z|
√
|K| � 1

Translation Swimming

Connection:

~ATrans =
K

2

∑
n

mn

m
r2n d~zn +O(K2)

Field Strength:

~FTrans =
K

2

∑
n

mn

m

(
d(r2n) + r2n

~ARot×
)
∧ d~zn
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Small Deformation of a Uniform Spherical Membrane

s + p-wave Deformation

~z =
(ro + θ1)n̂ + θ2

(
k̂− 3(n̂ · k̂)n̂

)
Satisfies ~ARot = 0

Translation Swimming

~FTrans =
2Kro

3
(dθ1 ∧ dθ2) k̂
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