Black Holes and Wave Mechanics (V)

Dr. Sam R. Dolan

University College Dublin Ireland

Matematicos de la Relatividad General 08

(日) (日) (日) (日) (日) (日) (日)

Course Content

1. Introduction

- General Relativity basics
- Schwarzschild's solution
- Classical mechanics
- 2. Scalar field + Schwarzschild Black Hole
 - Klein-Gordon equation
 - Wave-packet scattering
 - Quasi-normal modes
- 3. Hawking Radiation
 - Key results
 - QFT on curved spacetime
 - Black hole collapse model
- 4. Scattering theory
 - Perturbation theory
 - Partial wave analysis
 - Glories and diffraction patterns
- 5. Acoustic Black Holes
 - Navier-Stokes eqn → Lorentzian geometry
 - Simple models

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Final Lecture

Why study Black Holes and Wave Mechanics?

- Gravitational wave astronomy
- Stability of black hole solutions
- Hawking radiation
- Higher-dimensional black holes at LHC?

Further motivations:

- (I) Scattering patterns from black holes
- (II) Quasi-bound states (?)
- (III) Analogue black holes
- (IV) Self-Force and Radiation Reaction

(ロ) (同) (三) (三) (三) (○) (○)

Quasi-Bound States

- Toy model: Primordial black hole $M \sim 10^{14}$ kg + neutrino ν
- Neutrino has small mass $\mu \lesssim 0.01 \text{eV}$
- Dimensionless mass coupling:

$$\alpha_{G} = \frac{GM\mu}{\hbar c} = \pi \frac{r_{S}}{\lambda_{C}}$$

- Effective potential V₁ has local minimum, near the radius of circular orbit.
- Define resonances called Quasi-Bound States (QBSs).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Quasi-Bound States

• QBS satisfy a pair of boundary conditions,

$$u_l \sim \left\{ egin{array}{ccc} e^{-i\omega r_*}, & r_*
ightarrow -\infty \ Ae^{-qr_*}, & r_*
ightarrow +\infty \end{array}
ight.$$

where
$$q = \sqrt{\mu^2 - \omega^2}$$
, $-\text{Re}(q) < 0$

- Ingoing at the horizon
- Exponentially decaying at infinity
- In horizon-penetrating coordinates (AEF; PG) the wavefunctions are normalisable.

A D F A 同 F A E F A E F A Q A

QBS of Klein-Gordon Equation

- Claim: In the limit $\alpha_G \ll I$, the QBS spectrum is hydrogenic
- In Painlevé-Gullstrand coordinates, the Klein-Gordon equation reads [exercise!] :

$$\left(\partial_t - \sqrt{\frac{2M}{r}} \,\partial_r\right)^2 \Phi - \frac{3}{2r} \sqrt{\frac{2M}{r}} \left(\partial_t - \sqrt{\frac{2M}{r}} \,\partial_r\right) \Phi$$
$$-\nabla^2 \Phi + \mu^2 \Phi = 0$$

• Here $\nabla^2 = \partial_i \partial_i$ is 3D Laplacian

- Ingoing solutions are regular at horizon.
- All solutions go as $\Phi \sim r^{-3/4}$ at origin $\Rightarrow r^2 |\Phi|^2 \rightarrow 0$

Non-relativistic Spectrum

• Split the field Φ into two components χ_1 and χ_2 ,

$$\chi_{1} = \frac{1}{2} \left(\Phi + \frac{i}{\mu} \left(\partial_{t} - \sqrt{\frac{2M}{r}} \partial_{r} \right) \Phi \right), \qquad (1)$$
$$\chi_{2} = \frac{1}{2} \left(\Phi - \frac{i}{\mu} \left(\partial_{t} - \sqrt{\frac{2M}{r}} \partial_{r} \right) \Phi \right), \qquad (2)$$

SO

$$\chi_1 + \chi_2 = \Phi$$
 and $\chi_1 - \chi_2 = \frac{i}{\mu} \left(\partial_t - \sqrt{\frac{2M}{r}} \partial_r \right) \Phi.$

Pair of coupled equations,

$$(i\partial_t - \mu)\chi_1 = -\frac{\nabla^2}{2\mu}(\chi_1 + \chi_2) + i\sqrt{\frac{2M}{r}}\partial_r\chi_1 + \frac{3i}{4r}\sqrt{\frac{2M}{r}}(\chi_1 - \chi_2)$$
$$(i\partial_t + \mu)\chi_2 = +\frac{\nabla^2}{2\mu}(\chi_1 + \chi_2) + i\sqrt{\frac{2M}{r}}\partial_r\chi_2 + \frac{3i}{4r}\sqrt{\frac{2M}{r}}(\chi_2 - \chi_1)$$

Non-relativistic Spectrum

• Non-relativistic spectrum: assume $\hbar \omega \sim \mu c^2$ and define $E_{NR} = \hbar \omega - \mu c^2$. Then

$$E_{NR}\chi_{1} = -\frac{1}{2\mu}\nabla^{2}\chi_{1} + i\sqrt{\frac{2M}{r}}\left(\partial_{r} + \frac{3}{4r}\right)\chi_{1}$$

• Make substitution $\chi_1 = \psi \exp(i\mu\sqrt{8Mr})$ to find Schrödinger equation

$$\mathsf{E}_{\mathsf{N}\mathsf{R}}\,\psi=-rac{1}{2\mu}oldsymbol{
abla}^2\psi-rac{M\mu}{r}\psi.$$

Energy levels with gravitational fine-structure constant α_G:

$$\hbar\omega_n\approx\left(1-\frac{\alpha_G^2}{2n^2}\right)\mu c^2,$$

• Hydrogenic wavefunctions.

(ロ) (同) (三) (三) (三) (○) (○)

Relativistic Spectrum

- QBS frequencies are complex, because flux is absorbed at the origin
- $\omega = \pm \omega_r i\omega_i$
 - Frequency ω_r
 - Decay rate ω_i
- Decay suppressed for $\alpha_G \ll I$, but becomes dominant for $\alpha_G \sim I$.
- Compute spectrum numerically (continued fraction method; direct integration; etc.)
- Need: Existence proofs; bounds; limits; functional analysis etc.

QBS spectrum

~ ~ ~ ~

QBS Wavefunctions

S-state wavefunctions. Left: 1S wavefunctions in the range $0.1 \le \alpha \le 0.3$. Right: 2S wavefunctions in the range $\alpha = 0.2 - 0.6$.

(ロ) (同) (三) (三) (三) (○) (○)

Acoustic Holes

• Under certain assumptions, perturbations to background flow satisfy a 'curved-space' Klein-Gordon equation!

$$\Box\psi\equivrac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu
u}\partial_{
u}\psi
ight)=0$$

where flow velocity is $\mathbf{v} = \mathbf{v}_0 - \boldsymbol{\nabla} \psi$

- Dumb hole: region of fluid from which no sound may escape (Unruh 1981).
- Horizon: Surface on which speed of sound in fluid = normal bulk flow velocity.
- Ergosphere: region of supersonic flow

Fluid Flow (I)

- Fluid mechanics:
 - (i) continuity equation

$$\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}) = \mathbf{0},$$

• (ii) Euler's equation

$$\rho \frac{D \mathbf{v}}{D t} = \rho \left[\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right] = \mathbf{f}$$

• Assume inviscid and 'potential' forces only:

$$\mathbf{f} = -\boldsymbol{\nabla}\boldsymbol{P} - \rho\boldsymbol{\nabla}\boldsymbol{\Phi}$$

• Vector triple product:

$$\mathbf{v} imes (\mathbf{\nabla} imes \mathbf{v}) = rac{1}{2} \mathbf{\nabla} v^2 - (\mathbf{v} \cdot \mathbf{\nabla}) \mathbf{v}$$

• Assume irrotational : $\nabla \times \mathbf{v} = \mathbf{0}$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Fluid Flow (II)

- No vorticity \Rightarrow Potential flow: $\mathbf{v} = -\nabla \psi$
- Assume barotropic: density depends on pressure only $\rho = \rho(P)$.
- Define enthalpy h

$$h(P) = \int_0^P \frac{dP'}{\rho(P')}$$

so that $h = \frac{1}{\rho} \nabla P$

• Euler's equation \Rightarrow Bernoulli's equation:

$$-\partial_t\psi+h+\frac{1}{2}(\nabla\psi)^2+\Phi=0.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Perturbations

• Assume background flow + perturbations: $\psi = \psi_0 + \epsilon \psi_1$

$$\Rightarrow \boldsymbol{P} = \boldsymbol{P}_0 + \epsilon \boldsymbol{P}_1 + \mathcal{O}(\epsilon^2), \qquad \rho = \rho_0 + \epsilon \boldsymbol{P}_1 + \mathcal{O}(\epsilon^2),$$

Linearize :

• (i)
$$\partial_t \rho_1 + \nabla \cdot (\rho_1 \mathbf{v}_0 - \rho_0 \nabla \psi_1) = \mathbf{0}$$

• (ii) $\rho_1 = \frac{d\rho}{dP} P_1 = \frac{\rho_0}{c^2} (\partial_t \psi_1 + \mathbf{v}_0 \cdot \nabla \psi_1)$

where the speed of sound is $c = \left(\frac{d\rho}{dP}\right)^{-1/2}$

• Combine (i) & (ii) in wave equation:

$$-\partial_t \left(\frac{\rho_0}{c^2} (\partial_t \psi_1 + \mathbf{v}_0 \cdot \nabla \psi_1) \right) + \nabla \cdot \left(\rho_0 \nabla \psi_1 - \frac{\rho_0}{c^2} \mathbf{v}_0 (\partial_t \psi_1 + \mathbf{v}_0 \cdot \nabla \psi_1) \right) = \mathbf{0}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Lorentzian Geometry

Rewrite perturbation equation in suggestive form:

$$\partial_{\mu}(f^{\mu\nu}\partial_{\nu}\psi_{1})=0$$

where

$$f^{\mu\nu}(t,\mathbf{x}) = \frac{\rho_0}{c^2} \begin{bmatrix} -1 & \vdots & -v_0^j \\ \cdots & \vdots & \cdots \\ -v_0^j & \vdots & (c^2 \delta^{ij} - v_0^i v_0^j) \end{bmatrix}.$$

• Let $f^{\mu
u}=\sqrt{-g}\,g^{\mu
u}$ where $\det(f^{\mu
u})=\det(g_{\mu
u})=ho_0^4/c^2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Effective Metric

• \Rightarrow Perturbation equation

$$\Box \psi \equiv \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \psi \right) = 0$$

• where the acoustic metric is

and the line element is

$$ds^{2} = \frac{\rho_{0}}{c} \left[-c^{2}dt^{2} + (dx^{i} - v_{0}^{j}dt)\delta_{ij}(dx^{j} - v_{0}^{j}dt) \right]$$

(ロ) (同) (三) (三) (三) (○) (○)

Comments

- Flat spacetime η_{μν}, but perturbations couple to effective metric g_{μν}.
- Laboratory frame.
- Newtonian time coordinate t
- For fluids, *c*_{sound} « *c*_{light}
- Horizon: normal flow speed = speed of sound.
- Quantize perturbations ⇒ phonons ⇒ Hawking radiation
- but no equivalent "Laws of Acoustic Hole Mechanics".

(日) (日) (日) (日) (日) (日) (日)

Example I: Canonical Acoustic Hole

- Spherically-symmetric flow in 3D.
- Source (+) or sink (-) at origin r = 0
- Conservation of fluid $\Rightarrow v_r = \pm cr_h^2/r^2$ where r_h is a constant
- Acoustic line element

$$ds^2 = -c^2 dt^2 + \left(dr^2 \pm \frac{r_h^2}{r^2}cdt\right)^2 + r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right).$$

- Horizon at r = r_h
- Like Painlevé-Gullstrand BH metric $\left(\frac{r_h^2}{r^2} \leftrightarrow \sqrt{\frac{2M}{r}}\right)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example I: Canonical Acoustic Hole

Change to diagonal metric with new (non-physical) time coordinate

$$cdar{t} = cdt \pm rac{r_h^2}{r^2}(1 - r_h^4/r^4)^{-1}dr$$

Schwarzschild-like line element:

$$ds^{2} = -c^{2}f(r)d\bar{t}^{2} + f^{-1}(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

where $f(r) = 1 - r_h^4 / r^4$.

• Transformation is singular at horizon

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hawking radiation

- Quantized perturbations \Rightarrow phonons \Rightarrow Hawking radiation
- Hawking temperature:

$$k_B T_H = \frac{\hbar g_h}{2\pi c}$$

- Speed of sound c not light
- Surface gravity

$$g_H = rac{1}{2} rac{\partial (c^2 - v_\perp^2)}{\partial n}$$

• Temperature of canonical acoustic hole:

$$T_H \approx 1.2 imes 10^{-9} \,\mathrm{K} \,\mathrm{m} \,(c/1000 \mathrm{ms}^{-1}) \left(c^{-1} rac{dv_\perp}{dn}
ight)$$

Cold!

(ロ) (同) (三) (三) (三) (○) (○)

Analogue Models

- A range of other black hole analogues have been proposed
 - Bose-Einstein condensates
 - Superfluid Helium
 - Electromagnetic waveguides
 - Optical fibres
- Hawking radiation not yet measured.
- e.g. Bose-Einstein condensate:
 - *T_H* ∼ 10nK
 - $T_{background} \sim 100 nK$
- Classical wave phenomena should be easier to observe.

Wave Scattering by an Acoustic Hole

Wave Absorption by an Acoustic Hole

[Crispino, Oliveira and Matsas 2008]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example II: Draining Bathtub Model

• Simple circulating fluid flow:

$$\mathbf{v}_0 = \frac{A\hat{r} + B\hat{\theta}}{r}$$

- Constants of flow A, B
- Irrotational ($\boldsymbol{\nabla} \times \mathbf{v} = \mathbf{0}$) except at the vortex core
- Potential is discontinuous on passing through 2π

$$\psi_0(r,\theta) = A\ln(r/a) + B\theta$$

Line element in cylindrical polars r, θ, z:

$$ds^{2} = -c^{2}dt^{2} + \left(dr - \frac{A}{r}dt\right)^{2} + \left(rd\theta - \frac{B}{r}dt\right)^{2}$$

Example II: Draining Bathtub Model

- Horizon $r_h = |A|/c$
- Ergosphere $r_{erg} = \sqrt{A^2 + B^2}/c$
- Inside ergosphere, all perturbations are co-rotating with circulating fluid.
- Ergosphere ⇒ Superradiance: stimulated emission of radiation.
- Perturbation + Superradiance: outgoing flux can exceed ingoing flux
- Rotational energy extracted from the background flow.
- Superradiance also occurs for a rotating (Kerr) black hole
- Superradiance + bound states ⇒ Stability?

Superradiance

Superradiance in the first co-rotating mode n = 1 as a function of perturbation frequency ωr_h and rotation rate $B = 0 \dots 1.0$

・ロット (雪) ・ (日) ・ (日)

ъ

Conclusion

Black holes + wave mechanics = a range of topics for study

- GR + Geodesics : Gravitational Lensing
- GR + field (classical) : Gravitational Wave Astronomy
 - Black hole mergers
 - QNM signatures
 - Diffraction scattering patterns
- GR + field (quantum) :
 - Particle creation
 - Hawking radiation
 - Higher-dimensional black holes at LHC?
 - Quasi-Bound States?
- Non-Commutative GR : all of the above and more!
- Acoustic holes: black hole analogues in the lab?

Questions, comments, corrections: sam.dolan@ucd.ie