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Course Content

1. Introduction
o General Relativity basics
e Schwarzschild’s solution
o Classical mechanics
2. Scalar field + Schwarzschild Black Hole
¢ Klein-Gordon equation
o Wave-packet scattering
e Quasi-normal modes
3. Hawking Radiation
o Key results
e QFT on curved spacetime
e Black hole collapse model
4. Scattering theory
o Perturbation theory
o Partial wave analysis
¢ Glories and diffraction patterns
5. Acoustic Black Holes
¢ Navier-Stokes eqn — Lorentzian geometry
e Simple models



Final Lecture

Why study Black Holes and Wave Mechanics?
o Gravitational wave astronomy
o Stability of black hole solutions
e Hawking radiation
e Higher-dimensional black holes at LHC?

Further motivations:
e (l) Scattering patterns from black holes
(1) Quasi-bound states (?)

e (Ill) Analogue black holes
(IV) Self-Force and Radiation Reaction
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Quasi-Bound States

Toy model: Primordial black hole M ~ 10'*kg + neutrino v

Neutrino has small mass ¢ < 0.01eV

Dimensionless mass coupling:

o —GMM—wr—S
7 e e

Effective potential V, has local minimum, near the radius of
circular orbit.

Define resonances called Quasi-Bound States (QBSs).
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Quasi-Bound States

QBS satisfy a pair of boundary conditions,

U giwre re — —00
! Ae—ar r. — +oo

where g = /2 — w?, —Re(q) < 0

Ingoing at the horizon

Exponentially decaying at infinity

In horizon-penetrating coordinates (AEF; PG) the
wavefunctions are normalisable.
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QBS of Klein-Gordon Equation

Claim: In the limit ag < I, the QBS spectrum is hydrogenic

In Painlevé-Gullstrand coordinates, the Klein-Gordon
equation reads [exercise!] :

2
[2M 3 /2M [12M

—V20 + 12 =0

Here V2 = 9;9; is 3D Laplacian

Ingoing solutions are regular at horizon.

All solutions go as ® ~ r—3/* at origin = r?|®|?> — 0



Quasi-Bound States

Non-relativistic Spectrum
e Split the field ® into two components y; and x»,

X1=73 <¢+M<at \/W8r> ) (1)
el

i M
X1+tx2=9 and X1—X2=M<8z—\/ 8r>

¢ Pair of coupled equations,

. v? - [2M 3i [2M
(10 — 1) x1 :_Z(M +X2) +1 TarX1 T ar T(X1 — X2)
, v? . [2M 3i [2M
(/at‘i‘,u)XZ:‘f'E()ﬁ +x2) + i = O+ = (e = xa)

X2
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Non-relativistic Spectrum

Non-relativistic spectrum: assume fiw ~ pc? and define
Eng = hw — uc?. Then

1 . |[2M 3
Enpx1 = —ZV2X1 i <3r + 4r> X1

Make substitution x1 = ¥ exp(iuv8Mr) to find Schrodinger

equation

1 M
Enpv = —5 V20— =10

Energy levels with gravitational fine-structure constant ag:

aé 2
hwn% 1_ﬁ Mca

Hydrogenic wavefunctions.
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Relativistic Spectrum

QBS frequencies are complex, because flux is absorbed at
the origin
w = Fwr — iw;

e Frequency w,

e Decay rate wj
Decay suppressed for ag < /, but becomes dominant for
ag ~ /
Compute spectrum numerically (continued fraction
method; direct integration; etc.)

Need: Existence proofs; bounds; limits; functional analysis
etc.
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QBS spectrum
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QBS Wavefunctions
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S-state wavefunctions. Left: 1S wavefunctions in the range
0.1 < a < 0.3. Right: 2S wavefunctions in the range o = 0.2 —
0.6.



Acoustic Holes

Acoustic Holes

Under certain assumptions, perturbations to background
flow satisfy a ‘curved-space’ Klein-Gordon equation!

Oy = O (V—99"0,1) =0

.1
v—9g
where flow velocity is v = vy — V)

Dumb hole: region of fluid from which no sound may
escape (Unruh 1981).

Horizon: Surface on which speed of sound in fluid =
normal bulk flow velocity.

Ergosphere: region of supersonic flow



Acoustic Holes

Fluid Flow (1)

Fluid mechanics:
e (i) continuity equation

Op+V - (pv) =0,
e (ii) Euler's equation
Dv
T plov+ (v- Vv =f
Assume inviscid and ‘potential’ forces only:

f=—-VP—-)pVo

Vector triple product:
V X (va):%sz—(v-V)v

Assume irrotational : V x v = 0.
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Fluid Flow (I1)

No vorticity = Potential flow: v = -V

Assume barotropic: density depends on pressure only
p = p(P).

Define enthalpy h

P dPl
ne = [ e

sothath=1VP
Euler's equation = Bernoulli’s equation:

1
—0ph + h+ é(w)z +¢=0.
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Perturbations

e Assume background flow + perturbations: ¢ = ¢y + €)1
= P=Po+eP1+0(),  p=po+eP+0(P),

e Linearize :

e (i) Orps +dV ~(p1vo — poVp1) =0
o (i) p1 = g5 P1 = B (01 + Vo - V1)

—1/2
where the speed of sound is ¢ = (%)

e Combine (i) & (ii) in wave equation:

—0r (250 + Vo - Vi) +
\'A (POV¢1 - %Vo(aﬂm + Vo - V¢1)) =0.



Acoustic Holes

Lorentzian Geometry
o Rewrite perturbation equation in suggestive form:

D (f8,11) = 0

where

o Let v = /=g g"” where det(f*) = det(g,.) = —p§/c?
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Effective Metric

e = Perturbation equation

1
Oy = ——0 —gg"o,0) =0

e where the acoustic metric is

g/“,(t7 x) = %? ...... B

e and the line element is

ds? = 20 | ~c2af? +- (d' - vjat)oy(ax’ — vhar)] .



Acoustic Holes

Comments

Flat spacetime 7,,,, but perturbations couple to effective
metric g,

Laboratory frame.

Newtonian time coordinate ¢

For fluids, csoung < Clight

Horizon: normal flow speed = speed of sound.

Quantize perturbations = phonons = Hawking radiation

but no equivalent “Laws of Acoustic Hole Mechanics”.



Acoustic Holes

Example |I: Canonical Acoustic Hole

Spherically-symmetric flow in 3D.

Source (+) or sink (-) at originr =0

Conservation of fluid = v, = & crZ/r? where ry is a
constant

Acoustic line element
5 2
r
ds® = —c?dt® + (dr2 + rgcdt> + r? (d02 + sin? 0d¢>2> .

Horizon at r = ry

Like Painlevé-Gullstrand BH metric (:’Z s 2"”)

r
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Example |I: Canonical Acoustic Hole

e Change to diagonal metric with new (non-physical) time
coordinate

_ r2 B
cdt = cdt + 7’;(1 —rt/rHadr

e Schwarzschild-like line element:
ds® = —c2f(r)dt? + £~ (r)dr? + r?(d6? + sin? 0d$?)

where f(r)=1—r}/r*.
e Transformation is singular at horizon



Acoustic Holes

Hawking radiation

Quantized perturbations = phonons = Hawking radiation
Hawking temperature:

hgn
kgTy = —
BIH ™= orc
Speed of sound ¢ not light
Surface gravity
_ 1‘9(02 - )
9H =2 on

Temperature of canonical acoustic hole:

Th~12x10"°Km(c/1000ms~) (r“ﬁj)

Cold!



Acoustic Holes

Analogue Models

A range of other black hole analogues have been proposed

o Bose-Einstein condensates
o Superfluid Helium

¢ Electromagnetic waveguides
e Optical fibres

Hawking radiation not yet measured.

e.g. Bose-Einstein condensate:
° TH ~ 10nK
o Tbackground ~ 100nK

Classical wave phenomena should be easier to observe.
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Wave Scattering by an Acoustic Hole

wor, =6.0

-3+ \" i
Glory Approximation ------- Vi

Schwarzschild Black Hole i
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[Dolan, Crispino and Oliveira 2008]
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Wave Absorption by an Acoustic Hole

Canonical Acoustic Hole Absorption Cross Section

=

NouhrwNn—=0O%

N
T
—————

ry

[Crispino, Oliveira and Matsas 2008]

Conclusion



Acoustic Holes

Example II: Draining Bathtub Model

Simple circulating fluid flow:

At +BD

V
0 r

Constants of flow A, B
Irrotational (V x v = 0) except at the vortex core
Potential is discontinuous on passing through 27

Yo(r,0) = Aln(r/a) + B

Line element in cylindrical polars r, 0, z:

2 2
ds® = —c2dt® + <dr — i‘dt) + (rde — ’fdt)



Acoustic Holes

Example II: Draining Bathtub Model

Horizon r, = |A|/c
Ergosphere rerg = VA2 + B2/c

Inside ergosphere, all perturbations are co-rotating with
circulating fluid.

Ergosphere = Superradiance: stimulated emission of
radiation.

Perturbation + Superradiance: outgoing flux can exceed
ingoing flux

Rotational energy extracted from the background flow.
Superradiance also occurs for a rotating (Kerr) black hole

Superradiance + bound states = Stability?
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Superradiance
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Superradiance in the first co-rotating mode n = 1 as a function
of perturbation frequency wr, and rotationrate B=0...1.0



Conclusion

Black holes + wave mechanics = a range of topics for study

e GR + Geodesics : Gravitational Lensing

e GR + field (classical) : Gravitational Wave Astronomy
e Black hole mergers
e QNM signatures
o Diffraction scattering patterns

e GR + field (quantum) :

Particle creation

Hawking radiation

Higher-dimensional black holes at LHC?
Quasi-Bound States?

e Non-Commutative GR : all of the above and more!
¢ Acoustic holes: black hole analogues in the lab?
Questions, comments, corrections: sam.dolan@ucd.ie

Conclusion
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