Black Holes and Wave Mechanics (III)

Dr. Sam R. Dolan

University College Dublin Ireland

Matematicos de la Relatividad General 08

Course Content

1. Introduction

- · General Relativity basics
- Schwarzschild's solution
- Classical mechanics

2. Scalar field + Schwarzschild Black Hole

- Klein-Gordon equation
- Wave-packet scattering
- Quasi-normal modes

3. Hawking Radiation

- Key results
- QFT on curved spacetime
- Black hole collapse model

Scattering theory

- Perturbation theory
- Partial wave analysis
- Glories and diffraction patterns

5. Acoustic Black Holes

- Navier-Stokes eqn → Lorentzian geometry
- Simple models

4 D > 4 P > 4 E > 4 E > E

Course Content

1. Introduction

- · General Relativity basics
- · Schwarzschild's solution
- Classical mechanics

2. Scalar field + Schwarzschild Black Hole

- Klein-Gordon equation
- Wave-packet scattering
- Quasi-normal modes

3. Hawking Radiation

- Key results
- QFT on curved spacetime
- Black hole collapse model

4. Scattering theory

- Perturbation theory
- Partial wave analysis
- Glories and diffraction patterns

5. Acoustic Black Holes

- Navier-Stokes eqn → Lorentzian geometry
- Simple models

Black Hole Emission

- Black holes are not completely black
- Classical GR + Quantum Field ⇒ Hawking radiation (1974)
- Black-body spectrum with Planckian spectrum,

$$\frac{d^2 E}{d\omega dt} \sim \frac{\hbar \omega}{\exp(\hbar \omega/k_B T) \pm 1}$$

- Temperature $T_H = \hbar \kappa/(2\pi c) = \hbar c/(4\pi r_s)$
- $T_H \sim 1.2 \times 10^{23} \text{K} (1 \text{kg}/M)$
- For solar mass BH, $T_H \sim 6 \times 10^{-8} \text{K} \Rightarrow \frac{\text{negligible}}{10^{-8}}$
- Luminosity $L \sim \sigma A T^4 \sim 1/r_S^2$

Black Hole Mechanics

GR ⇒ Laws of BH mechanics ⇔ Laws of thermodynamics

- 1st : $dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$ $\Leftrightarrow dU = TdS - pdV + \mu dN$
- 2nd : Horizon area always increases, $dA \ge 0 \Leftrightarrow$ entropy always increases $S \ge 0$.

QFT ⇒ Hawking radiation (1970s)

$$k_B T_H = \frac{\hbar \kappa}{2\pi c}$$
, where surface gravity: $\kappa = \frac{c^4}{4GM}$

Black hole temperature T_H and entropy S = A/4.

Black Hole Mechanics

GR ⇒ Laws of BH mechanics ⇔ Laws of thermodynamics

- 1st : $dM = \frac{\kappa}{8\pi} dA + \Omega dJ + \Phi dQ$ $\Leftrightarrow dU = TdS - pdV + \mu dN$
- 2nd: Horizon area always increases, dA ≥ 0 ⇔ entropy always increases S ≥ 0.
- 3rd : Impossible to form a black hole with zero surface gravity $\kappa \Leftrightarrow \text{impossibility of absolute zero } \mathcal{T} = 0.$

 $QFT \Rightarrow$ Hawking radiation (1970s):

$$k_B T_H = \frac{\hbar \kappa}{2\pi c}$$
, where surface gravity: $\kappa = \frac{c^4}{4GM}$

Black hole temperature T_H and entropy S = A/4.

Black Hole Emission

- Small ⇔ hot!
- Negative heat capacity.
- Temperature T_H ∼ M⁻¹
- Luminosity $L \sim M^{-2}$
- Lifetime τ ∼ M³
 - $\tau > t_{Hubble}$ if $M > 10^{12}$ kg.
 - $au\sim 10^{66}$ years for $extit{M}\sim extit{M}_{\circ}$.

Grey-body Spectrum

- Back-scattering of emitted radiation modifies spectrum.
 Grey body.
- Total luminosity from sum over modes, integral over frequency

$$L = \frac{1}{2\pi} \sum_{l=0}^{\infty} \int_{0}^{\infty} \frac{\omega \mathbb{T}_{\omega l}}{e^{8\pi M \omega} \mp 1}$$

Grey-body factor
 ⇔ transmission factor

$$\mathbb{T}_{l\omega} = 1 - \left| \frac{A_{l\omega}^{\text{out}}}{A_{l\omega}^{\text{in}}} \right|^2$$

- Schwarzschild: I = 0 mode dominant.
- Kerr: I = m modes dominate, loss of angular momentum (spin-down).

Grey-body Spectrum

Figure: *Emission spectra of Schwarzschild black hole*. Top: Scalar emission spectrum. Bottom: Fermion emission spectrum.

Particle Creation in Electromagnetic Field

- QFT ⇒ Pairs of virtual quanta created in vacuum
- Strong field \Rightarrow creation of real electron-positron ($e^- e^+$) pairs. Schwinger process (1951).
- Probability P(d) of virtual pair separated by distance d is

$$P(d) \sim \exp(-d/\lambda_c)$$

where Compton wavelength is $\lambda_c = \hbar/mc$

• Field strength E, work done W = eEd

Particle Creation in Electromagnetic Field

- Pair creation if $W \ge 2mc^2$ (rest mass energy) $\Rightarrow d \sim 2mc^2/Ee$
- Probability $P \sim \exp(-2m^2c^3/\hbar Ee)$
- Barrier tunnelling problem.
- Schwinger process ("rate of particle production by uniform electric field per unit volume per unit time"). If $E \ll E_{crit} = \pi (mc^2)^2/e\hbar c$ then

$$\frac{dN}{dtdV} \sim (eE)^2 \exp(-\pi m^2 c^3/eE\hbar)$$

where *E* is the electric field strength

Boltzmann distribution.

Particle Creation by Gravitational Field (??)

- · Naive application of same arguments.
- 'Charge' e = m
- $P \sim A \exp(-mc^2/\theta)$ where $\theta = \hbar\Gamma/\pi c$
- c.f. Boltzmann distribution e^{-E/k_BT}
- Temperature $T \sim \hbar \Gamma / \pi \mathit{ck}_{B}$
- Field strength $\Gamma \Leftrightarrow$ surface gravity $\kappa \Rightarrow T \sim T_H$

Heuristic explanation

Pair creation near the horizon.

- Virtual pair creation, tunneling to $r_1 = 2M + d$, $r_2 = 2M d$
- $g_{00}^{(1)} \approx d/2M$ and $g_{00}^{(2)} \approx -d/2M$
- Killing vector $K^{\mu} = [1, 0, 0, 0]$
- Virtual ⇒ Real particles
- Energy conservation: $K^{\mu}u_{\mu}^{(1)}+K^{\mu}u_{\mu}^{(2)}=0$
- Possible because g_{00} changes sign.
- Killing vector becomes spacelike inside the horizon.

Beware: This local 'explanation' bears little/no resemblance to QFT analysis!

Quantum Field Theory on Flat Spacetime

Action

$$S = \int \mathcal{L}(x)d^nx$$

• Field $\phi(x)$, Lagrangian density

$$\mathcal{L}(x) = \frac{1}{2} \eta^{\alpha\beta} \phi_{,\alpha} \Phi_{,\beta}$$

Wave equation

$$\Box \phi = \mathbf{0}$$

Modes

$$u_k(t,\mathbf{x}) \propto e^{i\mathbf{k}\cdot\mathbf{x}-i\omega t}$$

• Positive-frequency: $\frac{\partial u}{\partial t} = -i\omega u_k$ where $\omega > 0$.

Quantum Field Theory on Flat Spacetime

Scalar product

$$(\phi_1,\phi_2)=-i\int [\phi_1(x)\partial_t\phi_2^*(x)-\phi_2^*(x)\partial_t\phi_1(x)]d^3x$$

Normalised modes:

$$(u_{\mathbf{k}}, u_{\mathbf{k}'}) = \delta^{n-1}(\mathbf{k} - \mathbf{k}')$$
 (1)

$$(u_{\mathbf{k}}, u_{\mathbf{k}'}^*) = 0 (2)$$

$$(u_{\mathbf{k}}^*, u_{\mathbf{k}'}^*) = -\delta^{n-1}(\mathbf{k} - \mathbf{k}')$$
 (3)

Momentum

$$\pi = \frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} = \partial_t \phi$$

Quantization

- Quantization: promote to operators $\phi \to \hat{\phi}, \pi \to \hat{\pi}$
- Equal-time commutation relations:

$$[\hat{\phi}, \hat{\phi}] = [\hat{\pi}, \hat{\pi}] = 0$$
$$[\hat{\phi}(t, \mathbf{x}), \hat{\pi}(t, \mathbf{x}')] = i\delta^{n-1}(\mathbf{x} - bx')$$

Field decomposition

$$\hat{\phi}(t,\mathbf{x}) = \sum_{\mathbf{k}} \hat{a}_{\mathbf{k}} u_{\mathbf{k}}(t,\mathbf{x}) + \hat{a}_{\mathbf{k}}^{\dagger} u_{\mathbf{k}}^{*}(t,\mathbf{x})$$

- Creation $\hat{a}_{\mathbf{k}}^{\dagger}$ and annihilation operators $\hat{a}_{\mathbf{k}}$
- Commutation relations

$$\begin{split} [\hat{a}_{\boldsymbol{k}},\hat{a}_{\boldsymbol{k}'}] &= 0, \qquad [\hat{a}^{\dagger}_{\boldsymbol{k}},\hat{a}^{\dagger}_{\boldsymbol{k}'}] = 0, \\ [\hat{a}_{\boldsymbol{k}},\hat{a}^{\dagger}_{\boldsymbol{k}'}] &= \delta_{\boldsymbol{k}\boldsymbol{k}'} \end{split}$$

Creation and Annihilation

- Vacuum: $\hat{a}_{\mathbf{k}} |0\rangle = 0$, $\forall \mathbf{k}$, $\langle 0|0\rangle = 1$.
- Particle creation $\hat{a}_{\mathbf{k}}^{\dagger}$ and annihilation operators $\hat{a}_{\mathbf{k}}$
- Hamiltonian

$$\hat{H} = \sum_{\boldsymbol{k}} \omega (\hat{N}_{\boldsymbol{k}} + 1/2)$$

Number operator

$$\hat{\textit{N}}_{\pmb{k}} = \hat{a}^{\dagger}_{\pmb{k}} \hat{a}_{\pmb{k}}$$

- Zero particles in vacuum: $\langle 0 | \hat{N}_k | 0 \rangle = 0$
- Definition of vacuum depends on choice of states $u_{\mathbf{k}}$
- Under Lorentz transformation: $\hat{a}_j \rightarrow \alpha_{ji} \hat{a}_i$, but no mixing of creation and annihilation.
- Zero particles in one inertial frame ⇒ zero particles in all inertial frames.

Quantum Field Theory on Curved Spacetime

Action

$$S = \int \mathcal{L}(x) d^n x$$

• Field $\phi(x)$, Lagrangian density

$$\mathcal{L}(x) = \frac{1}{2}\sqrt{-g}\left(g^{\alpha\beta}\phi_{,\alpha}\phi_{,\beta} - \xi R\phi^2\right)$$

Wave equation

$$rac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}g^{\mu
u}\partial_{
u}\phi
ight)+\xi R\phi=0$$

Quantum Field Theory on Curved Spacetime

Scalar product on hypersurface

$$(\phi_1, \phi_2) = -i \int_{\Sigma} \phi_1(x) \overleftrightarrow{\partial}_{\mu} \phi_2(x) \sqrt{-g_{\Sigma}} n^{\mu} d\Sigma$$

- Define Cauchy surface Σ with constraint $f(x^{\mu}) = 0$. Normal vector $n_{\mu} = \partial_{\mu} f$.
- Orthonormal modes u_i:

$$(u_i, u_{i'}) = \delta_{ii'} \tag{4}$$

$$(u_i, u_{i'}^*) = 0$$
 (5)

$$(u_i^*, u_{i'}^*) = -\delta_{ii'}$$
 (6)

- Problem: positive frequency modes?
- If there is a timelike Killing vector X^{μ} then

$$X^{\mu}\partial_{\mu}u_{i}=-i\omega u_{i}, \qquad \omega>0$$

But general spacetime has no Killing vectors ⇒ Ambiguity.

Quantum Field Theory on Curved Spacetime

- In general, no preferred modes. Observer-dependent.
- Alternative set of orthonormal modes \bar{u}_j
- Alternative creation \bar{a}_j^{\dagger} and annihilation operators \bar{a}_j .
- Alternative vacuum: $ar{a}_{j}\left|ar{0}\right>=0$
- According to original observer, alternative vacuum may contain particles

$$\begin{split} \left\langle \bar{0} \right| \hat{a}_{i}^{\dagger} \hat{a}_{i} \left| \bar{0} \right\rangle \neq 0 \\ \left\langle \bar{0} \right| \left| 0 \right\rangle \neq 0 \end{split}$$

Bogolubov Coefficients

Express old modes as linear combination of new modes

$$\bar{u}_j = \sum_i \alpha_{ji} u_i + \beta_{ji} u_i^* \tag{7}$$

$$\bar{u}_i = \sum_j \alpha_{ji}^* \bar{u}_j - \beta_{ji} \bar{u}_j^* \tag{8}$$

• α and β are called Bogolubov coefficients

$$\alpha_{jj} = (u_i, \bar{u}_j) \tag{9}$$

$$\beta_{ji} = -(\bar{u}_j, u_i^*) \tag{10}$$

Linear combinations for creation and annihilation operators

$$a_i = \sum_j \alpha_{ji} \bar{a}_j + \beta_{ji}^* \bar{a}_j^{\dagger}$$
 (11)

$$\bar{\mathbf{a}}_{j} = \sum_{i} \alpha_{ji}^{*} \mathbf{a}_{i} - \beta_{ji}^{*} \mathbf{a}_{i}^{\dagger}$$
 (12)

Particle Creation

Particles from vacuum:

$$\langle \bar{0} | \hat{a}_i^{\dagger} \hat{a}_i | \bar{0} \rangle = \sum_i |\beta_{ji}|^2$$
 (13)

$$\langle 0 | \bar{a}_j^{\dagger} \bar{a}_j | 0 \rangle = \sum_i |\beta_{ji}|^2$$
 (14)

- If both sets of modes are positive-frequency w.r.t timelike Killing vector then $\beta_{ii} = 0 \Rightarrow$ no particle creation.
- Otherwise, vacuum for observer 1 is not vacuum for observer 2.

Unruh Effect

 Unruh effect: uniformly-accelerated observer in flat spacetime sees thermal bath of particles.

$$\langle 0_{Mink} | \bar{a}_j^{\dagger} \bar{a}_j | 0_{Mink} \rangle = \frac{1}{e^{2\pi c\omega/a} - 1}$$
 (15)

- Planckian ("black-body") spectrum.
- Temperature $k_B T_{Unruh} = \frac{\hbar a}{2\pi c}$ where a is the acceleration.
- Compare with $k_B T_H = \frac{\hbar \kappa}{2\pi c}$ where κ is the surface gravity.
- The surface gravity κ is, in some sense, the acceleration at the horizon.

Conformal Transformations

• Conformal transformation $(\mathcal{M} \to \mathcal{M}')$

$$g_{\mu
u}
ightarrowar{g}_{\mu
u}(x)=\Omega^2(x)g_{\mu
u}(x)$$

- Field $\phi \to \bar{\phi}$, curvature $R \to \bar{R}$, etc.
- Conformal
 ⇔ angle-preserving.
- If we use conformal-coupling factor ...

$$\xi = \frac{n-2}{4(n-1)} = 1/6$$

... then the wave equation transforms in nice way:

$$(\bar{\Box} + \xi \bar{R}) \, \bar{\phi} = \Omega^{-(n+2)/2} \, (\Box + \xi R) \, \phi = 0$$

where

$$\bar{\phi}(x) = \Omega^{(2-n)/2}(x)\phi(x)$$

Compactification

- Represent spacetime structure with Penrose-Carter diagram.
- Compactification: coordinate transform + conformal transformation.
- Example: 2D Minkowski ds² = dudv where

$$u = t - r$$
, $v = t + r$

Coordinate transformation:

$$u' = 2 \arctan u$$
, $v' = 2 \arctan v$

• New coordinate range $-\pi \le u', v' \le \pi$ and line element $ds^2 = h(u', v')du'dv'$ where

$$h(u', v') = \frac{1}{4} \sec^2(u'/2) \sec^2(v'/2)$$

• Apply conformal transformation with $\Omega^2 = h^{-1}$ to get conformally-related line element:

Penrose Diagrams: Minkowski

Penrose Diagrams: Schwarzschild

Horizon exterior:

Penrose Diagrams: Schwarzschild (Eternal)

Maximally-extended (Kruskal coordinates):

Penrose Diagrams: Schwarzschild (Collapse)

Black hole formed from collapse:

Vaidya spacetime

- · Simplest model of black hole collapse
- Radially-infalling radiation:

$$ds^{2} = \left(1 - \frac{2M(v)}{r}\right)dv^{2} - 2dvdr - r^{2}d\Omega^{2}$$

- v = t + r. Radial infall \Rightarrow constant v.
- Exact solution to field equations, with

$$T_{vv} = \frac{1}{4\pi r^2} L(v), \qquad L(v) = \frac{dM}{dv}$$

 Simplest assumption: shock wave of mass M propagating along v = v₀.

$$M(v) = M\Theta(v - v_0)$$

- Timelike singularity forms at r = 0
- Define last ingoing ray to avoid singularity $v_H = 0$.

Vaidya spacetime

- Define $v_H = 0 \Rightarrow v_0 = 4M$.
- · Spacetime divides into two regions: Mink. and Schw.

Vaidya spacetime

Minkowski : v < v₀

$$ds^2 = dv \, du_{in} - r_{in}^2 d\Omega^2$$

$$u_{in}=t_{in}-r_{in}, v=t_{in}+r_{in}.$$

• Schwarzschild : $v > v_0$

$$ds^2 = (1 - 2M/r)dv du_{out} - r_{out}^2 d\Omega^2$$

$$u_{out} = t_{out} - r_{out}^*, v = t + r_{out}^*, r_{out}^* = r_{out} + 2M \ln(r_{out}/2M - 1)$$

• Matching condition: $r_{in} = r_{out}$ along $v = v_0$.

Redshift in Vaidya spacetime

Idea: use condition r_{in} = r_{out} along v = v₀ to relate u_{in} to u_{out}:

$$u_{out} = u_{in} - 4M \ln \left(\frac{-v - u_{in} - 4M}{4M} \right)$$

- On horizon, $u_{in} = -4M$ and $u_{out} = \infty$.
- Just before horizon,

$$u_{out} \approx -4M \ln \left(\frac{-v}{4M} \right)$$

Infinite redshifting by the horizon.

Hawking radiation: Sketch (I)

- Simplest case: consider only I = 0 modes
- On \mathcal{I}_{-} , positive-frequency modes are

$$\phi_{\it in} \propto {\it e}^{-\it i\omega v}$$

• On \mathcal{I}_+ , positive-frequency modes are

$$\phi_{out} \propto e^{-i\omega u_{out}} pprox \left(rac{-v}{4M}
ight)^{4Mi\omega}$$

- Also need to consider modes on \mathcal{H}_+
- We are interested in flux late times $u_{out} \to \infty$.

Hawking radiation: Sketch (II)

- Late times description: introduce wavepackets localised around v < 0.
- Calculate Bogolubov coefficients $\alpha_{\omega\omega'}$, $\beta_{\omega\omega'}$ on \mathcal{I}_+ using inner product.
- Method: show that

$$|\alpha_{\omega\omega'}|^2 = e^{4\pi M\omega} |\beta_{\omega\omega'}|^2$$

and use identity

$$\sum_{\omega'} |\alpha_{\omega\omega'}|^2 - |\beta_{\omega\omega'}|^2 = 1$$

to obtain Planckian spectrum:

$$N_{\omega} = \sum_{\omega'} |eta_{\omega\omega'}|^2 pprox (e^{4\pi M \omega} - 1)^{-1}$$

Hawking Radiation: Key points

- Exponential redshift of late-time modes reaching infinity. $u_{out} \approx -4M \ln \left(\frac{-v}{4M} \right)$
- Planckian spectrum arises from exponential redshift near horizon.
- Temperature proportional to surface gravity at horizon i.e.
 κ = 1/4M.
- Hawking spectrum at late times depends only on spacetime structure near horizon.
- Can rederive using 'eternal' black hole picture and appropriate Green's functions.

