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Geometric Swimming

The ability of a deformable body to alter its location or orientation
relative to an ambient space by controlling variations in its shape.
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Geometric Swimming

Shape Space

Geometric Swimming

e Location/Orientation of object is only
dependent on the sequence of shape
changes (i.e., independent of time,
external forces, etc...)

o After a complete cycle C of shape
changes, object undergoes a net action
g(C) of a symmetry group of the
ambient space (e.g., Euclidean group)
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Some Examples
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Geometric Swimming

Shape Space

Two properties:

e Scallop Theorem: Swimming
cycle requires enclosing net areas
in shape space

o Helix Theorem: Swimming cycle
will generally involve both
rotations and translations
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Naive Treatment

Configuration Description

e “The Body in Space”: N mass points in manifold M
o Configuration Space: Q = MV=MxMx...M

Configuration Variable Split

qc Q= (Qinta Qemt)
® ¢eyt: “External Variables (e.g., Center of Mass Position, Euler
Angles)

@ ¢int: “Internal Variables (e.g., relative positions, etc.)

Fi(qint, Gext, Gints Geat, t) = 0 yield gert(t) in terms of history of the
Qint(t)-
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Gauge Treatment

Symmetry group

o (G: a symmetry group of M
g o e.g. E(d) for RY
y e Action:

9-849

7/ GO =G"MYN =GM x GM x ...GM

@ ”Same Shape” ER: g ~ ¢ if ¢ = gq for
some g € G
@ ”Shape Space”: S = Q/ ~
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Gauge Treatment

Motion Described by
@ A curve in Shape Space S(t) € S

e An associated curve s(t) € Q of
representative configurations:

S(t) = [s(t)]
s(t) e A curve g(t) € G linked to s(t) though
non-holonomic constraints

o q(t) = g(t)s(t). )

9

e For s = h(S)s, with h € G
° q(t) = ¢'(t)s'(t) with g’ = gh™!
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Gauge Treatment

Fiber Bundle Description
e Replace @ by Principal Bundle P = P(S, G)

o Constraints define connection on T'P

e s(t) = o(S(t)) with o a local section of P
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Gauge Treatment

The Connection one-form

For given o, constraints define connection one-forms A on T*S valued
on the Lie-Algebra g of G.

e ¢(t) Satisfies the equation

e If ¢(0) = s(0), integrates on a curve C' in shape space to

o =P (/CA>

(P: reverse path ordering)

e Under change of section s’ = h(S)s,

A’ = hAR™! —dhh7!
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Gauge Treatment

Field Strength Two-Form

From A one defines the curvature two-form F

F=DA=dA+ANA

o Under change of section F/ = hFh~!
e For a small, closed loop C' = 05 in Shape Space

gczﬁexp@cA) :exp(/SF>
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Gauge Treatment

0

Shape Space

Swimming

e Swimming is possible
only if F # 0.

g = exp (Fi, A0 ABy)

F =) Fydf' Ade’

1<j
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Gauge Treatment

Translational vs. Rotational Swimming

In many cases, g = t @ v where
o t generates ”translations”

@ t generates "rotations”

[, Ce [, Ct [t,Cr
Thus, A and F split as

A = A’I‘rans +ARot

F = F'I‘rans_|_FRot
with
F’I‘rans — dATrans + 2ARot A A’I‘rans
FRot _ dARot + ARot /\ARot +A’I‘rans /\A'I‘rans
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Example: Free Rotational Swimming

Free Fixed Body in Euclidean 3-Space

A free body in Euclidean space conserves angular momentum with
respect to CM

L:E MLy X Tp, With E MpZy =0
n n

Gauge Description

o Configuration Space: Q = (R3)V /T
e Gauge group: G = SO(3)
@ Define Section: s(t) = (z1, 25, ..., Zy) with s(0) = ¢(0)
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Example: Free Rotational Swimming

Connection (solely rotational)

A = A - M, with M; standard generator matrices of SO(3)

To obtain connection:

—

o R(t) satisfies R'R(t) =& - M
o When L = 0,

Emnfnxfnzo = cU:—H*IE MpZn X Zp,
n n

e Hence

7 -1 = =
A=—-1 E MpZn X A2,
n
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Example: Free Rotational Swimming

chl(t)

Two Concentric Spheres

@ Shape Space is SO(3) for
relative orientation

° A = (dRrel) rel

o A=—1lr A
o F= _%Arel A Arel 7é 0

o Net orientation change of the
body is possible by a sequence of
relative rotations.

.
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Killing Fields and Symmetric Spaces

Killing Fields
e A symmetric space M admits a set of k < d(d + 1)/2 Killing
vector fields ' such that

£o@g =10

o “Geometry is the same along integral curves of F(a) 7

Killing equation

K@+ K =0

v

Alonso Botero ( Universidad de ]l Swimming in Curved Space December 3, 2008 18 / 33



Killing Fields and Symmetric Spaces

e The Killing fields span the Lie Algebra of Iso(M), the isometry
group of M.

e Maximally symmetric spaces: k = d(d + 1)/2 independent Killing
fields
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Conservation Laws

Invariance

o Let ¢ = (x1,22,...2N)

o Let the Lagrangian of the body be of the form
L(‘]a zguuxnxn + V(ﬁla . N)

@ Suppose that L is invariant under

q— exp(sK)q VK € Iso(M)

Conservation Laws

Then the quantities

Z mnK(”’ i

are constants of the motion.

v
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Swimming in Symmetric Spaces

Gauge description

e Symmetry Group: G = Iso(M)

o Shape Space: S = MY /G, with coordinates 6’
e Section: x, = gz,(0) = s = (21...2nN)

e A=A g K@
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Swimming in Symmetric Spaces

Swimming connection

Using conserved quantities P(%) = 0,

S L P

Hence,
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Swimming in Symmetric Spaces

Swimming connection

Putting Everything together we obtain

A = _ me K zn )dzh

Interpret as “Body-Averaged Killing field” where “Inertia Matrix”

My =S my (K<a> -K(b)> (2n)
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Example: Euclidean Space

Killing Vectors

o Translation: T; = %
1

son: Mo — e0qd 0
e Rotation: M; = €T By

Generate E(3)

o Choose gauge so that > mp2t =0
o Split A = ATrans | A Rot
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Example: Euclidean Space

o Inertia Matrix

ml 0
M—( 0 ]ICM) m—gmn
° > . mnT,Si)dzn =d(>, mn2") =0
° > . mnM,Si)dzﬁ = €ijk Y, Mn2d2
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Example: Euclidean Space

Connections
° ATrans =0
o ARt = 120 S myz, x dZ,

Swimming
° FTrans =0
o Flot — qARot + %ARot w Aftot (“Falling cat”)
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Maximally Symmetric 3-Spaces

Constant Curvature

Spaces

M Iso(M)
K>0| &3 SO(4)
K <0 | Hyp(3) | SO(3,1)
K= R3 E(3)

@ Riemann Tensor:

Rp,l/)\cf

= K(gu)\gua - guagz/)\)
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Maximally Symmetric 3-Spaces

Quasi-Euclidean Coordinates 7

o Locally: ds? = di - d + 5 (% - di)?

(Euclidean dot product, 7? = 7 - %)

Killing Vectors
o Translation: T; = v/1 — Kr2 82 .

o Mo — ooy md O
e Rotation: M; = €@ oo
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Maximally Symmetric 3-Spaces

@ Choose gauge so that

Zmn\/l—Kr% 2t =0

n

o Inertia Matrix

_( ml—Klcm 0
M= < 0 Teym )

° > mnTF(f‘)dzﬁ =3, mpy/1— Kr2 dz*

°o > man(f)dzﬁ = €ijk Y, Mn2d2’
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Maximally Symmetric 3-Spaces

Connections

o ATrans — _ —(m+ Klom)™ 'Y, mny/1 — Kr2 d7
o Afot — Ty S, MinZn X dzn (same as Euclidean)

Swimming

° f\Trans — dATrans + ARot X ATrans
° FRot — dARot 4 %ARot % ARot 4 %ATrans % ATrans

|
\
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Small Bodies

I2]/K] < 1

Translation Swimming

o Connection:

- K
greme Ko 2 gz Lo

o Field Strength:

F7rons = TS (42 4 2K ) i,
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Small Deformation of a Uniform Spherical Membrane

s + p-wave Deformation

NL

( + 601)n + 05 (R —3(n- l;)ﬁ)

o Satisfies Aot =0

(d91 A d¢92) k
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