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Geodesics on the Schwarzschild spacetime
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The Light Cone is Self-Intersecting

Figure: Light cone structure. Reproduced from V. Perlick.

• Caustics: focal points or lines where light cone intersects.
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The Scalar Field

• Scalar field action

S =

∫
d4x L(Φ, ∂µΦ; gµν)

• where

L(x) = 1
2
√
−g
(

gµν∂µΦ∂νΦ− (m2 + ξR(x))Φ2
)

• R(x) is Ricci scalar.
• ξ is a numerical factor

• minimal coupling : ξ = 0
• conformal coupling : ξ = (n − 2)/4(n − 1) = 1/6

• g is the metric determinant
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Scalar Wave Equation
• Euler-Lagrange equations

∂L
∂Φ

=
d

dxµ

(
∂L

∂(∂µΦ)

)
.

• Wave equation:

1√
−g

∂

∂xν

(√
−g gµν ∂Φ

∂xν

)
+ (m2 + ξR(x))Φ = 0.

• Linearity ⇒ Superposition of modes Φ =
∑

lm almΦlm:

Φlm(t , r , θ, φ) =
ul(t , r)

r
Ylm(θ, φ),

• (1+1) partial differential equation :(
∂2

∂t2 −
(

1− 2M
r

)
∂

∂r

[(
1− 2M

r

)
∂

∂r

]
+ Vl(r)

)
ul(t , r) = 0,
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Tortoise Coordinate

• Introduce a tortoise coordinate r∗,

dr∗
dr

=

(
1− 2M

r

)
⇒ r∗ = r + 2M ln |r/2M − 1|

• Moves the horizon to r∗ = −∞.
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Effective Potential

• (1+1) partial differential equation:[
d2

dr2
∗
− ∂2

∂r2
∗

+ Vl(r)
]

ul(t , r) = 0,

• with effective potential

Vl(r) =

(
1− 2M

r

)(
l(l + 1)

r2 +
2M
r3 + m2

)
.
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Effective Potential
Massless waves (m = 0)
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Effective Potential
Massive waves (m 6= 0)
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Wavepacket Scattering

• What happens when a black hole is perturbed slightly?

• Try firing a massless Gaussian wavepacket at a black hole
[Vishveshwara, Nature, 1970].

• Pick a specific l mode
• Numerically solve 1+1 PDE wave equation for ul(t , r∗):
• Initial condition ∂tφl(0, r∗) = −vφl(0, r∗).
• Use finite difference method (e.g. Leapfrog method).
• Apply ingoing boundary condition as r∗ → −∞.

• Try various wavepacket widths and speeds
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Wavepacket Scattering (II)
“Halfway through the defence of my Ph.D, the
examiner from the mathematics department asked the
question: why should one both to prove the stability of
an object that was impossible to observe and was of
doubtful existence in the first place? My thesis advisor
did not like the question in the least, and the rest of
the examination ended up as a verbal battle between
the two which I watched with great satisfaction. But
the question remained: how do you observe a solitary
black hole? To me the answer seemed obvious. It had
to be through the scattering of radiation, as the black
hole left its fingerprint on the scattered wave.”

From On the black hole trail: a personal journey by C. V.
Vishveshwara (1996).



Waves on BH space-time Quasi-Normal Modes Green’s function

Wavepacket Scattering (III)

Figure: Vishveshwara’s scattering simulation
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Wavepacket Scattering (IV)

Figure: The time-dependent response to wavepacket scattering at
fixed position far from the hole. This figure is taken from Andersson
& Jensen (2001) [gr-qc/0011025].
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Black Hole Response

Response of the black hole undergoes three distinct stages:
• Initial back-scattering
• ‘Quasi-normal mode’ ringing
• Power-law decay

Observable implications:
• Ringing and decay depend on black hole parameters not

initial perturbation
• Quasi-normal modes (QNMs) ⇔ unstable circular orbit ⇔

peak in effective potential.
• QNMs ⇒ black holes not neutron stars.
• QNM frequencies and decay rates are distinctive BH

signature.
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Gravitational Waves

• Scalar field Φ is a toy model for gravitational perturbations
hµν

• Signal decays as hµν ∼ 1/r rather than I ∼ 1/r2.

• Gravitational waves more like sound than light.

• Long wavelength λ ∼ source size.
• Emission for bulk dynamics rather than thermodynamics
• Coherent emission (h ∼ 1/r )
• Two polarizations ⇒ stereophonic
• Detectors cannot focus on small patch of sky
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Fourier Decomposition

• Decompose ul(t , r) into Fourier modes

ul(t , r) =

∫ ∞+ic

−∞+ic
e−iωtulω(r)dω

• Ordinary differential equation[
d2

dr2
∗

+ ω2 − Vl(r)
]

ulω(r) = 0

• Behaviour at the horizon

ulω(r) ∼ e±iωr∗

• Impose ingoing boundary condition ⇒ e−iωr∗
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Field Current

• Wave equation ⇒

Φ∗gµνΦ;µν − ΦgµνΦ∗
;µν = 0.

• Define a conserved current Jµ :

Jµ
;µ = (−g)−1/2∂µ

[
(−g)1/2gµνJν

]
= 0,

• To find the probability density as perceived by a specific
observer, we take the contraction of Jµ and the observer’s
world line ẋµ:

ρc2 = ẋµJµ
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Probability Density
• An observer at fixed r , θ, φ⇒ ẋµ = [(1− 2m/r)−1/2, 0, 0, 0]

• Measures time-like component

ρc2 = (1− 2M/r)−1/2ω,

Diverges as r → 2M.
• Infalling observer ⇒ ẋµ = [(1− 2M/r)−1,−

√
2M/r , 0, 0]

• Measures

ρc2 ∼ (1− 2M/r)−1ω

(
1±

√
2M
r

)

∼ ω

(
1∓

√
2M
r

)−1

• One regular, one divergent solution.
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• Measures time-like component

ρc2 = (1− 2M/r)−1/2ω,

Diverges as r → 2M.
• Infalling observer ⇒ ẋµ = [(1− 2M/r)−1,−
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Flux through the horizon

• Curved-space version of Gauss’s Law :∫
V

d4x
√
−g Jµ

;µ =

∫
∂V

d3x
√
−h Jµn̂µ. (1)

• ‘Flux through 4D surface’ = 0
• V is a four-volume with a 3-surface boundary ∂V ,
• n̂ is the unit normal to an element of ∂V ,
• h is the determinant of the induced metric hµν = gµν − n̂µn̂ν
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Flux through the horizon

• Apply Gauss Law to thin-sandwich t → t + dt (Schw.
coords) to get:

∂

∂t

[∫
dΩ

∫ r1

r0

dr r2 (1− 2M/r)−1 Jt

]
= −

∫
dΩ
[
r2(1− 2M/r)Jr

]r1

r0
(2)

• Probability density integral diverges as the horizon is
approached

• Infinite number of oscillations in Φ as r → 2M.
• Coordinate singularity as r = 2M.
• Try horizon-penetrating coordinate system instead.
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Alternative Coordinate Systems

• AEF and PG coordinates ⇒ new time coordinate

t = t̃ + α(r),

• New radial function related to Schw. radial function :

ũl(r) = e−iωα(r)ul(r).

• The ingoing e−iωr∗ solution becomes regular:

α(AEF) ∼ α(PG) ∼ −r∗ ∼ −2M ln(r/2M − 1) as r → 2M
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Flux across the horizon

Exercise : Show that, in AEF and PG coordinates, the
probability density integral and radial current is well defined as
r → 2M if we use the ingoing boundary condition.
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Quasi-Normal Modes

What are QNMs and how do we find their frequencies?

Defined by boundary conditions:
• Ingoing at horizon : ulω(r) ∼ e−iωr∗ as r∗ → −∞.

• Outgoing at infinity : ulω(r) ∼ Aout(ω)e+iωr∗ as r∗ → +∞.

• Two boundary conditions ⇒ Discrete spectrum ωq = ωln.

• Complex ω:
• Frequency : Re(ω) ∼ 1/tperiod
• Decay rate : −Im(ω) ∼ 1/tlifetime
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QNMs: Chandrasekhar’s perspective

"Any initial perturbation will, during its last stages,
decay in a manner characteristic of the black hole and
independent of the original cause. In other words,
during the last stages, the black hole will emit
gravitational waves with frequencies and rates of
damping characteristic of itself, in the manner of a bell
sounding its last dying pure notes."

From The Mathematical Theory of Black Holes by S.
Chandrasekhar (1983).
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Estimating QNMs: A WKB method

• Match across potential barrier.
• On either side of the barrier,

ΦI(r∗) ≈ Q−1/4(r∗) exp
(

+i
∫ r∗

x2

Q1/2(x)dx
)

(3)

ΦIII(r∗) ≈ Q−1/4(r∗) exp
(
−i
∫ x1

r∗
Q1/2(x)dx

)
(4)

where Q(r∗) = ω2 − V (r).
• In region II, approximate Q by an inverted parabola,

Q = Q0 − 1
2Q′′

0(x − x0)
2.
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QNMs and the WKB method

• Write radial equation in a standard form,

d2ΦII

dt2 +
(
ν + 1

2 −
1
4 t2
)

Φ = 0,

with definitions

t = (4k)1/4eiπ/4(x−x0), k = Q′′
0/2, ν+1

2 = −iQ0/(2Q′′
0)1/2.

• Solutions are parabolic cylinder functions

ΦII = ADν(t) + BD−ν−1(it)

• Take asymptotic forms as r → ±∞ and match with ΦI and
ΦIII .

• Condition: Γ(−ν) = −∞⇒ ν = n (integer).
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QNMs: WKB result

• Discrete spectrum with frequencies

ωln
2 = Vl(r0)− i(n + 1

2)

(
−2

d2V
dr2
∗

∣∣∣∣
r=r0

)1/2

• n = 0, 1, 2, . . . is the overtone number
• Frequency and decay rate related to the height and width

of the effective potential barrier.
• Infinite number of modes
• Least-damped QNMs will dominate the signal.
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QNMs : Continued Fraction Method
• Make substitution with correct boundary conditions at

horizon and infinity:

ulω(r) = (r − 2m)ρr−2ρe−ρ(r−2M)/2M
∞∑

n=0

an

(
r − 2m

r

)n

where ρ = 2iMω.
• Sub into radial eq. ⇒ three term recurrence relation for

coefficients an

αnan+1 + βnan + γnan−1 = 0,

where

αn = n2 + 2n(ρ + 1) + 2ρ + 1

βn = −[2n2 + 2n(4ρ + 1) + 8ρ2 + 4ρ + l(l + 1) + 1]

γn = n2 + 4nρ + 4ρ2
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QNMs : Continued Fraction Method

• Frequency is a QNM if and only if the series
∑

an
converges.

• ⇒ continued fraction condition:

β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
. . . = 0.

• Non-linear equation implicitly determining ωq.
• Locate QNMs with numerical root finder.
• To find the nth root, solve nth inversion.
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QNM Frequencies

Figure: The Quasi-Normal Mode Spectrum. Plot taken from Fig. 1,
E.W. Leaver, Proc. R. Soc. Lond. A 402, 285–298 (1985). It shows
the QNM frequencies of the grav. field of the Schw. BH., for l = 2 and
l = 3 modes. With our conventions, the y-axis should read −Im(ω).
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QNM Frequencies (II)
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Green’s Function Analysis

• How do QNMs appear in the scattered signal?
• Consider time evolution of field as initial value problem
• Field expressed in terms of a Green’s function Gl(r∗, y , t)

ul(r∗, t) =

∫
Gl(r∗, y , t)∂tul(y , 0)dy+

∫
∂tGl(r∗, y , t)ul(y , 0)dy .

• The retarded Green’s function is defined by[
∂2

∂t2 −
∂2

∂r2
∗

+ V (r)
]

Gl(r∗, y , t) = δ(t)δ(r∗ − y),

and the condition Gl(r∗, y , t) = 0 for t ≤ 0.
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Green’s Function Analysis

• Take Fourier transform of G:

G(r∗, y , t) =
1

2π

∫ ∞+ic

−∞+ic
G(r∗, y , ω)e−iωtdω

• G is ingoing at horizon:

∂G
∂r∗

+ iωG = 0, r → 2M

• and outgoing at infinity:

∂G
∂r∗

− iωG = 0, r →∞.
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Green’s function

• The Green’s function can be found from two
linearly-independent solutions of wave equation.

• Use u(up)
lω and u(in)

lω , with boundary conditions

u(in)
lω (r) ∼

{
e−iωr∗ , r∗ → −∞,

Ain
lωe−iωr∗ + Aout

lω e+iωr∗ , r∗ → +∞,

• and

u(up)
lω (r) ∼

{
Bin

lωe−iωr∗ + Bout
lω e+iωr∗ , r∗ → −∞,

e+iωr∗ , r∗ → +∞.

where Ain
lω, Aout

lω , Bin
lω and Bout

lω are complex constants.
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Boundary Conditions

Figure: Penrose-Carter conformal diagrams showing causal structure
of ‘eternal’ Schwarzschild black hole.

• Ingoing and outgoing light rays at 45◦.
• Left (a): IN boundary conditions u(in)

lω .
• Right (b): UP boundary conditions u(up)

lω .
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Green’s function

• The Green’s function is

Ĝ(r∗, y , ω) = − 1
W

{
u(in)

lω (r∗)u
(up)
lω (y), r∗ < y ,

u(up)
lω (r∗)u

(in)
lω (y), r∗ > y

• Properties of u(in)
lω and u(up)

lω take care of boundary
conditions.

• W is the Wronskian

W = u(in)
lω

du(up)
lω

dr∗
− u(up)

lω
du(in)

lω
dr∗

= 2iωAin
lω.

• For QNM frequencies, Ain
lω = 0.

• QNM frequencies correspond to poles in the Green’s
function.
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Green’s function
• Deform contour integral in complex plane

G(r∗, y , t) =
1

2π

∫ ∞+ic

−∞+ic
G(r∗, y , ω)e−iωtdω

• Branch point at ω = 0 and branch cut along -ve imag. axis.

Figure: Green’s Function Contour Integral
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Black Hole Response
Three stages, corresponding to three parts of contour integral.
• Initial back-scattering (high frequency arc)

• Damped ringing (poles = QNMs)

• Power-law decay (branch cut integral)
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Summary

• Scalar field toy model for gravitational radiation

• Perturbed black hole radiates in Quasi-Normal Modes

• QNMs are complex frequencies corresponding to poles of
the Green’s function

• Tomorrow : sum over l to see interesting diffraction
patterns
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