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Course Content

1. Introduction
o General Relativity basics
e Schwarzschild’s solution
o Classical mechanics

2. Scalar field + Schwarzschild Black Hole
¢ Klein-Gordon equation
o Wave-packet scattering
e Quasi-normal modes

3. Hawking Radiation
o Key results
e QFT on curved spacetime
e Black hole collapse model
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¢ Klein-Gordon equation
o Wave-packet scattering
e Quasi-normal modes

. Hawking Radiation

o Key results
e QFT on curved spacetime
e Black hole collapse model

. Scattering theory

e Perturbation theory
o Partial wave analysis
¢ Glories and diffraction patterns

. Acoustic Black Holes

¢ Navier-Stokes eqn — Lorentzian geometry
e Simple models

Hawking Radiation



Overview

Black Hole Emission

Black holes are not completely black

Classical GR + Quantum Field = Hawking radiation (1974)

Black-body spectrum with Planckian spectrum,

d’E hw
dwdt  exp(fw/kgT) £ 1

Temperature Ty = hx/(2wc) = he/(4nrs)

Ty ~ 1.2 x 1023K(1kg/M)
For solar mass BH, Ty ~ 6 x 1078K = negligible
Luminosity L ~ cAT* ~ 1/rg?
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Black Hole Mechanics

GR = Laws of BH mechanics < Laws of thermodynamics
o Ist: dM = g-dA + QaJ + ¢dQ
< dU=TdS — pdV + udN
e 2nd : Horizon area always increases, dA>0 <&
entropy always increases S > 0.

e 3rd : Impossible to form a black hole with zero surface
gravity x < impossibility of absolute zero T = 0.
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Black Hole Mechanics

GR = Laws of BH mechanics < Laws of thermodynamics
o Ist: dM = g-dA + QaJ + ¢dQ
< dU=TdS — pdV + udN
e 2nd : Horizon area always increases, dA>0 <&
entropy always increases S > 0.

e 3rd : Impossible to form a black hole with zero surface
gravity x < impossibility of absolute zero T = 0.

QFT = Hawking radiation (1970s):

kg T, —h—H where surface gravity : m—c—4
BIH= 5 gravity:- R =4amM

Black hole temperature Ty and entropy S = A/4.
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QFT

Black Hole Emission

Small < hot!

Negative heat capacity.
Temperature Ty ~ M~
Luminosity L ~ M—2
Lifetime 7 ~ M3

o T > tHubble if M > 1012 kg.
e 7~ 10% years for M ~ M,.

Hawking Radiation
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Grey-body Spectrum

Back-scattering of emitted radiation modifies spectrum.
Grey body.

Total luminosity from sum over modes, integral over

frequency
wTy
Zﬂz | s

Grey-body factor < transmission factor

2
out
Alw

T/w == 1 — |
AL

Schwarzschild: / = 0 mode dominant.

e Kerr: | = m modes dominate, loss of angular momentum
(spin-down). g
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Grey-body Spectrum

0.0005
0.00045

0.0004
0.00035
0.0003
0.00025
0.0002

M d%E / dt dew

0.00015
0.0001
5e-05

0.0006

0.0005 -

0.0004

0.0003 -

0.0002 -

M d2E / dt de

0.0001 -

o 01 02 03 04 05 06
M

Figure: Emission spectra of Schwarzschild black hole. Top: Scalar
emission spectrum. Bottom: Fermion emission spectrum.
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Particle Creation in Electromagnetic Field

QFT = Pairs of virtual quanta created in vacuum

Strong field = creation of real electron-positron (e~ — e™)
pairs. Schwinger process (1951).

Probability P(d) of virtual pair separated by distance d is

P(d) ~ exp(—d/Ac)

where Compton wavelength is A\ = h/mc

Field strength E , work done W = eEd



Overview

Particle Creation in Electromagnetic Field

Pair creation if W > 2mc? (rest mass energy)
= d ~ 2mc?/Ee

Probability P ~ exp(—2m?c3/hEe)

Barrier tunnelling problem.

Schwinger process ("rate of particle production by uniform
electric field per unit volume per unit time"). If
E < Eg; = m(mc?)?/ehc then

dN

v~ (eE)? exp(—mm?c® /eEh)

where E is the electric field strength
Boltzmann distribution.
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Particle Creation by Gravitational Field (??)

Naive application of same arguments.

‘Charge’ e=m

P ~ Aexp(—mc?/6) where § = hl'/7c

c.f. Boltzmann distribution e—£/ksT

Temperature T ~ Al /wckg
Field strength I' < surface gravity xk = T ~ Ty
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Heuristic explanation

Pair creation near the horizon.
¢ Virtual pair creation, tunnelingtory =2M+d, o =2M —d

g00 ~ d/2M and g00 ~ —d/2M
Killing vector K* = [1,0,0, 0]
Virtual = Real particles

Energy conservation: K“u,(f) + K”u,(f) =0

Possible because ggg changes sign.
e Killing vector becomes spacelike inside the horizon.

Beware : This local ‘explanation’ bears little/no resemblance to
QFT analysis!
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Quantum Field Theory on Flat Spacetime
Action

S— / L(x)d"x

Field ¢(x), Lagrangian density

1
L(x) = Eno‘ﬁ $.0® 5

Wave equation

Modes

Uk(t,X) x eik~x—iwt

Positive-frequency: 24 = —iwuk where w > 0. =
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Quantum Field Theory on Flat Spacetime
e Scalar product

wwmw:J/wwm@@uy—@vwwwnw%

e Normalised modes:

(U, ue) = " (k—K) (1)
(Uk,U;:/) =0 (2)
(U, i) = —0"T(k—K) (3)
e Momentum or
e



QFT

Quantization
Quantization: promote to operators ¢ — b, — R
Equal-time commutation relations:
[6.9] = [#,7] = 0
[b(t, ), 7(t,x)] = i6" " (x — bx")
Field decomposition

A1, %) = Zwti(t,X) + &l ui(t, x)
k

Creation & and annihilation operators &
Commutation relations
(4. ac) =0,  [a].8]=0,

&k, &l = Sk
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Creation and Annihilation
Vacuum: & [0) =0, Vk, (0]0)=1.

Particle creation &] and annihilation operators

Hamiltonian A A
H=> w(M+1/2)
k

Number operator
N = &f 2

Zero particles in vacuum: (0| N [0) = 0
Definition of vacuum depends on choice of states uk

Under Lorentz transformation: & — «;;&;, but no mixing of
creation and annihilation.

Zero particles in one inertial frame = zero particles in all
inertial frames.
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QFT Hawking Radiation
Quantum Field Theory on Curved Spacetime

e Action

S— / L(x)d"x

« Field ¢(x), Lagrangian density

L) = 3G (97005~ €RP)

e Wave equation

1
—0 —ggt’' o, Ro =0
N . (V=99"0,¢) + ERg
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Quantum Field Theory on Curved Spacetime
e Scalar product on hypersurface

(01, ¢2) =—l/ P1(x ,u¢2 X)y/—gsn'dx

Define Cauchy surface X with constraint f(x*) = 0. Normal
vector n, = 9, f.
Orthonormal modes u;:

(U, upr) = G (4)
(upup;) = 0 (5)
(ui,up) = —oj (6)

Problem: positive frequency modes?

If there is a timelike Killing vector X* then

X'o,ui = —iwu;, w>0

But general spacetime has no Killing vectors = Ambiguity.

L



Overview QFT Hawking Radiation

Quantum Field Theory on Curved Spacetime

In general, no preferred modes. Observer-dependent.

Alternative set of orthonormal modes u;

Alternative creation éjT and annihilation operators a;.

Alternative vacuum: 3; [0) = 0

According to original observer, alternative vacuum may
contain particles B _
(0] &f[0) # 0

(0] 0y #£0
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Bogolubov Coefficients
e Express old modes as linear combination of new modes

El] = Z ajili + 5j,‘U,>-k (7)
Z 6//“ (8)

e o and g are called Bogolubov coefficients

i = (U, Uj) 9)

Gi = —(U,u) (10)

e Linear combinations for creation and annihilation operators
a = Zaj;éj—‘r,@;;é} (11)

g = Z — g;al (12) 8
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Particle Creation

e Particles from vacuum:
0 &g 0) = S |aif (13)
J
oz = >[5 (14)
i

e If both sets of modes are positive-frequency w.r.t timelike
Killing vector then 3; = 0 = no particle creation.

e Otherwise, vacuum for observer 1 is not vacuum for
observer 2.
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Unruh Effect

Unruh effect : uniformly-accelerated observer in flat
spacetime sees thermal bath of particles.

1

eZﬂ'Cw/a_ 1 (15)

(Owink| @] 3 |Onsink)

Planckian (“black-body”) spectrum.

Temperature kg Tynrun = % where a is the acceleration.

Compare with kg Ty = % where « is the surface gravity.

The surface gravity « is, in some sense, the acceleration at
the horizon.
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Conformal Transformations

Conformal transformation (M — M)

9uv — Q,LLI/(X) = QZ(X)g,uV(X)

Field ¢ — ¢, curvature R — R, etc.
Conformal < angle-preserving.

If we use conformal-coupling factor ...

n-—2

S

—1/6

.. then the wave equation transforms in nice way:
(O+€R) 6= ("™D2(O+¢R) =0

where

B(x) = QB2(x)p(x) 23
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Compactification
Represent spacetime structure with Penrose-Carter
diagram.
Compactification: coordinate transform + conformal
transformation.
Example: 2D Minkowski ds? = dudv where
u=t-r, v=t+r
Coordinate transformation:
U =2arctanu, V' =2arctanv

New coordinate range —m < U/, v/ < 7 and line element
ds? = h(u,v')du'dv’ where
1
h(u', V') = 2 sec?(u'/2) sec?(V'/2)

Apply conformal transformation with Q2 = h~' to get
conformally-related line element:

ds? = du'adv’
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QFT Hawking Radiation

Penrose Diagrams: Minkowski

Penrose Diagramm
it Minkowski Metrik

S

r = const
1 t = const

T
uch
V)
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Penrose Diagrams: Schwarzschild

Horizon exterior:

Hawking Radiation

T
[
U
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Penrose Diagrams: Schwarzschild (Eternal)

Maximally-extended (Kruskal coordinates):

T
uch

W
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Penrose Diagrams: Schwarzschild (Collapse)
Black hole formed from collapse:

singulanty i+

=0




QFT

Vaidya spacetime

Simplest model of black hole collapse
Radially-infalling radiation:

ds? = <1 _ ZMr(")> av2 — 2dvdr — r2d0?

v = t+ r. Radial infall = constant v.
Exact solution to field equations, with

1 _am

TVV = ml_(V)7 L(V) == W

Simplest assumption: shock wave of mass M propagating
along v = v.
M(v) = MO(v — v)
Timelike singularity forms at r =0
Define last ingoing ray to avoid singularity vy = 0.
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Vaidya spacetime

e Define vy =0 = vy = 4M.
e Spacetime divides into two regions: Mink

. and Schw.

Hawking Radiation
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Vaidya spacetime

e Minkowski : v < vy
ds? = dv duj, — r2dQ?

Uin = tin — Tin, V = lin + Tin.
e Schwarzschild : v > v

ds? = (1 — 2M/r)dv dugys — ra,,dQ?

Uout = lout — Foyps V =t + Iy
oyt = fout +2MIn(rout/2M — 1)

e Matching condition: rj, = roy along v = vp.
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Redshift in Vaidya spacetime

Idea : use condition rj, = ryy: along v = vy to relate uj, to
Uout:

VU — 4M
Uout = Uin — 4M1n <V“’”>

4M

On horizon, uj, = —4M and ugyt = oo.
Just before horizon,

-V
Uou[ ~ —4M|n <4,\”>

Infinite redshifting by the horizon.
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Hawking radiation: Sketch (1)

Simplest case: consider only / = 0 modes

On 7_, positive-frequency modes are

Gin X eV

On 7., positive-frequency modes are

4AMiw
; -V
—lwUu,
x e out ~
bout ( y M>

Also need to consider modes on H
We are interested in flux late times ugyt — oc.
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QFT Hawking Radiation

Hawking radiation: Sketch (1)

Late times description: introduce wavepackets localised
around v < 0.

Calculate Bogolubov coefficients ay,., B’ 0N Z4 using
inner product.

Method: show that
|aww’|2 — e47er’wa,‘2
and use identity

Z |O‘ww’|2 - |ﬁww’|2 =1

(.U/

to obtain Planckian spectrum:

N, = Z |/8ww”2 s (e47er - 1)71
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Hawking Radiation: Key points

Exponential redshift of late-time modes reaching infinity.
Uout =~ —4MIn (ﬁ)

Planckian spectrum arises from exponential redshift near
horizon.

Temperature proportional to surface gravity at horizon i.e.
k=1/4M.

Hawking spectrum at late times depends only on
spacetime structure near horizon.

Can rederive using ‘eternal’ black hole picture and
appropriate Green’s functions.
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