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Course Content
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2. Scalar field + Schwarzschild Black Hole
¢ Klein-Gordon equation
o Wave-packet scattering
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3. Hawking Radiation
o Key results
e QFT on curved spacetime
e Black hole collapse model
4. Scattering theory
e Perturbation theory
o Partial wave analysis
o Glories and diffraction patterns
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Recap

e Scalar wave:
_ u/(r) —jwt
o= [ a0, 0)e

e Ordinary differential equation:

d2 u

Tl’f + [wz - V/(I’)] u =0,

o Effective potential

Vi(r) = <1 —2M> (l(/+1) +2M+m2>.

r r2 r3



Current

Near the horizon, two independent solutions:
U~ et~ as r—2M

Infalling observer x* = [(1 —2M/r)~", —y/2M/r,0,0]
measures a time-like component

iy
)'(“Juww<1:m/2:w> as r—2M

At r = 2M, this is regular for ingoing e~“"= solution ...
.. but divergent for outgoing solution ™",

= Ingoing boundary condition at r = 2M.

Horizon acts like a one-way membrane.



Time-Independent Scattering

Let a long-lasting monochromatic plane wave impinge upon an
isolated black hole:

>}
®
v



Time-Independent Plane Wave Scattering

Dimensionless Parameter:

e Coupling strength : GMw/c® ~ Mw ~ mrg/ A

Physical Observables:

e 0, : absorption cross section.

g—g : differential scattering cross section.

e 0 < P < 1: partial polarisation.



Weak-Field Approximations: A > rg

In the long-wavelength limit (low coupling Mw < 1), can use
perturbation theory to show:

scattering cross section: 592

M2 dQ
1
scalar 62
: cos?(0/2)
neutrino S’ (0/2)
cos*(0/2)
photon sin*(6/2)

P cos8(0/2) 4 sin®(0/2)
gravitational sin(6,2)




Weak-Field Approximations: A > rg

In the long-wavelength limit (low coupling Mw < 1), can use
perturbation theory to show:

scattering cross section: 592

M2 dQ
1
scalar 62
: cos?(0/2)
neutrino S’ (0/2)
cos*(0/2)
photon sin*(6/2)

P cos8(0/2) 4 sin®(0/2)
gravitational sin(6,2)

: extra term!



Weak-Field Approximations: A > rg

In the long-wavelength limit (low coupling Mw < 1), can use
perturbation theory to show:

scattering cross section: 592

V2 d

scalar W

neutrino Z?:j((g//zz))

photon %

gravitational °°Ss(esﬁf]2(;/5i2”)8(9/ 2 : extra term!
General rule:

as
Jim (A:I?gg> ~ W 1+ 65 sint(6/2)



Perturbation Theory

In limit Mw < 1, may treat scattering perturbatively.
Treat BH as interaction potential on a flat background.
Expand in Born series :

do _(GM
dQ  \ 2

2
> [ao(v,e) + (Mw)ay (v, 0) + (Mw)?ap(v,6) + .. ] ,

where a; are dimensionless functions.

Many coordinate systems ...
... but need gauge-invariant result.



Perturbation Method for Scalar Field (1)

e Assume KG equation can be written:
9"9,® + mPd 4+ Bo =0
e where interaction term
Bo = (~9) 20, [(-9)"2 (¢ — ") 0,9

is in some sense small (warning: not true at origin!)

« Assume time-dependence e/, so that Bis a function of r
only.



Perturbation Method for Scalar Field (Il)

e The propagator (Green’s function) A is defined by
((8,0"), + M + B(o)| Ao x1) = 8% (3 — x1).

and appropriate boundary conditions

e The propagator may be expanded in a perturbation series,
Ag(xs, Xi) = Ap(Xt, X;) _/d4X1AF(Xf7X1)B(X1)AF(X1aXi)"‘
/ / d*x1 d* X A (X5, X1)B(x1) AF(X1, X2) B(X2) AF (X2, ;) + . . .

where Af is the flat-space Feynman propagator.



Perturbation Method for Scalar Field (IlI)

The Feynman propagator is simplest in momentum space:

ArO ) = [ -8 Ap(yetete ) Ap(k) =
F( 25 1) (27T)4 F ) F

1
k2 _me

To find Ar(x2, x1), construct contour with correct causal
behaviour. Easiest to do calculation in momentum space.

Scattering amplitude:

d®k 1
M = B(pfvpi)+/(27_‘,)38(pf7k)k2_n,728(k7pi) e

where B(py, p;) is the Fourier transform of the interaction
term,

B(pz; p1) Z/d3x eP2XB(x)e P



Perturbation Method for Scalar Field (V)

e Scattering amplitude:

1

d®k
M = B(pfvpi)+/(27_‘,)33(pf7k)k2_n,728(k7pi) e

« Differential scattering cross section:

do _1IMF
aQ 4 (2r)2°

e Attempt 1st order calculation in AEF and PG coordinates.



Amplitude in AEF coords (I)

¢ Difference between g and n*” in tt, tr, rt and rr
components:
2M /1 A
MY MY
g g r <—1 1 ) '

e Three terms: By, Birirt, Brr
e Fourier transform of By term:

2M . -8 2M
By (py, p;) = wz/d3x <r) e 1dX _ %7

where q = p; — p;.



Amplitude in AEF coords (II)

e The B, term may be simplified using integration by parts,

8 2M\ 0 /
= Sx e Pr =) 2 (ePirX
Brr(Pr. pi) = /d ' ) ( )ar (¢P)
—/qx
= ZM/ ips-x)(ip; - s
e Integral may be found with sum and difference vectors

=X(pr+p), Q=L(p;—p)-

e Hence

e—iqX

Brlpy.py) = ~2M [ & [(R-x)? = (@-x)?] &5



Amplitude in AEF coords (lII)

e Align the z-axis with Q and the x-axis with R:

/dSX(R-x)Ze’q'X _ 4n|RP
ré q?

and .
/dsx(Q-x)ze"q‘x B _47r|Q|2
3 - 2 -
r 1q|
e results in 8 Mlol?
Br(ps, Pi) = — 7T|q|2p‘ ’

e B+ does not contribute at first order [Exercise!]



Cross Section in AEF coords

e Byt + By =
_ —87M (v + |p|?)

My =
1 lps — pil?

e Scattering cross section:

do (GM)Q (1+v2)?

da~ \ 2 4visint(9/2)

e Now try same calculation in Painlevé-Gullstrand
coordinates ...



Amplitude in PG coords (I)

o Difference between g"” and »*” in tt, tr, rt and rr
components:

guvnw/< 0 ﬁ)

N 2M  2M
r r

e B, term is identical to AEF calculation
e By, scales with square root vM

By -+ Bul(po.py) = 2V2Mi [ dPxe X1 ( 0 +

r/2 \ or

_ 6,@\/%3/2M.
P> — py|7/?

Zero at first order because p? = p?.

3\ 4ip,x
4r> ©

(1)



Amplitude in PG coords (ll)

¢ To find the extra term that scales with M, go to second
order:

. 2 Pk (p? - k%) 1 (k* - p?)
3/2 _
(em/m / ) I 1= / I KT (k2_m2>

¢ Integral can be found with in centre-of-mass frame using
spheroidal coordinates

2 1
= -—%—. 2
9 (27)2Q? @
e Hence the contribution from tr + rt terms is just
_87rM<,u2
q>

e The PG amplitude is identical to the AEF amplitude at first
order

|k — p;|7/2

L



Partial Wave Analysis

Perturbation theory is only appropriate when coupling is
small, Mw < 1.

If the wavelength is similar to the horizon size, partial wave
approach is best.

A plane wave can be decomposed into partial wave modes:

, 1 & , .
Ppjane = €P7 ~ Sior Z(2I+1)P,(cos 0) [e’pr + (=1)H1e=Pr
1=0
Idea: asymptotically, as r — oo, solution looks like plane
wave + outgoing scattered wave.

Not quite possible because gravitational force is
long-ranged 1/r like Coulomb force

Solutions u; ~ e*Pr.



Partial Wave Analysis
Distorted plane wave:
plane

d|st _ Z 21+ PI COS@) I,OI’* + (_1)/+1e—ipr*] )
1=0

gl ~ r2Mpgipr - extra phase factor which bends
wavefronts even in far field.

Construct partial wave solution:

f(0 1 & |
O~ ogt + Q P =) a2/ +1)P(cos 0)s" ().
1=0

Find a; by matching to ingoing part of plane wave.



Phase shifts 9,

e Scattering amplitude f is a partial wave series:

1 o0
m; (2] + 1 ( e? 1) P(cos ).

where the phase shifts €2 are defined by

; A
200, __ [+1 /out
e I — _1 _

(=1) A
e The phase shifts encode all information about the

scattering.



Scattering and Absorption

¢ The differential scattering cross section is

dU _ 2
9~ iro)

e The absorption cross section is

™
Oabs = ~»

i(2l +1)T,

2
w
1=0

where the transmission factors T, are

2
T, =1-— ‘6216’




Re[ exp(2i §)) ]

Phase shifts

e Phase shifts can be approximated analytically (in regimes
Mw <1 0or Mw > 1) ...

e ... or computed numerically:

Mw =2.0

60 70 80



Absorption Cross Sections
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Figure: Modal transmission factors for the massless scalar wave
absorbed by a Schwarzschild black hole.



Absorption Cross Sections (ll)
Total cross section from sum over modes:

36
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Figure: Absorption cross section for a massless scalar wave



Absorption Cross Sections (ll1)

Two interesting limits:

1670 M2 A rs0
Oa 277 M? \ < Fs — 00

Short-wavelength limit < Geometric optics 7b2 .
Long-wavelength limit depends on spin of field :

{ 167M2 s=0

21 M? s=1/2
0 s=1or2

Ilm Ua =
Mw—0

Das + Gibbons: Scalar cross section approaches horizon
area as Mw — 0 for all black holes.

Approximations by Starobinskii & Churilov or Unruh (1976).



Absorption Cross Sections (1V)

e South America-UK collaboration:

Schwarzschild absorption cross section for massless scalar, spinor, EM and grav. waves
36 T
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Figure: o, for massless scalar, neutrino, electromagnetic and
gravitational waves. o



Absorption Cross Sections (V)
e If black hole is rotating, spin-rotation coupling.

35
30 1
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Scattering Cross Sections (I)

Scattering amplitude

1 < 200
ZMIE_;ZIJF ( ”—1)P,(cos€).

Series is poorly convergent.

Why? Amplitude is divergent as #~2 at small angles <
long-ranged interaction < poorly-convergent infinite series.

Same problem for Coulomb scattering.

iy _ T+ 1-iB)

B ESED) ~ BIn(l)as | — oo

where 8 = Zam/p < GMw/c?.



Scattering Cross Sections (II)

e But Coulomb case has exact solution

rf+1-
21p Z r+1+ 5 2/+ 1)Pi(cost)  (3)
= EM : —2+2i8
= 2pT(1 77p) Sn(0/2) : (4)
e Cross section :
do i _MP(1 R

dQ  ap2sin®(6/2)  4vésin® (6/2)

¢ |dea: use this result to remove the long-range effect of
Newtonian potential, leaving a convergent series.



Scattering Cross Sections (lll)
This method works well for scalar wave, but not for waves
of higher spin.
Alternative method : Series reduction method (1950s).
Given a Legendre polynomial series

=> a” Py(cos )
1=0
divergent at = 0, define the mth reduced series,
(1 — cos 0)™f(0 Z a™ Py(cos ).
1=0

The reduced series is obviously less divergent at 6 = 0 <
better convergence.
lterative formulae:

i+ _ 6 T+1 0
A A T AT R



Scattering Cross Sections: Results
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Figure: Scalar scattering cross sections. Log scale.



Scattering Cross Sections: Results
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Figure: Spinor scattering cross sections. Shows the massless
spin-half cross section for various couplings ME = GMw/c®.



Scattering Cross Sections: Results
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Figure: Various spins. The s = 1 curve is missing: but Luis and
Ednilton will fix this!



Scattering Cross Sections: Rotating Case
a = 0.99M, lower couplings
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a = 0.99M, higher couplings
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Glory Scattering in Optics (1)




Glory Scattering in Optics (II)




Glory Scattering from Black Holes

Interference between rays passing around the hole in
opposite senses.

Glory approximation (Matzner et al 1985)

ab
91ds|,

do

W [Jgs(bgw sin0)]?

~ 2w b2

Darwin approximation (1959) for rays passing close to
photon orbit:

b— b
6(b) ~ —In <0.6702 bc>
where b, = v27M. Hence :

r,,—zgg ~ 3.3772wrp [Jos(2.67325 wr sin 0)]2



Summary

Black hole absorbs and scatters incident flux
Photon orbit r = 3M < interference patterns, glories

Rapid, regular oscillations in amplitude: signature of black
holes?

Tomorrow: Acoustic holes: Wave scattering patterns in
the laboratory?



