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Abstract

This is a short introductory course on wave mechanics on black hole space-times. Its main
focus is on the the classical Klein-Gordon field on the Schwarzschild spacetime. As well as
being of interest in its own right, the scalar field serves as a simple ‘toy model’ which offers
insight into the dynamics of gravitational radiation. As an example of a quantum-mechanical
field, we also consider the Dirac equation. The course covers the scattering, absorption and
emission of radiation; the self-force problem for black hole inspirals; and acoustic black holes.

The course begins with a brief introduction to General Relativity. The interval, the
metric, geodesics and Killing vectors are introduced. Next we define the simplest black hole
solution: the Schwarzschild space time. We discuss geodesics, coordinate singularities, and
the relative merits of various coordinate systems. The scalar wave equation is introduced
along with its conserved current. Appropriate physical boundary conditions are discussed,
and the behaviour of the field at the origin, the horizon and infinity is scrutinised.

We examine the field dynamics by evolving the 1 + 1 PDEs in the time domain. We
show that bombarding the black hole with Gaussian wavepackets results in the excitation of
‘quasi-normal modes’ (QNMs). These modes have specific frequencies and decay rates that
provide a signature for the underlying black-hole space-time. Two methods for calculating
QNMs are discussed.

Next, we look at time-independent scattering. We consider a monochromatic, long-lasting
planar wave impinging on a black hole. In the long-wavelength regime λ� rs, a perturbative
approach is valid. We show how to expand the scattering amplitude in a Born series, and
compute the lowest-order amplitude in two coordinate systems. For higher couplings λ & rs,
a partial wave approach is more appropriate. A range of interesting diffraction effects are
seen in the scattered signal.

Preface

These notes were originally prepared for a short course given at the First Amazonian School on
Quantum Theory held in Belem in Brazil on 25th - 29th February 2008. This version is adapted
for the Matematicos de la Relatividad General school, held in Bogotá in Colombia on 1st – 5th
December 2008. The course is designed for final-year undergraduates and graduate students who
may have little background in General Relativity. Very little material in these notes is original.
I have drawn from a range of excellent sources, in particular the textbooks by d’Inverno [4],
Poisson [16] and MTW [2]. The sections on wave scattering owe much to the review article by
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Andersson and Jensen [1] and Chapter 4 in Frolov and Novikov [8], and the papers by Leaver
[12, 13]. Some material from my thesis [5] is included, which owes a great debt to the work
by my supervisors A. Lasenby and C. Doran [10, 6, 11]. A metric signature {+ − −−} is used
throughout.

Please let me know of any typos or inaccuracies at sam.dolan@ucd.ie.
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1 Introduction

Light cannot escape the lure of a black hole; neither, it seems, can theoretical physicists! Even
the idea of a black hole – an “invisible” region of space-time harboring an inescapable spacetime-
distorting attractor – has its own irresistible force. Poetically speaking, a generation of physicists
are bound to the idea. If you wish to escape the pervasive influence of the black hole, put down
these notes immediately, and study something sensible instead. If not, read on!

Despite their outlandish nature, black holes are taken very seriously by astrophysicists. A
black hole is thought to represent the ultimate outcome of gravitational collapse. For example,
it is believed that solar-mass-sized black holes reside in certain binary systems in galaxy. It is
suspected that the merger of a pair of black holes may be responsible for the gamma ray bursts
sporadically observed by astronomers. There is strong evidence for a supermassive black hole
at the centre of our galaxy. Quasars are thought to be due to powerful ejections of energy by
supermassive black holes in distant galaxies.
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It is widely felt that gravity is somehow different to the other three forces (electromagnetic,
weak and strong). In the lab, the interaction of particles are satisfactorily described by the
renormalizable quantum field theories that make up the Standard Model. Yet gravity refuses to
fit into the Standard Model straightjacket. For an experimental particle physicist, this is rarely
a practical problem. Gravity is significantly weaker than the other forces, and may be safely
neglected in the lab. For instance, the electromagnetic force between two electrons is ≈ 1040

times larger than the corresponding gravitational force! In common experience, the influence
of gravity is only significant on the macroscale. Explaining this hierarchy problem (i.e. the
apparent relative weakness of gravity) is a major goal of theoretical physics.

Why is gravity so troublesome? Well, General Relativity (GR) – our best-tested and most
elegant theory of gravity – is based on the assumption that space-time is intrinsically smooth
and continuous on the smallest scales. Yet, quantum theory suggests that on a length scale
∆L there is an uncertainty in the energy of ∆E ∼ hc/∆L. In turn, GR implies that energy
creates space-time curvature. Hence, at tiny distances, ∆L ∼ lP (where lP ∼ 1.6 × 10−35 m)
there is enough energy density in the vacuum to significantly distort space-time. In other words,
quantum theory predicts the breakdown of GR on scales smaller than lP , or energies greater
than MP ∼ 1.22 × 1019GeV/c2 (estimated by equating the Compton wavelength of a particle,
λ = hc/(Mc2), to its Schwarzschild radius rs = 2GM/c2).

This is not a course in Quantum Gravity! Instead, we will study some simple but relevant
problems in gravitation that can be studied using wave-mechanics methods.

2 Basics of General Relativity

2.1 Newtonian and Einsteinian Gravity

In the Newtonian universe, space and time are distinct entities. Time is universal. In other
words, all observers can agree on the rate of progress of time, regardless of their individual frames
of reference. Time marches forward in a steady inviolate fashion, disregarding the particular
motion of nearby apples, stars and galaxies. Idealised clocks, once synchronized, remain in
perfect agreement for eternity. To describe particle motion in Newtonian physics it is natural to
use t – a universal time coordinate – to parameterize the spatial position xi = [x, y, z]. Newton’s
Laws provide us with differential equations, which we solve to determine the functions xi(t). In
common experience we find the our world to be nearly ‘Newtonian’. This is because we generally
move about at relative speeds much smaller than the speed of light c ≈ 3× 108ms−1.

In the Einsteinian view of the universe, time is not universal. Two ‘events’ that appear
to occur simultaneously to one observer do not necessarily appear to occur simultaneously to
other observers. In the Einstein universe, space and time must be unified into a 4D space-time.
Events in a 4D space-time are labelled with four coordinates, for example xµ = [x0, x1, x2, x3].
The 0th coordinate is usually thought of as a ‘time’ coordinate, x0 = ct. But beware, time
is observer-dependent concept, and interpretation of x0 is not always straightforward. Firstly,
there is great freedom in our choice of coordinate system; secondly, it is not always possible to
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describe the whole space-time using a single coordinate system.
A particle moving in space-time describes a world-line. A world-line is just a continuous

path through coordinate space; this path can be described by a set of four coordinate functions
xµ(λ) ≡ [x0(λ), x1(λ), x2(λ), x3(λ)]. The affine parameter λ plays the same role in parametriz-
ing motion in a 4D space-time that t played for 3D trajectories. In many situtations the affine
parameter will be chosen to correspond to the proper time: the time as measured by an observer
moving along the world-line.

In a moment, we will derive differential equations which we can solve to find a given particle
world-line. Before that, let us begin by considering motion in flat (i.e. empty, non-gravitating)
space-times, described by Special Relativity.

2.1.1 Special Relativity

‘Special’ relativity is limited in validity to Minkowski space-time. Minkowski space-time is
globally ‘flat’, i.e. free from gravitational influences (which are experimentally measurable as
tidal forces). In Minkowski space-time there are special set of coordinate charts. Each chart in
the set corresponds to a particular inertial observer. Intuitively, an inertial observer is one
who feels no force, and any pair of inertial observers must be in constant relative motion. The
coordinates x0 = ct and xi = [x, y, z] in these charts are defined by the times and distances
measured by an inertial observer.

Suppose now an inertial observer measures ‘coordinate distances’ between a pair of space-
time events, and finds ∆x0 = c∆t and ∆xi. A second inertial observer measures the ‘coordinate
distances’ ∆x0′ = c∆t′ and ∆xi′. The coordinate distances according to the two observers are
related by a Lorentz transformation. For example, if the second observer is moving in the
+x direction at speed v relative to the first observer, then

c∆t′ = γ (c∆t− v∆x/c) , ∆y′ = ∆y (1)

∆x′ = γ (∆x− v∆t) , ∆z′ = ∆z, (2)

where
γ =

(
1− v2/c2

)−1/2
. (3)

Whilst any pair of inertial observers will disagree about coordinate distances and times, there
is one quantity on which they both agree: the space-time interval. On a flat space-time the
interval is

(∆s)2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2. (4)

Note that the interval (∆s)2 is invariant under Lorentz transformations; all inertial observers
will measure the same interval between a given pair of events. The interval (∆s)2 may take
either sign. The sign of the interval tells us about the causal relationship between the two
events. The interval is said to be either:

• time-like if (∆s)2 > 0,

• space-like if (∆s)2 < 0, or,
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• null if (∆s)2 = 0.

If the interval between a pair of events is space-like, then there exists an inertial frame in which
the two events occur simultaneously. If the interval is time-like, then there exists an inertial
frame in which the two events occur at the same position. If the interval is null, then the two
events may be connected by a ray of light.

In classical relativity, light rays (and massless particles) propagate along null world-lines
(i.e. paths along which the change in interval is zero). Particles with non-zero mass follow time-
like world-lines. The change in interval ∆s is proportional to the proper time experienced by
an observer moving along the world-line, ∆τ = ∆s/c.

2.1.2 General Relativity

If the space-time contains gravitating matter, then global definitions such as (4) are inappropri-
ate. In this case, the structure of space-time varies from point to point – ‘over there’ may be
quite different from ‘over here’. The space-time interval is still a well-defined concept, but it is
expressed in differential form,

ds2 =
3∑

µ=0

3∑
ν=0

gµν(x)dxµdxν . (5)

This is known as the line element. Here, ds is the infinitessimal space-time interval between
the neighbouring events at xµ and xµ +dxµ and gµν(x) is a symmetric tensor called the metric.
Each of its coefficients is a function of space-time position. The metric determines the interval
between neighbouring points. Once a metric is specified, it is straightforward to calculate the
world-lines of free particles using an action principle.

The interval along a world-line xµ(λ) is found by integrating along the world-line,

∆s =
∫
dλ

√√√√ 3∑
µ=0

3∑
ν=0

gµν(x(λ))
dxµ

dλ

dxν

λ
. (6)

If the world-line is time-like, then the interval ∆s gives the proper time experienced by the
particle. If the world-line is null, then ∆s = 0.

From here on, we will adopt a standard summation convention: we automatically sum
over any pair of indices that appear once ‘upstairs’ and once ‘downstairs’. For example, aµbµ ≡∑3

µ=0 a
µbµ. We will also use ‘dot’ notation to denote differentiation with respect to λ, i.e.

ẋµ ≡ dxµ

dλ .
The summation convention is more than a labour-saving device. It reminds us that when

taking a sum over two indices, one index must be ‘upstairs’ and one must be ‘downstairs’ for the
resultant quantity to have physical significance. Why is this? Well, under a general coordinate
transformation x 7→ x′ = xµ′(xν), the ‘upstairs’ and ‘downstairs’ indices transform in opposite
ways:

aµ′ =
∂xµ′

∂xµ
aµ, aµ′ =

∂xµ

∂xµ′aµ. (7)
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The upper indices transform like the infinitessimal coordinate distances dxµ; the lower indices
transform like coordinate derivatives (i.e. by the chain rule, ∂

∂xα′ = ∂xµ

∂xα′
∂

∂xµ ). Only by summing
over upper and lower indices we can recover a scalar quantity that is independent of coordinate
frame.

Indices are lowered and raised using the metric gµν and metric inverse gµν ,

ẋµ = gµν ẋ
ν , ẋµ = gµν ẋν . (8)

The metric inverse is defined by the identity

gµνgνλ = δµ
λ . (9)

How do we find the world-lines of free particles? The answer is simple: free particles follow
geodesics in curved space. A geodesic is the relativistic generalisation of the idea of a straight
line. In a Euclidean geometry, a straight line is the shortest line that joins two points. In curved
space-time, a geodesic is the path between two points along which the interval is extremal.
Hence, geodesics are found by extremising an action S which is just the space-time interval.

Let us now put this statement in mathematical form. Using this notation, the action for a
free-particle is

S ≡ ∆s =
∫
L(xµ(λ), ẋµ(λ))dλ (10)

where the Lagrangian is
L(xµ(λ), ẋµ(λ)) = [gµν(x)ẋµẋν ]1/2 (11)

The equations of motion are found from the Euler-Lagrange equations,

∂L

∂xµ
− d

dλ

(
∂L

∂ẋµ

)
= 0. (12)

2.2 The Schwarzschild Solution

The first exact solution of Einstein’s field equations was found by Karl Schwarzschild [18] during
the First World War. The Schwarzschild solution describes the geometry of space-time exterior
to a non-rotating spherical gravitational source in vacuum. To a good approximation, the
Schwarzschild solution describes the field of a star such as our sun. The solution has only
one free parameter, the gravitational mass M . The Schwarzschild solution is the only possible
asymptotically-flat solution allowed by the constraint of spherical symmetry. This implies that
the space-time outside an isolated spherical source is unchanging, regardless of any internal
radial motions.

The Schwarzschild spacetime is usually described with the spherical coordinates {t, r, θ, φ}
and the line element

ds2 = (1− 2M/r)dt2 − (1− 2M/r)−1dr2 − r2(dθ2 + sin2 θdφ2). (13)

(Interestingly, this is not the form in which Schwarzschild originally presented his solution. We
shall see in a moment that there are many other choices of coordinates). Here, we are using units
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in which G = c = 1. Whenever we put units back in, we should remember that M represents
the length M ≡ GM/c2.

A source lying entirely within its gravitational horizon at rh = 2GM/c2 is known as a
“Schwarzschild black hole”. The prospect of such dense objects having physical reality was first
raised by studies of gravitational collapse and white dwarf stability in the 1930s. However, such
solutions were only studied in detail from the 1960s onwards; the term “black hole” was coined
in 1968 by John Wheeler.

Let’s examine the geodesics of the Schwarzschild space-time. To do so, we insert the line
element (13) into the Lagrangian (11) and find the Euler-Lagrange equations. Without loss of
generality, let us restrict our attention to the equatorial plane θ = π/2. Since the metric is
independent of t and φ, the corresponding Euler-Lagrange equations lead to two constants of
motion

k = (1− 2M/r)ṫ, (14)

h = r2φ̇. (15)

It is natural to call k the ‘energy’ and h the ‘angular momentum’ of the geodesic.
To find an equation for the radial coordinates, ṙ, we could write down the corresponding

Euler-Lagrange equation. But actually, it is simpler to use the line element (13) directly. If
the geodesic is null, then ds2 = 0. If the geodesic is time-like then we can choose the affine
parameter λ to be equal to the proper time τ . Then we can rewrite (13) as

(1− 2M/r)ṫ2 − (1− 2M/r)−1ṙ2 − r2φ̇2 = ε2, where ε2 =

{
0 null
1 time-like

(16)

Substituting the constants of motion k and h into (16) yields an energy equation for the
radial coordinate,

1
2 ṙ

2 + Veff(r) =
k2 − ε2

2
, (17)

with an effective potential

Veff(r) = −Mε2

r
+

h2

2r2
− Mh2

r3
. (18)

The effective potential is plotted in Fig. 1 for various timelike geodesics.
It is interesting to compare the Schwarzschild effective potential with the Newtonian effective

potential, V Newt.
eff = −M/r+h2/2r2. Both are attractive in the far-field, and both have an angular

momentum potential barrier. However, in the Schwarzschild case, the barrier disappears as the
horizon is approached: Veff → −∞ as r → 2M . In other words, large angular momentum is not
sufficient to prevent a geodesic from spiralling in to a black hole.

A local minimum in the potential corresponds to a stable circular orbit with ṙ = 0. A
local maximum corresponds to an unstable circular orbit – a feature which is not present in the
Newtonian case.

Exercise :

• Show that the unstable photon (i.e. null) orbit is at r = 3M .
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Figure 1: Classical effective potential. This plot shows the effective potential for timelike geodesics with
a range of angular momenta h = r2φ̇.

• Show that the stable time-like orbit is at r = (h2/2M)
(
1 +

√
1− 12M2/h2

)
.

• Show that the innermost stable time-like orbit is at r = 6M .

Let us consider geodesics approaching from infinity, such as those shown in Fig. 2. If their
energy (k2− ε2)/2 is higher than the peak of the potential barrier then they will be absorbed by
the black hole. As is clear from Fig. 2, trajectories that make too close an approach to the hole
spiral inwards, and end on the singularity. The last geodesic to avoid the singularity defines a
critical impact parameter bc. All geodesics with b > bc are scattered, whereas all geodesics with
b < bc are absorbed.

The value of bc may be found by considering the height of the peak of the effective potential
barrier. It is found to be

bc =
M√
2v2

(
8v4 + 20v2 − 1 + (1 + 8v2)3/2

)1/2
. (19)

where v is the particle speed at infinity v =
√
k2 − ε2/k, and b is the impact parameter b = h/vk.

The classical absorption cross section σa is just the area of the circle defined by the critical impact
parameter, σa = πbc

2.
Exercise : show that, for null geodesics, the critical impact parameter is simply bc = 3

√
3M .

2.3 Gravitational Lensing

Light is deflected by a gravitational field. Or rather, light follows a locally ‘straight line’ (a null
geodesic) in a curved space-time. In 1919, a team of astronomers led by Eddington measured
the angle of deflection of starlight during a solar eclipse. As an application of the techniques of
the previous section, let us derive the so-called “Einstein deflection angle” that was measured.

9



-10

-5

 0

 5

 10

-10 -5  0  5  10

b

Figure 2: Photon geodesics around a Schwarzschild black hole. The plot shows trajectories close to the
critical impact parameter bc = 3

√
3M ≈ 5.196M . The inner circle shows the event horizon at r = 2M ,

and the outer circle shows the unstable photon orbit at r = 3M .

Dividing the “energy equation” (17) by the square of the angular velocity, φ̇ = h/r2 leads to
the orbit equation, (

du

dφ

)2

+ u2 =
k2 − ε2

h2
+

2Mε2

h2
u+ 2Mu3 (20)

where u = 1/r. Differentiating, we obtain the general-relativistic version of Binet’s equation,

d2u

dφ2
+ u =

Mε

h2
+ 3Mu2. (21)

It differs from the Newtonian equivalent through the presence of the last term.
For a light ray, ε2 = 0. In the absence of a gravitating body (i.e. M = 0), Binet’s equation

has a very simple solution:

u0(φ) =
1
b

sin(φ) (22)

This is a straight line, with φ going from 0 to π, and u = 1/r going from 0 to 1/b and back
again. Here, b is the distance of closest approach – the impact parameter.

In the weak-field (i.e. far from the horizon, r � 2M) Binet’s equation can be solved pertur-
batively, by expanding the solution in powers of M/b ,

u ≈ u0 + (M/b)u1 +O(M2/b2) (23)

so that
d2u1

dφ2
+ u1 = 3bu0

2 = 9 sin2(φ)/b. (24)

10



This has the solution u1 = 3(1+C cosφ+cos2 φ)/b (exercise). Let us assume the two asymptotes
of the trajectory are φ = −δ1 and φ = π + δ2. We can find the angle of deflection by setting
u0 + (M/b)u1 = 0 and using small-angle approximations to get

− δ1
b

+
M

b2
(2 + C) = 0, (25)

− δ2
b

+
M

b2
(2− C) = 0, (26)

⇒ ∆φ = δ1 + δ2 = 4M/b (27)

The Einstein deflection angle is twice the Newtonian deflection angle. In certain astrophysical
situations, a massive body can act light a gravitational lens, focussing parallel rays from a distant
source. The first observation of this phenomenon came in 1979, when astronomers discovered
that the light seemingly from two point sources separated by 6 seconds of arc (1/600 degree)
actually originated from a single quasar.

2.4 Covariant Differentiation, Parallel Transport, Geodesics and Killing vec-

tors

In the previous sections, using only the concept of the interval, the metric and the action
principle we derived equations for the geodesics (light rays) on the Schwarzschild system. This
is some achievement; but in the process, we conveniently skipped a large amount of differential
geometry! Unfortunately it is now time to put back some of the mathematical details.

2.4.1 Tensors

We have already witnessed two types of behaviour under the arbitrary coordinate transformation
x 7→ x′ = xµ′(xν),

aµ′(x′) =
∂xµ′

∂xµ
aµ(x), bµ′(x′) =

∂xµ

∂xµ′ bµ(x). (28)

The former (aµ) transform like differential coordinates dxµ whereas the latter (bµ) transform
like coordinate derivatives ∂µ, and they are referred to as contravariant and covariant vectors,
respectively. If we contract a contravariant vector aµ with a covariant vector bµ we recover a
scalar which does not change under coordinate transformation, e.g.

aµ′bµ′ =
∂xµ′

∂xα

∂xβ

∂xµ′a
αbβ = δα

βa
αbβ = aαbα (29)

Since we expect physical quantities to be independent of coordinate frame, this is a very desirable
property.

To extend the idea, we can define tensors T = Tαβ...
γδ... as objects whose components

transform in the analogous way

Tα′β′...
γ′δ′... =

(
∂xα′

∂xα

∂xβ′

∂xβ
. . .

)(
∂xγ

∂xγ′
∂xδ

∂xδ′ . . .

)
Tαβ...

γδ... (30)

We wish all our equations to be covariant in nature: that is, to keep their meaning under
arbitrary coordinate changes. Therefore it is natural to use tensors as the basic building blocks.
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Any set of equations built from tensors will keep its physical meaning under arbitrary coordinate
transformations.

2.4.2 Covariant differentiation

This leads to a natural question: how do we form the derivative of a vector field aµ(x) in such
a way that the resulting object is a tensor? The obvious candidate for a derivative would be

∂µa
ν (31)

where ∂µ ≡ ∂
∂xµ . Yet under a change of coordinates this becomes

∂µ′ a
ν′ =

∂xµ

∂xµ′
∂

∂xµ

(
∂xν′

∂xν
aν

)
=
∂xµ

∂xµ′
∂xν′

∂xν
∂µa

ν +
∂xµ

∂xµ′
∂2xν′

∂xµ∂xν
aν (32)

Obviously, this combination cannot be a tensor, since it does not conform to (30). To overcome
the problem, we may define a covariant derivative ∇µ as

∇µa
ν = ∂µa

ν + Γν
µλa

λ (33)

where the extra term Γµ
νλ is called the connection (or more precisely the Christoffel symbol of

the second kind). To ensure that the covariant derivative transforms as a tensor, i.e. that

∇µ′a
ν′ =

∂xµ

∂xµ′
∂xν′

∂xν
∇µa

ν (34)

the connection must transform as

Γα′
β′γ′ =

∂xα′

∂xα

(
∂2xα

∂xβ′∂xγ′ +
∂xβ

∂xβ′
∂xγ

∂xγ′Γ
α

βγ

)
. (35)

Note that this implies that the connection itself is not a tensor.
Exercise : Show that condition (35) guarantees (34).

The extension of (33) to the covariant derivative of a tensor is

∇µT
α

β = ∂νT
α

β + Γα
µνT

ν
β − Γν

µβT
α

ν . (36)

A commonly-used shorthand for partial derivatives is the ‘comma’ notation, aν
,µ ≡ ∂µa

ν . A
commonly-used shorthand for covariant derivatives is the ‘semicolon’ notation, aν

;µ ≡ ∇µa
ν .

2.4.3 Parallel Transport

An important concept in curved spacetimes is that of parallel transport, which follows directly
from the notion of covariant differentiation. Let us consider a curve xµ(λ), with tangent vector
uµ = dxµ

dλ . The covariant version of the derivative operator d/dλ is D/Dλ = uµ∇µ. A vector aν

is said to be ‘parallel-transported’ along the path xµ(λ) if

Daν

Dλ
≡ uµ∇µa

ν = uµ∂µa
ν + Γν

µλa
µuλ = 0 (37)
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2.4.4 Geodesics

Previously, we referred to a geodesic as a ‘straight line on a curved background’. We defined
a geodesic to be a path between two points along which the interval is extremal, and used the
Euler-Lagrange equations to find the geodesics (12).

An alternative definition of a geodesic is a path along which the ‘covariant acceleration’
Duµ/Dλ is proportional to the tangent vector uµ. If this is the case, then we are free to rescale
the parameter λ→ αλ+ β so that the ‘covariant acceleration’ is zero.

Duµ

Dλ
≡ duµ

dλ
+ Γµ

νλu
νuλ = 0 (38)

λ′ is then said to be an affine parameter. The affine parameter for a timelike geodesic is the
proper time τ .

In other words, equation (38) implies that the path of a geodesic is found by parallel-
transporting the initial tangent vector uµ.

We thus have two separate definitions for a geodesic, (12) and (38). For these two definitions
to be equivalent it is required that

Γµ
νλ =

1
2
gµσ (∂σgνλ − ∂νgσλ − ∂λgνσ) (39)

The connection Γµ
νλ is then said to be an affine or Levi-Civita connection.

Exercise : show that the Euler-Lagrange equations are equivalent to (38) with a connection
(39).

2.4.5 Metric compatibility

The connection is said to be metric compatible if it is symmetric in its lower two indices Γµ
νλ =

Γµ
λν (‘torsion free’) and its covariant derivative is zero,

∇µgνλ = 0. (40)

It is relatively straightforward to show that the affine connection (39) is metric-compatible
(Exercise : show this). The metric compatibility condition (40) implies that parallel-transport
preserves the scalar product. That is, if the vectors aµ and bµ are parallel-transported along a
geodesic (so uµ∇µa

β and uµ∇µb
β ), then their scalar product is invariant,

uµ∇µ(gαβa
αbβ) = uµ(∇µgαβ)aαbβ + gαβ(uµ∇µa

α)bβ + gαβa
α(uµ∇µb

β) = 0 (41)

2.4.6 Killing vectors

In the previous section we used symmetries of the spacetime to find the constants of motion (k
and h). Since the Schwarzschild spacetime is invariant under both time-translation and rotation,
the metric is independent of t and φ. Hence the constants k and h arise naturally when we
consider the E-L equations of the action (12). Let us now introduce some more mathematical
definitions for these ideas.

13



A Killing vector Xµ generates an isometry of the metric, and satifies Killing’s equation

Xµ;ν +Xν;µ = 0. (42)

A Killing vector corresponds to a symmetry of the spacetime. By Noether’s theorem, symmetries
lead to conserved quantities. If Xµ is a Killing vector then it follows that

uν∇ν(uµXµ) = uνuµXµ;ν = 1
2u

νuµ(Xµ;ν −Xν;µ) = 0 (43)

by symmetry. In other words, the contraction of the tangent vector with a Killing vector, Xµu
µ,

gives a constant of motion on a geodesic. It is straightforward to see that, if the metric does not
depend on a particular coordinate, x1 say, then Xµ = δµ

1 is a Killing vector. For example, for
the Schwarzschild metric there is a timelike Killing vector corresponding to the ‘energy’ k and
a spacelike Killing vector corresponding to ‘angular momentum’ h, since the metric depends on
neither t nor φ. Conversely, given a Killing vector it is possible to find a coordinate system in
which the metric does not depend on a coordinate.

2.5 Coordinate systems

Let us return to the Schwarzschild solution. A shortcoming of the Schwarzschild coordinate
system is that it takes an infinite coordinate time t for ingoing geodesics to reach the horizon.
Let us examine this statement more carefully. Consider a radially-ingoing time-like geodesic
for which ε2 = 1 and h = 0. Let us make the choice k = 1, which corresponds to dropping in
a particle from infinity with zero initial speed. Then (17) implies ṙ2 = 2M/r. By taking the
negative square root and integrating we find

τ − τ0 =
2

3(2M)1/2

(
r
3/2
0 − r3/2

)
(44)

where the particle is at r0 at proper time. Rather surprisingly, this is exactly the same as the
Newtonian result (but with proper time τ in place of t). No singular behaviour occurs at the
Schwarzschild radius and the body falls continuously to r = 0 in a finite proper time.

However, if we attempt to describe the same motion in terms of the coordinate time t then

dt

dr
=
ṫ

ṙ
= −

( r

2M

)1/2
(

1− 2M
r

)
(45)

This expression is infinite at r = 2M . The coordinate time t diverges logarithmically as the
horizon is approached.

Exercise :

• Show that

t−t0 = − 2
3(2M)1/2

(
r3/2 − r

3/2
0 + 6Mr1/2 − 6Mr

1/2
0

)
+2M ln

(
√
r +

√
2M)(

√
r0 −

√
2M)

(
√
r0 +

√
2M(

√
r −

√
2M))

.

(46)
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• Assume a photon is emitted radially by a observer fixed at the point r = r0, and detected
by an observer fixed at r = r1. Show that its frequency is redshifted by 1 + z = ω1/ω0 =√

(1− 2M/r1)/(1− 2M/r0). (Hint: the observed frequency is proportional to ẋµkµ, where
ẋµ is the world-line of the observer, and kµ is the null geodesic followed by the photon.)

In summary, a geodesic reaches the horizon in a finite proper time, but takes an infinite
coordinate time t. Proper time is a physical quantity that has a clear, observer-independent
meaning – it is the time measured by an infalling observer. The divergence at r = 2M is just
a coordinate singularity. The Schwarzschild coordinate time t is not well-defined at r = 2M .
In contrast, at r = 0 there is a physical singularity: here, space-time curvature (and thus the
physically-measurable tidal force) is infinite.

2.6 Alternative Coordinate Systems

The coordinate singularity can be removed by breaking the time-symmetry implicit in the diag-
onal form of the metric. If we define a new time coordinate t̄ by

t̄ = t+ 2M ln(r − 2M) ⇒ dt̄ = dt+
2M

r − 2M
dr (47)

then the line element (13) becomes

ds2 = (1− 2M/r)dt̄2 − (4M/r)drdt̄− (1 + 2M/r)dr2 − r2(dθ2 + sin2 θdφ2). (48)

This is the Schwarzschild solution in Advanced Eddington-Finkelstein (AEF) coordinates.
It is well-suited to describing ingoing null geodesics.

Alternatively, one can define a new time coordinate t̃ by

t̃ = t+ 4M

(√
r/2M +

1
2

ln

∣∣∣∣∣
√
r/2M − 1√
r/2M + 1

∣∣∣∣∣
)

⇒ dt̃ = dt+
√

2Mr

r − 2M
dr (49)

which leads to the Schwarzschild solution in Painlevé-Gullstrand coordinates,

ds2 = (1− 2M/r)dt̃2 −
√

8M
r
drdt̃− dr2 − r2(dθ2 + sin2 θdφ2) (50)

The time coordinate t̃ has a natural interpretation: it is the proper time as measured by a radially
infalling observed who starts from rest at infinity. A further advantage is that hypersurfaces of
constant t̃ are spatially flat.

Exercise :

• Show that radially-ingoing null geodesics are given by ṙ = − ˙̄t in the AEF system.

• Show that in Painlevé-Gullstrand coordinates, an radially-infalling path with k = 1 is
described by

ṙ = −
√

2M
r
, ṫ = 1. (51)

• Isotropic Coordinates. Define a new radial coordinate ρ by r = ρ+m+m2/4ρ. Show
that the metric becomes

ds2 =
(1−M/2ρ)2

(1 +M/2ρ)2
dt2 − (1 +M/2ρ)4

(
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
. (52)
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3 Waves on the Schwarzschild Space-Time

Having briefly considered the scattering of light in the ‘geometrical optics’ limit, we now look at
possible diffraction effects which may arise from wave propagation near black holes. As we will
see, the extreme nature of black holes can lead to a variety of interesting effects. To understand
these effects we develop a framework for studying the scattering of waves by black holes.

From an observational point of view, the most interesting cases for study are electromagnetic
and gravitational waves. Gravitational waves (GWs) are a key prediction of GR, but have yet
to be detected directly. This is perhaps not surprising as the expected amplitude of waves
reaching Earth is incredibly tiny (with a dimensionless strain of h ∼ 10−21). There is strong
indirect evidence for GWs from pulsar timing observations. There is presently much interest
in gravitational waves, since it is hoped a new generation of ground-based gravitational-wave
detectors (laser interferometers LIGO, VIRGO, GEO-600) are poised to make a ‘first-light’
detection. Prospects for the future are good, with a space-based observatory (LISA) planned in
the next decade.

Electromagnetic waves are strongly coupled to charged matter. Hence light that passes
close to a black hole is unlikely to escape to infinity without undergoing secondary (i.e. non-
gravitational) scattering, unless the hole is extremely quiescent and isolated from charged matter.
On the other hand, gravitational waves are weakly coupled, and couple only to the bulk motions
of large amounts of matter. Their frequencies are directly related to the motion of matter (for
example, orbital frequencies). Hence, GWs may offer the best observational window on the
near-horizon region of a black hole. Unlike the other fields, the gravitational field is inherently
non-linear; however, a linearized approximation works well in many circumstances. Furthermore,
the dynamics of the gravitational field can be understood by studying the massless scalar field
(for which the mathematics is much simpler!). That is the approach we take here.

Another intriguing physical possibility is the interaction of neutrino waves with black holes.
Since neutrinos are uncharged and only interact through the weak force and gravity, the neutrino
field may also bear the direct imprint near-horizon physics. Neutrinos have been detected at a
number of facilities around the world, but the observed fluxes are currently too low for effective
‘neutrino astronomy’. That may change in future decades however.

The fields may be classified by their spin: s = 1/2 for neutrinos, s = 1 for EM waves, and
s = 2 for gravitational fields. The latter two fields are massless, and the mass of the neutrino is
thought to be non-zero but very small mν < 1 meV. Obviously, field equations depend on the
spin, and polarization effects induced by spin can be important. However, much of the physics
does not depend on spin. In this section we will study the massless scalar (s = 0) field for its
mathematical simplicity, and the Dirac (s = 1/2) field as an example of a wave with spin.

3.1 The Scalar Field

The evolution of a scalar field Φ may be determined from an action principle. Let us assume the
field is real, and implicitly take the real part of expressions wherever necessary. The minimally-
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coupled action is

S =
∫
d4xL(Φ, ∂µΦ; gµν) where L = 1

2

√
−g
(
gµν∂µΦ∂νΦ− µ2Φ2

)
(53)

where partial differentiation is denoted by ∂µΦ = ∂Φ
∂xµ and summation convention is assumed.

In this expression, g is the determinant of the metric tensor, and µ is the rest mass of the field.
We extremise the action by employing the Euler-Lagrange equation

∂L
∂Φ

=
d

dxµ

(
∂L

∂(∂µΦ)

)
. (54)

This leads to the wave equation

1√
−g

∂

∂xν

(√
−g gµν ∂Φ

∂xν

)
+ µ2Φ = 0. (55)

The wave equation is linear, so the total solution may be expressed as a sum over partial waves.
The spherical symmetry of the Schwarzschild spacetime allows a decomposition into Fourier
modes,

Φlm(t, r, θ, φ) =
ul(r)
r

Ylm(θ, φ)e−iωt, (56)

where Ylm are spherical harmonics. This leads to a radial equation(
1− 2M

r

)
d

dr

[(
1− 2M

r

)
dul

dr

]
+
[
ω2 − Vl(r)

]
ul = 0, (57)

with the effective potential

Vl(r) =
(

1− 2M
r

)(
l(l + 1)
r2

+
2M
r3

+ µ2

)
. (58)

The effective potential for the scalar wave is similar in form to the potential for geodesics (18).
The radial equation can be written more succinctly if we define a “tortoise coordinate” r∗ by

dr∗

dr
=

r

r − 2M
(59)

which integrates to
r∗ = r + 2M ln

( r

2M
− 1
)
. (60)

Note that the tortoise coordinate has the effect of pushing the horizon away to r∗ = −∞. In
some sense, the tortoise coordinate reflects the fact that geodesics take an infinite coordinate
time to reach the horizon.

The effect of the black hole on the scalar field may be understood by examining the form
of the potential barrier. Fig. 3 shows the potential as a function of r∗, for massless (a) and
massive (b) waves. It is clear that the potential barrier has, at most, a single peak. Waves
with an energy close to this peak will be partially transmitted and partially reflected; waves
substantially below the peak will be mostly reflected, and waves substantially above will be
mostly absorbed. In addition, if the wave has mass (Fig. 3b), then the potential may contain
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Figure 3: The effective potential for the scalar field on a Schwarzschild space-time. (a) For the massless
field. The potential is in units of 10~c3/GM . (b) For the massive field. The potential is in units of µc2,
where µ is the particle mass, chosen so that GMµ/~c = 10.

a local minimum. This raises the possibility that transient gravitationally-bound states may be
induced in this potential well.

The potential tends to constant limits at infinity and the horizon (r∗ → ±∞). It follows
that there are two independent solutions at each of these limits

ul(r) ∼

{
exp(±iωr∗), r∗ → −∞,
exp(±ipr∗), r∗ → +∞,

(61)

where p = (ω2 − µ2)1/2.

3.1.1 Current

A conservation law can be derived by constructing

Φ∗gµνΦ;µν − ΦgµνΦ∗
;µν = 0. (62)

Here, the ; denotes covariant differentiation. The left-hand side is equal to zero by the wave
equation, Φ;µ

µ = −µ2Φ. The above expression can be rearranged to

Jµ
;µ = (−g)−1/2∂µ

[
(−g)1/2gµνJν

]
= 0, (63)

where
Jν = − 1

2i
(Φ∗∂νΦ− Φ∂νΦ∗) . (64)

Jν may be interpreted as the conserved four-current of the field.
To find the probability density as perceived by a specific observer, we take the contraction

of Jµ and the observer’s world line ẋµ. That is,

ρc2 = ẋµJµ (65)
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For instance, if we choose an observer at fixed r, θ, φ with a world-line vector ẋµ = [(1 −
2m/r)−1/2, 0, 0, 0] we find a probability density of

ρc2 = (1− 2M/r)−1/2ω, (66)

assuming ω is real. This probability density inevitably diverges at the horizon, since no observer
may remain at fixed r for r ≤ 2M . On the other hand, we may choose a time-like observer falling
radially who started from rest at infinity. [Exercise : show that this observer has a world-line
vector ẋµ = [(1− 2M/r)−1,−

√
2M/r, 0, 0]]. We would expect this observer to measure a well-

defined probability density as the horizon was approached. Substituting in the asymptotic form
of the radial solution (61) as r∗ → −∞,

ρc2 ∼ (1− 2M/r)−1ω

(
1±

√
2M
r

)
(67)

∼ ω
(
1∓

√
2Mr

)−1
(68)

The exp(−iωr∗) solution leads to a probability density that is well-defined at the horzion, but
the exp(+iωr∗) solution leads to a divergent probability density. It is natural to infer that only
the exp(−iωr∗) solution is physical.

3.1.2 Flux through the horizon

There is a 4D version of Gauss’s law that allows us to consider the flux through the horizon.
Mathematically stated, ∫

V
dx4√−g Jµ

;µ =
∫

∂V
dx3

√
−hJµn̂µ. (69)

Here, V is a four-volume with a 3-surface boundary ∂V , n̂ is the unit normal to an element of
∂V (assuming not null), and h is the determinant of the induced metric hµν = gµν − n̂µn̂ν .

Let us construct a ‘thin-sandwich’ four-volume bounded by the four surfaces t = t1, t =
t1 +dt, r = r0 and r = r1. The conservation of flux (63) means the left-hand side of (69) is zero,
and we can write down a conservation law for the flux in integral form. With a bit of care, one
can show

∂

∂t

[∫
dΩ
∫ r1

r0

dr r2 (1− 2M/r)−1 Jt

]
= −

∫
dΩ
[
r2(1− 2M/r)Jr

]r1

r0
(70)

Clearly the probability density integral diverges as the horizon is approached. The expression
looks simpler if we write in terms of the tortoise coordinate,

∂

∂t

(∫
dΩ
∫ r1

r0

dr∗r
2Jt

)
= −

∫
dΩ
[
r2Jr∗

]r1

r0
, (71)

but this can’t hide the fact that there is a divergence in the left-hand side, due to the coordinate
singularity at r = 2M .

The same conclusions can be reached by just examining the Wronskian of the radial equation,
defined by

W = u†1
du2

dr∗
− u†2

du1

dr∗
. (72)
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where † indicates complex conjugation. If ω is real then the radial equation (57) has a conserved
Wronskian, and thus r2Jr∗ is constant. In this case, the current flowing through the horizon is
exactly matched by the flux incident from infinity. However, there is another possibility that is
more natural. If the flux flowing across the horizon is not matched by the flux incident from
infinity then ω has an imaginary part, and the Wronskian is not conserved.

3.1.3 Alternative coordinate systems

As we have seen, the scalar field oscillates an infinite number of times in approaching the horizon,
even though the flux observed by an infalling observer may be well-defined and finite. This is
due to the coordinate singularity in the Schwarzschild time at r = 2M .

Earlier, we introduced two alternative coordinate systems which penetrate the horizon: ad-
vanced Eddington-Finkelstein (AEF) and Painleve-Gullstrand coordinates (PG). Both systems
are related to Schwarzschild system by a transformation of the time coordinate

t = t̄+ α(r), (73)

where α(r) is a function of r only which is regular everywhere except at the horizon.
The transformed radial solution ũl is related to the original Schwarzschild field ul by

ũl(r) = e−iωα(r)ul(r). (74)

It was noted that geodesics pass through the horizon in a finite coordinate time in the AEF and
PG systems. Correspondingly, we would expect to find a scalar wave solution that is well-defined
at the horizon in these systems. This is indeed the case, since

α(AEF) ∼ α(PG) ∼ −r∗ ∼ −2M ln(r/2M − 1) as r → 2M (75)

so the ingoing wave approaches a constant value at the horizon (i.e. it is regular). The outgoing
wave on the other hand oscillates as e2iωr∗ as the horizon is approached, and is not defined at
r = 2M .

It is relatively straightforward to derive wave equations for the AEF or PG fields, and to
examine their properties at r = 2M and r = 0.

Exercise :

• By assuming a separation of variables of the form (56), show that the wave equation in
AEF coordinates can be written

−(r − 2M)
∂2R

∂r2
+
[
4iMω − 2(r −M)

r

]
∂R

∂r

+
(

2iMω + l(l + 1)
r

− (r + 2M)ω2 + µ2

)
R = 0, (76)

where R(r) = rul.
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• Show that the horizon r = 2M is a regular singular point of the radial equations. By
applying the method of Frobenius, show that at the horizon there are two independent
solutions which can be written

R(1) ∼
∞∑

k=0

ak(r − 2M)k and R(2) ∼ (r − 2M)4iMω
∞∑

k=0

bk(r − 2M)k. (77)

• Consider the singular point at the origin r = 0. Using the method of Frobenius, derive
an indicial equation and show that it has a repeated root k = 0. This means there is one
regular solution and one that diverges logarithmically:

R(1) ∼
∞∑

k=0

akr
k, and R(2) ∼ ln(r)

∞∑
k=0

akr
k +

∞∑
k=1

bkr
k (78)

Determine a1 and b1 in terms of a0.

• If the general solution close to the origin is R ∼ A1R(1) + A2R(2), show that to lowest
order in r the radial current is

Jr =
1
r
Im(A∗1A2) (79)

Hence show the total flux passing through a sphere around the singularity

r2
∫
dΩJr (80)

is well-defined and finite as r → 0.

3.2 The Dirac Equation?

In this section we consider the Dirac equation on the Schwarzschild space-time. The Dirac
equation determines the evolution of spin-half matter fields. Its properties are outlined with
little justification, and a more detailed exposition is given in Sec. 7.1. A key result is that
the Dirac equation takes a particularly simple form when expressed in the Painlevé-Gullstrand
coordinate system [11].

In Minkowski space, the free Dirac equation is simply

iγ̂µ∂µψ = µψ. (81)

where ψ is a four-component spinor and γ̂µ are constant 4 × 4 matrices satisfying the anti-
commutation relations

{γ̂µ, γ̂ν} ≡ γ̂µγ̂ν + γ̂ν γ̂µ = 2ηµν . (82)

There is some freedom in the matrix representation of γ
′mu, but a standard choice is the Dirac-

Pauli representation,

γ̂0 =

(
I2 0
0 I2

)
, γ̂i =

(
0 σi

−σi 0

)
. (83)
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Here, I2 is the 2× 2 identity matrix, and σi are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
. (84)

Using the wave equation we can define a conserved current,

Jµ
;µ = 0, where Jµ = ψ†γ̂0γ̂µψ. (85)

where ψ† is the Hermitian conjugate of ψ. [Exercise : Derive this result with the aid of the
identity γ̂µ† = γ̂0γ̂µγ̂0].

3.2.1 Dirac equation on the Schwarzschild space-time

The Dirac equation on a general curved background can be written as

igµD̂µψ = µψ, (86)

In this expression, gµ are matrices gµ = γ̂aea
µ that satisfy

{gµ, gν} ≡ gµgν + gνgµ = 2eaµeb
νηab = 2gµν . (87)

and eaµ is a local tetrad basis (see Sec. 7.1). The derivative operator is defined by

D̂µ = ∂µ + Ω̂µ, where Ω̂µ =
i

2
ωµabΣ̂ab. (88)

Note that D̂µ is matrix-valued. Here, ωµbc is known as the spin-connection, and Σ̂ab = i
4

[
γ̂a, γ̂b

]
.

Full details are outlined in Sec. 7.1.
The Dirac equation turns out to be particularly simple when written in the Painlevé-

Gullstrand coordinate system. As we saw earlier, the Painlevé-Gullstrand coordinate system
has two distinct advantages: hypersurfaces at constant t are spatially flat; and the PG time
coordinate is equivalent to the proper time measured by a free-falling observer, starting from
rest. To recover the PG metric, we use the basis

gt = γ̂0, gr = γ̂r −
√

2M
r

γ0, where γ̂r =
1
r

∑
i

xiγi. (89)

In the PG system, the Dirac equation may be written in as

iγ̂µ∂µψ +−iγ̂0

√
2M
r

(
∂

∂r
+

3
4r

)
ψ = µψ, (90)

This has the advantage of looking like a flat-space Dirac equation with an interaction term.
Hence, much of the machinary of quantum theory in Minkowski space may be applied. However,
the interaction term hides one significant feature: it is not Hermitian at the origin due to the
presence of the singularity.
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3.2.2 Current

Below we show the existence of a conserved four-current on a curved space-time. Starting from
the Dirac equation (269) a conservation law can be found by considering

ψ†γ0
[
igµD̂µψ

]
−
[
igµD̂µψ

]†
γ0ψ = 0, (91)

where † denotes Hermitian conjugation. Assuming the torsion is zero (i.e. the connection is
symmetric) we may make use of the identity

(−g)−1/2∂µ

(
(−g)1/2gµ

)
+ Ωµg

µ − gµΩµ = 0, (92)

to rewrite equation (91) as
(−g)−1/2∂µ

(
(−g)1/2ψ̄gµψ

)
= 0, (93)

where ψ̄ is the Dirac adjoint, ψ̄ = ψ†γ0. We may therefore define a conserved four-current Jµ

satisfying
Jµ

;µ = 0 where Jµ = ψ̄gµψ. (94)

3.2.3 Separation of variables

To separate out the angular part of the wavefunction, we may use the two-component spherical
spinors χµ

κ that are eigenvectors of the angular equation

(σ · L̂ + 1)χµ
κ = κχµ

κ, (95)

where L̂ = [L̂x, L̂y, L̂z] is the angular momentum operator, and the components of σ = [σx, σy, σz]
are Pauli spin matrices. Angular states are labelled by the eigenvalue κ which is related to the
overall angular momentum j by

κ = ±(j + 1
2) =

{
l + 1 when j = l + 1

2

−l when j = l − 1
2

. (96)

The spherical spinors are normalised so that∫ 2π

0
dφ

∫ π

0
χµ

κ
†χµ′

κ sin θdθ = δµµ′ . (97)

The positive and negative κ spinors are related by

σrχ
µ
κ = χµ

−κ, (98)

where σr = r−1
∑

i x
iσi.

We may now look for separable solutions of the form

ψ =
e−iωt

r

(
u1(r)χ

µ
κ(θ, φ)

u2(r)χ
µ
−κ(θ, φ)

)
. (99)

Substitution of trial function (99) into the Dirac equation (269) leads to a pair of coupled
first-order equations for the radial functions u1(r) and u2(r).
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In the Painlevé-Gullstrand coordinate system we find

(
1− 2M

r

)(
u′1
u′2

)
=

 1
√

2M
r√

2M
r 1

 κ/r i(ω + µ)− 1
4r

√
2M
r

i(ω − µ)− 1
4r

√
2M
r −κ/r

(u1

u2

)
.

(100)
[Exercise : Show this!]

3.2.4 Flux conservation

Let us now examine the form of the probability current in PG coordinates. Of course, the
components of Jµ are observer dependent; in the PG coordinate system the J0 component
corresponds to the probability current that would be measured by an observer in radial free fall.

After integrating over the angular variables, the radial probability density in PG coordinates
may be written

r2ρ(r) = r2
∫
dΩJ t = (|u1|2 + |u2|2)e−i(ω−ω∗)t, (101)

and the radial probability flux is

r2jr(r) = r2
∫
dΩJr =

(
(u1u

∗
2 + u2u

∗
1)−

√
2M
r

(|u1|2 + |u2|2)

)
e−i(ω−ω∗)t. (102)

[Exercise : Show this]. Conservation of flux for the Dirac equation may be summarised in the
relation

∂

∂t

(
r2ρ
)

= − ∂

∂r

(
r2jr

)
. (103)

3.2.5 Behaviour near the origin

Let us now consider the asymptotic limit r → 0. Sufficiently close to the origin, we need only
consider the lowest power of r on the right-hand side of (100), which in this case arises from the
product of

√
2M/r and −

√
2M/r(4r)−1. This implies that

d

dr

(
u1

u2

)
≈ 1

4r

(
u1

u2

)
(104)

This makes it clear that both solutions u1, u2 go to the origin as r1/4. From the assumed form of
the separable solution, (99), all solutions diverge as r−3/4 close to r = 0, and so the probability
density goes as r−3/2. This is not a problem for normalisability however, since the integrated
probability density is finite, as the lower limit of the integral

∫
0 drr

2r−3/2 =
[
(2/3)r3/2

]
0

= 0 is
zero.

The radial flux through a sphere of radius r is well-defined in the limit r → 0

lim
r→0

(
r2jr

)
= − lim

r→0

√
2M
r

(|u1|2 + |u2|2) = −const. (105)

Hence a finite flux of probability density leaves the system at the origin.
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To see this in another way, let us consider the Dirac equation in Hamiltonian form (with
dimensionful constants ~ and c reinserted for physical clarity),

i
∂ψ

∂t
= −iγ̂0γ̂i ∂ψ

∂xi
+mγ̂0ψ + ĤIψ (106)

where

ĤIψ = i

√
2M
r

(
∂

∂r
+

3
4r

)
ψ. (107)

The ‘energy’ E associated with the interaction term can be found through the integral

E =
∫
d3xψ†ĤI(ψ) = i

√
2M

∫
dΩ
∫ ∞

0
drr3/4ψ†∂r(r3/4ψ). (108)

Let us further assume that the wavefunction is normalised,
∫
d3xψ†ĤI(ψ) = 1. Integrating the

equation once by parts with respect to r yields

E = i
√

2M
∫
dΩ
[
r3/2ψ†ψ

]∞
0

+ ∆E†. (109)

If the state can be normalised, the boundary term goes to zero as r →∞, but does not disappear
at the lower limit r = 0. As have seen, all wavefunctions go as ψ ∝ r−3/4 sufficiently close to
the origin. The imaginary part of the energy is therefore finite and well-defined,

Im(E) = − i
2(E − E∗) = −1

2

√
2M lim

r→0

∫
dΩ r3/2ψ†ψ (110)

4 Time-Dependent Wave Mechanics

In this section we consider the response of a black hole to an initial perturbation. The black hole
leaves a distinctive imprint on the scattered signal. It turns out that the black hole has certain
resonant modes – called quasi-normal modes (QNMs) – whose frequency and decay time depend
only on the black hole parameters (M , J , Q) and not on the specifics of the initial perturbation.
It is hoped that these quasi-normal mode frequencies will be observed at gravitational wave
detectors. A typical astrophysical scenario that would produce large amounts of gravitational
waves is a black hole in the act of swallowing a neutron star at the endpoint of binary evolution.
To accurately model this process, the full non-linear field equations must be solved. Nevertheless,
the results of the linearized analysis provide a surprisingly accurate approximation to the full
signal. To see the qualititative features, we consider only the scalar field here.

4.1 Wavefront scattering

One simple way to visualise a perturbation of a black hole is to model the evolution of the
wave fronts by solving the geodesic equations for null rays. Figure 4 shows the results of a 1+2
time-domain simulation recently conducted by a student at UCD.
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Figure 4: Wave front scattering from a black hole. The line shows the position of the wavefront at
constant Schwarzschild coordinate time t. Results from code developed by Kirill Ignatiev, 2008 (School
of Mathematical Sciences, UCD, Dublin [report in preparation]).
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4.2 Wavepacket scattering

Let us imagine a simple scenario where a Gaussian wavepacket impinges upon a Schwarzschild
hole. It is straightforward enough to pick a particular l, m mode, and integrate the 1 + 1 wave
equation

∂2φl

∂t2
− ∂2φl

∂r2∗
+ Vl(r∗)φl = 0 (111)

using a finite-difference method. Of course, the response depends on the width and speed of
the incoming wavepacket. In a classic paper in the 1970s, Vishveshwara [19] tried bombarding a
Schwarzschild hole with a range of wave packets of differing widths. He found that the response
had some universal features.

Figure 6 shows a recreation of the scattering simulation. The black line shows the effective
potential (for a massless wave). The blue line shows the scalar field. At t = 0, we start with a
narrow Gaussian wavepacket approaching the hole. As it approaches, some flux is backscattered
by the tail of the potential. As the wavepacket crosses the peak of the barrier, oscillations are
induced. Some of the wavepacket is transmitted, and some is reflected. The proportion that is
absorbed depends chiefly on the central frequency of the initial wavepacket.

The signal detected by an observer in the far-field region evolves with time. The response
undergoes three distinct stages of evolution. First, the observer sees radiation backscattered
from the tail of the potential. Next, the signal is dominated by an oscillatory component with
a well-defined frequency and decay rate. Finally, the signal decays according to a power law.
These three stages are shown clearly in Fig. 6. There is particular interest in the intermediate
stage of quasinormal-mode ringing. The response at this stage resembles the ‘pure tones of a
bell’ — the frequency and decay time depend not on the details of the initial perturbation, but
only on the parameters of the black hole.

The quasinormal mode ringing is excited by the passage of the wavepacket across the max-
imum of the effective potential. The presence of a potential maximum (correspondingly, an
unstable photon orbit) is a feature unique to black holes: hence detection of a QNM frequencies
in a GW signal would be a clear signature of black holes.

4.3 Quasi-Normal Modes

Which begs the questions: what precisely are QNMs and how may we determine their frequen-
cies?

Quasi-normal modes are solutions to the radial wave equation (57) which satisfy the boundary
conditions

ul(r) =

{
e−iωr∗ , r∗ → −∞,
e+iωr∗ , r∗ →∞.

(112)

In other words, QNMs are ingoing at the horizon and outgoing at infinity. Clearly, they act a
bit like resonant modes since an outgoing signal can be excited by an ‘infinitessimal’ ingoing
perturbation. But, the QNM frequencies ω are complex. The negative imaginary part of the
frequency determines the decay rate. Since flux is radiated through the horizon and away to
infinity, it is natural that these modes decay with time.
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Figure 5: Vishveshwara’s scattering simulation: A wave packet scattering from a black hole. The black
line shows the effective potential barrier, and the blue line shows the scalar field. The graphs illustrate
the evolution in time of a Gaussian wavepacket impinging upon the hole.
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Figure 6: The time-dependent response to wavepacket scattering at fixed position far from the hole. This
figure is taken from Andersson & Jensen (2001) [gr-qc/0011025], who comment “The response of a
Schwarzschild black hole as a Gaussian wavepacket of scalar waves impinges upon it. The first bump (at
t = 50M) is the initial Gaussian passing by the observer on its way towards the black hole. Quasinormal-
mode ringing clearly dominates the signal after t ∼ 150M . At very late times (after t ∼ 300M) the signal
is dominated by a power-law fall-off with time. This late time tail arises because of backscattering off of
the weak potential in the far zone. As such, it is not an effect exclusive to black holes. A similiar tail
will be present also for perturbed stars.”
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Figure 7: The WKB approximation. A wave of frequency ω interacts with the peak of the potential
barrier. Three zones are shown: in I and III, |ω| < V (r∗), whereas in II |ω < V (r∗). A solution is
matched together at the boundaries.

The QNM spectrum can be approximated using semi-analytic methods. For example, the
WKB method may be applied [17]. We may attempt to match up asymptotic solutions across
the potential barrier, as illustrated in Fig. 7. In regions I and III, the asymptotic solutions are

ΦI(r∗) = Q−1/4(r∗) exp
(

+i
∫ r∗

x2

Q1/2(x)dx
)

(113)

ΦIII(r∗) = Q−1/4(r∗) exp
(
−i
∫ x1

r∗

Q1/2(x)dx
)

(114)

where Q(r∗) = ω2−V (r). Note that these asymptotic forms are only valid far from the matching
points (e.g. Q(r∗)(r∗ − x2)2 � 1). [Exercise : Show that ΦI satisfies the equation Φ′′/Φ =
Q+ 5(Q′/4Q)2 −Q′′/4Q].

Near the peak of the potential, the function Q(r∗) can be approximated by a parabola,
Q = Q0 +Q′′

0(r
∗ − r∗0)

2. The radial equation can be written in a standard form,

d2ΦII

dt2
+
(
ν + 1

2 −
1
4 t

2
)
Φ = 0, (115)

by making the definitions

t = (4k)1/4eiπ/4(r∗ − r∗0), k = Q′′
0/2, ν + 1

2 = −iQ0/(2Q′′
0)

1/2. (116)

The solutions to (115) are parabolic cylinder functions Dν(t), and the general solution is ΦII =
ADν(t) + BD−ν−1(it). By considering the asymptotic form of the parabolic cylinder functions
in the limits t → ∞ and t → −∞ it can be shown that ΦII will only match ΦI and ΦIII if
Γ(−ν) = −∞. [Exercise : Show this]. Hence ν is a non-negative integer, and so the QNMs
have a discrete spectrum approximated by

ω2 = V (r0)− i(n+ 1
2)

(
−2

d2V

dr2∗

∣∣∣∣
r=r0

)1/2

(117)

where r0 is the position of the peak of the potential.
To compute the QNMs more accurately, a numerical method may be employed. Below I

briefly outline a method of continued fractions [12] which is both fast and numerically stable.
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Let us make a substitution which has the desired properties at the horizon (ingoing) and
infinity (outgoing). In the limit r → 2M , we have r∗ → 2M ln(r/2M − 1), hence we start with
the ansatz

ul(r) = (r − 2m)ρr−2ρe−ρ(r−2M)/2M
∞∑

n=0

an

(
r − 2m
r

)n

(118)

where ρ = −2imω. Substituting this ansatz into the radial equation (57), we find the series
coefficients an satisfy a three-term recurrence relation,

αnan+1 + βnan + γnan−1 = 0, (119)

where

αn = n2 + 2n(ρ+ 1) + 2ρ+ 1 (120)

βn = −[2n2 + 2n(4ρ+ 1) + 8ρ2 + 4ρ+ l(l + 1) + 1] (121)

γn = n2 + 4nρ+ 4ρ2 (122)

The frequency ω corresponds to a QNM if and only if the sum
∑
an converges. This requirement

translates into a continued-fraction equation involving the coefficients α, β and γ

β0 −
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
. . . = 0. (123)

The roots of this equation yield the QNM frequencies. In practice, it is better to solve an
inversion of this equation when looking for higher-order modes. The roots can be found with a
numerical root-finding algorithm.

The numerically-determined QNM frequencies are shown in Fig. 9. The most physically-
significant mode is the mode that decays most slowly – in other words, the least-damped mode
with the smallest negative imaginary component (i.e. min|Im(ω)|). This ‘fundamental’ mode
dominates the time-domain signal shown in Fig. 6.

4.4 Green’s Function Analysis

A clearer picture of the dynamic response of a black hole to perturbation may be obtained via
a Green’s function approach. In this section, we consider the evolution of the field as an initial
value problem. Instead of specifying some arbitary initial condition we instead seek to determine
the general features of the response by examining the propagator (i.e. the Green’s function).

The time-evolution of a wave-field Φl(r∗, t) is given by

Φl(r∗, t) =
∫
G(r∗, y, t)∂tΦl(y, 0)dy +

∫
∂tG(r∗, y, t)Φl(y, 0)dy. (124)

The retarded Green’s function is defined by[
∂2

∂t2
− ∂2

∂r2∗
+ V (r)

]
G(r∗, y, t) = δ(t)δ(r∗ − y), (125)
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Figure 8: The Quasi-Normal Mode Spectrum. This plot is taken from Fig. 1, E.W. Leaver, Proc. R. Soc.
Lond. A 402, 285–298 (1985). It shows the quasi-normal mode frequencies of the gravitational field of
the Schw. BH., for the l = 2 and l = 3 angular modes. Note that with our conventions, the y-axis should
read −Im(ω).

and the condition G(r∗, y, t) = 0 for t ≤ 0. The ingoing boundary condition at the horizon is
imposed by demanding

∂G

∂r∗
+ iωG = 0, r → 2M (126)

and the outgoing condition at infinity is imposed by demanding

∂G

∂r∗
− iωG = 0, r →∞. (127)

We may now perform a Fourier transform of G:

Ĝ(r∗, y, ω) =
∫ ∞

0−
G(r∗, y, t)eiωtdt (128)

The transform is well defined as long as Imω ≥ 0, and the inversion formula is

G(r∗, y, t) =
1
2π

∫ ∞+ic

−∞+ic
Ĝ(r∗, y, ω)e−iωtdω (129)

where c is a positive real number. [Exercise : Prove that this expression is indeed the inverse].
The Green’s function Ĝ(r∗, y, ω) can be expressed in terms of two linearly-independent so-

lutions to the homogenous equation. In order to obtain the correct boundary conditions on G,
we will make use of the two solutions ‘in’ and ‘up’. The ‘in’ solution is purely ingoing at the
horizon, whereas the ‘up’ solution is purely outgoing at infinity.

φ
(in)
l ∼

{
e−iωr∗ , r∗ → −∞,
Aine

−iωr∗ +Aoute
+iωr∗ , r∗ → +∞,

(130)
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and

φ
(up)
l ∼

{
Bine

−iωr∗ +Boute
+iωr∗ , r∗ → −∞,

e+iωr∗ , r∗ → +∞.
(131)

Here, Ain, Aout, Bin and Bout are complex constants which depend on the frequency of the mode
under consideration, ω. boundary conditions are illustrated on a Penrose-Carter conformal
diagram in Fig. ??.

The Green’s function is

Ĝ(r∗, y, ω) = − 1
W

{
φ

(in)
l (r∗)φ

(up)
l (y), r∗ < y,

φ
(up)
l (r∗)φ

(in)
l (y), r∗ > y

(132)

Note that the properties of φ(in)
l and φ(up)

l ensure that the boundary conditions (126) and (127)
are met. Here W is the Wronskian given by

W = φ
(in)
l

dφ
(up)
l

dr∗
− φ

(up)
l

dφ
(in)
l

dr∗
= 2iωAin. (133)

4.4.1 Contour integration

In principle the initial value problem can be solved by direct numerical integration. However,
there is an alternative approach which clearly reveals the origin of the phases of evolution seen
in the dynamical response of Fig. 6. In this approach, we compute the contour integral (129)
using Cauchy’s theorem. For t > 0, the contour can be closed in the lower half-plane, provided
as we integrate around a branch cut. The closed contour and the branch cut are shown in Fig.
9. The contour encloses ‘poles’ of the Green’s function Ĝ where the Wronskian W (133) is zero.
These poles are none other than the QNM frequencies!

The three phases of time evolution correspond to three parts of the contour diagram. The
initial response arises from the high-frequency arcs that complete the contour. The intermediate
ringing is due to the contribution from the residues at the poles. The late-time power law decay
arises from the integral along the branch cut.

4.5 Bound States

Electromagnetic and gravitational waves are massless; Dirac perturbations are not. It is simple
enough to include a field mass in the wave equation and we might ask: what are the conse-
quences?

As we saw in Sec. (??), field mass may create a local minimum in the effective potential.
A minimum corresponds to the existence of a stable circular orbit. It raises the possibility
of “bound states” localized in the potential well. In other words, like the hydrogen atom, a
black hole may have a spectrum of bound state energy levels. These states cannot be unitary
however, since they would quantum-tunnel through the potential barrier into the near-horizon
region. Such states will decay exponentially with time, as flux is lost through the horizon.

The field mass µ corresponds to a length scale: the Compton wavelengh λ = h/µc. Let
us define a dimensionless mass coupling αG to be proportional to the ratio of the Compton
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Figure 9: The Contour Integral. This plot is taken from Fig. 1, E.W. Leaver, Phys. Rev. D 34, 384
(1986). It shows a complete contour of integration that encloses all the QNM frequencies. Here, s = iω∗.

wavelength of the particle to the horizon size of the hole,

αG =
πrs
λ

=
GMµ

~c
. (134)

A local minimum in the potential (and thus quasi-stable states) is only possible in the regime
αG . l, where l is the angular momentum of the mode.

For astrophysical black holes coupled to known matter fields, αG � 1. For instance, for a
solar-mass black hole M ∼ 2 × 1030 kg coupled to the electron mass me ∼ 9.11 × 10−31kg, we
find αG ∼ 1014. It makes little sense to talk about an l ∼ 1014 mode; far better to examine
the local dynamics of the field. However, if primordial black holes were created in the early
universe they may have much smaller masses. A value of αG ∼ 1 corresponds to a BH of mass
1015 kg coupled to the electron field; or a BH of mass 1021 kg coupled to a neutrino field with
(hypothetical) mass 0.01eV.

Like QNMs, bound states satisfy a pair of boundary conditions. Unlike QNMs, bound states
tend to zero at spatial infinity. That is,

ul ∼

{
e−iωr∗ , r∗ → −∞
Ae−qr∗ , r∗ → +∞

(135)

where q =
√
µ2 − ω2. The frequency ω has a negative imaginary part, and thus the state

decays with time. (To ensure convergence in the far-field, we choose the square root so that
−Re(q) < 0).
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The method of continued fractions can be modified to calculate bound state frequencies, as
we show in the next section. First, let us examine the spectrum in the limit αG/l� 1.

4.5.1 Non-relativistic bound state spectrum

In this section it is shown that in the non-relativistic limit, the frequency spectrum of the scalar
field bound to a Schwarzschild black hole has a hydrogen-like spectrum,

~ωn ≈
(

1− M2µ2

2n̄2

)
µc2, (136)

where n̄ ∈ N+ is the principal quantum number.
Let us begin by considering the Schwarzschild spacetime described by Painlevé-Gullstrand

(PG) coordinates. It is straightforward to show that the massive Klein-Gordon equation in PG
coordinates can be written(

∂t −
√

2M/r ∂r

)2
Φ− 3

2r

√
2M
r

(
∂t −

√
2M/r ∂r

)
Φ−∇2Φ + µ2Φ = 0 (137)

where ∇2 is the 3D Laplacian operator [Exercise ].
To effect a non-relativistic reduction, we split the field Φ into two components χ1 and χ2,

defined by

χ1 = 1
2

(
Φ +

i

µ

(
∂t −

√
2M/r ∂r

)
Φ
)
, (138)

χ2 = 1
2

(
Φ− i

µ

(
∂t −

√
2M/r ∂r

)
Φ
)
, (139)

so that
χ1 + χ2 = Φ and χ1 − χ2 =

i

µ

(
∂t −

√
2M/r ∂r

)
Φ. (140)

This decomposition leads to the pair of coupled equations,

(i∂t − µ)χ1 = − 1
2µ

∇2(χ1 + χ2) + i
√

2M/r ∂rχ1 +
3i
4r

√
2M/r (χ1 − χ2), (141)

(i∂t + µ)χ2 = +
1
2µ

∇2(χ1 + χ2) + i
√

2M/r ∂rχ2 +
3i
4r

√
2M/r (χ2 − χ1). (142)

In the non-relativistic limit, we make the assumption that ω ∼ µ and the approximation χ2 �
χ1. Equally well, we could make the assumption that ω ∼ −µ to recover the non-relativistic
antiparticle spectrum. This assumption leads to the Schrödinger equation

ENRχ1 = − 1
2µ

∇2χ1 + i

√
2M
r

(
∂r +

3
4r

)
χ1 (143)

where ENR = ω − µ. With a simple substitution, χ1 = ψ exp(iµ
√

8Mr), equation (143) can be
transformed to the familiar form

ENRψ = − 1
2µ

∇2ψ − Mµ

r
ψ. (144)

This is the hydrogenic Schrödinger equation, but with the fine-structure constant αEM =
e2/4πε0~c replaced by the gravitational coupling αG = GMµ/~c. Hence the non-relativistic
wavefunctions are hydrogenic, and the energy levels are given by (136).
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4.5.2 Continued Fraction Method

It is possible to adapt the QNM continued-method to numerically determine the bound state
frequencies. Let us look for a solution of the form

ul(r) = (r − 2M)−iσriσ+χeqr
∞∑

n=0

an

(
r − 2M

r

)n

(145)

where

σ = 2Mω, q = ±
√
µ2 − ω2, and χ =

µ2 − 2ω2

q
. (146)

[Exercise : Verify that this ansatz satisfies the pair of boundary conditions (135) if the series is
convergent].

The choice of the sign of the real part of q determines the behaviour of the wavefunction as
r → ∞. If Re(q) > 0, the solution diverges towards infinity, whereas if Re(q) < 0 the solution
tends to zero. Therefore, the same method can be applied to look for both quasinormal modes
(by choosing Re(q) > 0) and the bound state modes (by choosing Re(q) < 0).

Substituting (145) into the radial equation (57) yields a three-term recurrence relation for
the coefficients an. We find

α0a1 + β0a0 = 0 (147)

αnan+1 + βnan + γnan−1 = 0, n > 0, n ∈ N+, (148)

where

αn = n2 + (c0 + 1)n+ c0, (149)

βn = −2n2 + c1n+ c3, (150)

γn = n2 + c2n+ c4. (151)

The constants c0, c1, c2, c3 and c4 are somewhat more complicated than in the massless case
[12]. Explicitly,

c0 = 1− 4iω, (152)

c1 = −2 + 8i(ω − iq)− 2(ω2 + q2)
q

, (153)

c2 = −4iω − 2(q2 − ω2)
q

, (154)

c3 =
2i(ω − iq)3

q
+ 2(ω − iq)2 − l(l + 1)− 1− (ω − iq)2

q
+ 2q + 2iω

(
(ω − iq)2

q
+ 1
)
, (155)

c4 =
(ω − iq)4

q2
. (156)

Note that here I have set M = 1 for convenience (hence ω and q are expressed in units of M−1).
In the massless limit (µ = 0, q = iω), equations (152)—(156) should reduce to (??) [Exercise :
check this is true!]. To find the bound state frequencies, we may follow the method outlined in
Sec. 4.3.
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Figure 10: Scalar (s = 0) and spinor (s = 1/2) bound state frequencies of the Schwarzschild hole. The
upper plots show the real component of energy (i.e. the oscillation frequency), and the bottom plots
show the imaginary component (i.e. the decay frequency), as a function of gravitational mass coupling
GMµ/~c. The left plots compare the l = 0 scalar ground state with the j = 1/2 spinor ground state.
The right plots compare the l = 1 (scalar) and the j = 1/2 and j = 3/2 (spinor) levels.

Figure 10 compares the spectra of the massive Klein-Gordon and Dirac fields on the Schwarzschild
background. In the limit Mµ � 1, the spectra follow equation (136). As Mµ is increased, the
frequency develops a non-negligible negative imaginary component. At higher couplings, the
spin has a significant effect on the frequency levels. In the spin-half case, the j = l± 1/2 degen-
eracy is split by the black hole interaction. For couplings Mµ & 0.3, the (negative) imaginary
part of the energy is comparable to the field mass. This means that decay is extremely fast,
similar to the Compton time. To put it another way, if Mµ & l, the state lasts only a few
multiples of the light-crossing time for the black hole.

Figure 11 shows the frequency spectrum for scalar states of higher angular momentum, up
to l = 8. Again, the levels follow the hydrogenic (1/n2) spectrum (136) in the regime Mµ� l.
At low couplings, the states are quasi-stable. Decay dominates beyond about Mµ ∼ 0.3l. At
around Mµ ∼ 0.5(l+1) the real part of the energy reaches a minimum. The maximum ‘binding
energy’ offered by this minimum increases with l, to around 12% of the rest mass energy for
l = 8. It seems unlikely that this energy could be extracted from the black hole, since the state
decays very rapidly (with a lifetime similar to the black hole light-crossing time).

Radial wavefunctions for the first three modes with l = 0 are shown in Fig. 12. These plots
show the time-like component of the current as measured by an infalling observer. For α � 1,
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Figure 11: The complex frequencies of the lowest-energy Schwarzschild bound states up to l = 8. The
top plot shows the oscillation frequency Re(ω/µ), and bottom plot shows the decay rate Im(ω/µ), as a
function of the mass coupling GMµ/~c.
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Figure 12: S-state wavefunctions. The top-left plot shows 1S wavefunctions in the range 0.1 ≤ α ≤ 0.3.
The top-right and bottom plots show the 2S and 3S states in the ranges α = 0.2 – 0.6 and α = 0.2 – 0.5,
respectively.

the wavefunctions are hydrogenic. At higher couplings, the peak of the wavefunction moves
closer to the singularity and the nodal structure is washed out.

5 Time Independent Scattering and Absorption

In this section we consider a time-independent scattering scenario in which a long-lasting
monochromatic wave impinges onto a black hole. The key physical quantities are:

• the absorption cross section σa

• the differential scattering cross sectiondσ/dΩ

• the partial polarization (if the wave has spin), P.

Scattering calculations are a standard part of quantum theory, and the methods can be adapted
to the black hole case. Below I describe two standard approachs: a perturbation theory calcu-
lation and the partial wave method.
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5.1 Perturbative Scattering Theory

This section describe the application of perturbation theory to the calculation of black hole
scattering cross sections. Perturbation theory has played a key role in the development of
quantum mechanics. Whilst it is relatively straightforward to write down equations that describe
the propagation and interaction of relativistic quantum fields, it is altogether more difficult to
solve them! Ultimately, a physical theory must prove itself by calculating physical quantities (for
example, transition probabilities, scattering cross sections, etc.) for comparison with experiment.
Perturbation theory is a crucial tool for such calculations.

The archetypal example of a successful application of perturbation theory to quantum me-
chanics is Feynman’s formulation of Quantum Electrodynamics (QED). QED describes the inter-
action of relativistic electrons and positrons with the quantised electromagnetic field. Physical
quantities such as the scattering amplitude can be expressed as Born series in the interaction
parameter. That is,

M = a1α+ a2α
2 + a2α

3 + . . . (157)

where M is the scattering amplitude, α is the fine-structure constant, and the constant ai is
calculated by summing all Feynman diagrams containing i interactions between the fields. The
perturbative method is particularly effective for QED because α ≈ 1/137 � 1, so relatively few
terms are required in the Born series to obtain an accurate result. A great triumph for the theory
came with the accurate confirmation of the Lamb shift observed in the hydrogen spectrum.

An early application of perturbation theory was to the scattering of high-energy electrons
by nuclei. Following the publication of Dirac’s equation in 1928, various authors applied Born’s
method to obtain a scattering cross section at first order,

dσ

dΩ
=

Z2e4(1− v2)
4m2 sin4(θ/2)

[
1− v2 sin2(θ/2)

]
, (158)

which was in agreement with Mott’s formula. Here, v = p/~ω is the velocity of the incident
electron in units of c.

The full Born series for the Schwarzschild black hole scattering cross section may be written
as

dσ

dΩ
=
(
GM

c2

)2 [
a0(v, θ) +Mωa1(v, θ) +M2ω2a2(v, θ) + . . .

]
, (159)

with Mω ≡ GMω/c3 as defined in chapter ??, and ai(v, θ) dimensionless functions. The per-
turbation series approach is most appropriate in the long-wavelength limit, when Mω � 1.

There is a great deal of freedom in the choice of coordinate system used to describe the
Schwarzschild solution. It makes sense to work with a horizon-penetrating coordinates, such as
AEF or PG coordinates. However, the formal details of the perturbation calculation are quite
different in these two systems. We would hope that physical quantities – i.e. the cross sections
– would be coordinate-system independent (gauge-invariant). Here we show that the first-order
cross section is the same AEF and PG coordinate systems, but this is far from a general proof
of gauge-invariance!
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5.1.1 Klein-Gordon scattering

Let us begin by reviewing the perturbation method for the Klein-Gordon field. For an introduc-
tion to spin-zero perturbation theory see, for example, chapter 8 in Greiner’s textbook [9]. We
start by assuming that the Klein-Gordon equation may be written as

∂µ∂µΦ + µ2Φ + B̂Φ = 0 (160)

where ∂µ∂µ is the flat-space d’Alembertian, and the interaction term

B̂Φ = (−g)−1/2∂µ

[
(−g)1/2 (gµν − ηµν) ∂νΦ

]
(161)

is assumed to be in some sense ‘small’ (note that this assumption breaks down near the origin).
Here, ηµν is the Minkowski metric in the appropriate coordinate system. For example, in our
case ηµν = diag

[
1,−1,−r2,−r2 sin2 θ

]
, and operator B̂ includes t and r partial derivatives.

Let us assume harmonic time-dependence, so that B̂ is a function of r only. The propagator
(Green’s function) ∆G is defined by[

(∂µ∂
µ)x2 + µ2 + B̂(x2)

]
∆G(x2, x1) = δ4(x2 − x1) . (162)

and appropriate boundary conditions. The propagator may be expanded in a perturbation
series,

∆G(xf , xi) =∆F (xf , xi)−
∫
d4x1∆F (xf , x1)B̂(x1)∆F (x1, xi)+∫ ∫

d4x1d
4x2∆F (xf , x1)B̂(x1)∆F (x1, x2)B̂(x2)∆F (x2, xi) + . . . (163)

where ∆F (x2, x1) is the free-space Feynman propagator for the scalar particle. In momentum
space this is

∆F (x2, x1) =
∫

d4k

(2π)4
∆F (k)e−ik·(x2−x1), ∆F (k) =

1
k2 − µ2

.. (164)

If we wish to evaluate (164) explicitly, we must remember to construct the contour of in-
tegration so as to recover the correct causal behaviour. This can be done by adding a small
imaginary part to the denominator. Instead, it is simpler to convert the whole calculation to
momentum space. We assume that the incoming wave is in an initial momentum state pi and
finishes in a final momentum state pf . We aim to calculate the amplitude M for the transition
between initial and final states. The scattering is elastic, so energy is conserved, ωi = ωf and
p2

i = p2
f . For clarity, we adopt the convention that bold-face symbols, e.g. pf , refer to spatial

3-vectors.
Moving to a momentum representation, we may define a scattering amplitude as

M = B(pf ,pi) +
∫

d3k

(2π)3
B(pf ,k)

1
k2 − µ2

B(k,pi) + . . . (165)

where B(pf ,pi) is the Fourier transform of the interaction term,

B(p2,p1) =
∫
d3xeip2·xB̂(x)e−ip1·x . (166)
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The differential cross section is related to the amplitude by

dσ

dΩ
=

1
4
|M|2

(2π)2
. (167)

In the next two section we show how to calculate the first order scalar amplitude in both the
Eddington-Finkelstein and Painlevé-Gullstrand coordinate systems.

5.1.2 Amplitude in Eddington-Finkelstein coordinates

Working with AEF coordinates, the difference between the gravitational metric and flat-space
metric is

gµν − ηµν =
2M
r

(
1 −1
−1 1

)
. (168)

where the matrix shows the t and r components. The θ and φ components are zero. There are
four contributions to the interaction corresponding to the four components above, which may
be labelled tt, tr, rt, and rr. The easiest to evaluate is the tt term,

Btt(pf ,pi) = −ω2

∫
d3x

(
2M
r

)
e−iq·x =

−8πω2M

|q|2
, (169)

where q = pf − pi. The rr term may be simplified using integration by parts,

Brr(pf ,pi) = −
∫
d3x

∂

∂r

(
e−ipf ·x

)(2M
r

)
∂

∂r

(
eipi·x

)
= 2M

∫
(ipf · x)(ipi · x)

e−iq·x

r3
. (170)

This integral can be solved by employing the sum and difference vectors

R = 1
2

(
pf + pi

)
, Q = 1

2

(
pf − pi

)
, (171)

which allow (170) to be rewritten as

Brr(pf ,pi) = −2M
∫
d3x

[
(R · x)2 − (Q · x)2

] e−iq·x

r3
. (172)

Now let the z-axis be aligned with Q direction, and the x-axis with the R direction. Then∫
d3x

(R · x)2e−iq·x

r3
=

4π|R|2

|q|2
(173)

and ∫
d3x

(Q · x)2e−iq·x

r3
= −4π|Q|2

|q|2
. (174)

The total contribution from the rr term is then

Brr(pf ,pi) = −8πM |p|2

|q|2
, (175)

since |R|2 + |Q|2 = |p|2.
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Finally, we show that the cross terms tr and rt do not contribute at first order. Taking both
terms together we have

[Brt +Btr](pf ,pi) = 2iωM
∫
e−ipf ·x

(
2
r

∂

∂r
+

1
r2

)
eipi·x. (176)

The term with the partial derivative is

4iωM
∫
e−ipf ·x 1

r

∂

∂r

(
eipi·x

)
= −4iMωπ2

|q|
. (177)

The other term has the same magnitude but the opposite sign,

2iωM
∫
e−iq·x

r2
=

4iωMπ2

|q|
. (178)

The net contribution from (176) is therefore zero.
Summing the contributions (169) and (175) yields the first-order amplitude

M1 =
−8πM

(
ω2 + |p|2

)
|pf − pi|2

. (179)

which may alternatively be expressed as

M1 = −2πM(1 + v2)
v2 sin2(θ/2)

, (180)

where v = p/ω. Substituting this into (167) gives

dσ

dΩ
=
(
GM

c2

)2
(
1 + v2

)2
4v4 sin4(θ/2)

. (181)

5.1.3 Amplitude in Painlevé-Gullstrand coordinates

Below, we show that to first-order, the amplitude in PG coordinates is the same as (180). In
this case the difference between the gravitational metric and the flat-space metric is

gµν − ηµν =

 0 −
√

2M
r

−
√

2M
r

2M
r

 . (182)

The tt term is zero, and the rr term is the same as in the AEF calculation (previous section).
The tr terms depend on the square root of M .

Let us consider the sum of the tr and rt terms,

[Btr +Brt](p2,p1) = 2
√

2Miω

∫
d3xe−ip2·x

1
r1/2

(
∂

∂r
+

3
4r

)
eipi·x

= 6iω
√
Mπ3/2 p2

2 − p1
2

|p2 − p1|7/2
. (183)
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This result is zero when p1 = pi and p2 = pf . In other words, there is no contribution that
scales with the half-power M1/2. Instead, we must go to next order in the Born series expansion
find the term that scales with M . That is, we must evaluate(

6iω
√
Mπ3/2

)2
I, where I =

∫
d3k

(2π)3
(p2 − k2)
|pf − k|7/2

(
1

k2 − µ2

)
(k2 − p2)
|k − pi|7/2

. (184)

Note that we may immediately cancel the (k2 − µ2) in the denominator with (p2 − k2) in the
numerator.

Let us calculate the integral I by moving to the centre-of-mass frame. Again, this is achieved
with the transformations

k 7→ k + R,

k2 − p2 7→ k2 −Q2 + 2R · k. (185)

Let us choose the 1-axis to be aligned with R and the 3-axis to be aligned with Q (note that
R ·Q = 0) and introduce spheroidal coordinates, {u, v, φ}:

k1 = |Q| sinhu sin v cosφ,

k2 = |Q| sinhu sin v sinφ,

k3 = |Q| coshu cos v. (186)

The coordinates lie in the ranges 0 ≤ u < ∞, 0 ≤ v < π, and 0 ≤ φ < 2π. The measure of
integration is

d3k = |Q|3 sinhu sin v
(
sinh2 u+ sin2 v

)
dudvdφ (187)

and the important quantities in the integral are

|k −Q||k + Q| = |Q|2(sinh2 u+ sin2 v)

k2 −Q2 = |Q|2(sinh2 u− sin2 v). (188)

Thus the integral becomes

I =
1

(2π)2Q2

∫ ∞

0

∫ π

0

sinhu sin v
(
sinh2 u− sin2 v

)
(sinh2 u+ sin2 v)5/2

dudv (189)

The integral is straightforward to perform: it is equal to 2/9. Hence the contribution from the
tr and rt terms is

−8πMω2

|q|2
. (190)

Combining (190) and (175) we see that the scattering amplitude at first order in Mω is identical
to that in the Eddington-Finkelstein coordinates, (179).
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5.1.4 Spin-half scattering

These techniques can also be applied to the Dirac field. In this case the propagator is defined
by [

iγ̂µ −m− B̂(x2)
]
SG(x2, x1) = δ4(x2 − x1) (191)

where B̂ depends on the coordinate system. The free-space Feynman propagator is

S(x2, x1) =
∫

d4k

(2π)4
γ̂µkµ + µ

k2 − µ2
e−ik·(x2−x1) (192)

The Dirac scattering amplitude is

M = ūs(pf )V (pf ,pi)ur(pi), (193)

where

V (pf ,pi) = B(pf ,pi) +
∫

d3k

(2π)3
B(pf ,k)

6k +m

k2 −m2
B(k,pi) + · · · (194)

and ūs and ur are normalized spinors of spin s and r. Again, B(pf ,pi) is the spatial Fourier
transform of the interaction term,

B(p2,p1) =
∫
d3xe−ip2·xB̂(x)eip1·x. (195)

In terms of the amplitude M the differential cross section is given by

dσ

dΩ
=
(m

2π

)2
|M|2 . (196)

Exercise : (long!) In either PG or AEF coordinates, show that to first order in M the spinor
amplitude is

M1 = −4πGM
|q|2

us(pf )(2Eγ0 −m)ur(pi). (197)

This implies a first-order cross section of

dσ

dΩ
=

G2M2

4v4 sin4(θ/2)

[
1 + 2v2 − 3v2 sin2(θ/2) + v4 − v4 sin2(θ/2)

]
(198)

once the averages over spins are taken.
Perturbative methods may also be applied to the fields of spin 1 and 2. In summary, massless

waves (v = 1) have the following lowest-order cross sections

lim
Mω→0

(
1
M2

dσ

dΩ

)
≈



1
sin4(θ/2)

s = 0, Scalar wave [a]
cos2(θ/2)

sin4(θ/2)
s = 1

2 , Neutrino [b]
cos4(θ/2)

sin4(θ/2)
s = 1, Photon [c]

cos8(θ/2) + sin8(θ/2)

sin4(θ/2)
s = 2, Grav. wave [d].

(199)

It is worth noting that the gravitational result is somewhat anomalous, in that it doesn’t follow
the same general rule

[
dσ/dΩ = M2 cos4s(θ/2)/ sin4(θ/2)

]
as the other fields.
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5.2 Partial Wave Analysis

Perturbative approximations are only really appropriate when the coupling is small, Mω � 1.
Beyond this regime, an alternative method is required. In this section, we treat the scattering
of scalar waves through a partial-wave expansion.

A plane wave can be decomposed into a sum of angular modes as

Φplane = eipz ∼ 1
2ipr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
eipr + (−1)l+1e−ipr

]
. (200)

Here, p =
√
ω2 − µ2. On a black hole space-time, we are unable to construct a plane wave from

solutions of the free wave equation, because the radial component goes as e±ipr∗ at infinity. This
introduces a logarithmic phase shift, so that the wavefronts are distorted even at large r. A
similar caveat is true in the case of EM scattering from the Coulomb potential; it is a simple
consequence of the 1/r tail of the potential. A distorted wave Φdist.

plane is obtained by replacing
r → with r∗ in the exponents of (201), i.e.

Φdist.
plane =

1
2ipr

∞∑
l=0

(2l + 1)Pl(cos θ)
[
eipr∗ + (−1)l+1e−ipr∗

]
. (201)

It is the ‘nearest approximation’ to the plane wave in a black hole space-time.
Let us construct a partial wave solution

Φ ∼ Φdist.
plane +

f(θ)
r
eipr∗ =

1
r

∞∑
l=0

alPl(cos θ)φ(in)
l (r∗). (202)

Here, φ(in)
l (r∗) are the solutions defined by boundary conditions (130). The series coefficients al

may be found by matching the ingoing e−ipr∗ part of (202) to the ingoing part of the distorted
plane wave. Hence

f(θ) =
1

2iω

∞∑
l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ). (203)

where
e2iδl = (−1)l+1Aout

Ain
(204)

[Exercise : Show this].
The differential scattering cross section is simply

dσ

dΩ
= |f(θ)|2 (205)

where dΩ is an element of solid angle.
In addition to scattering flux, the black hole may also absorb incident radiation. The trans-

mission factor Tl for each mode is

Tl = 1−
∣∣∣e2iδl

∣∣∣ (206)
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Transmission corresponds to the imaginary part of the phase shifts δl. The total absorption
cross section is found from a sum over modes:

σabs =
π

ω2

∞∑
l=0

(2l + 1)Tl (207)

In a moment, we show absorption cross sections for various couplings Mω.
[Exercise : Derive expression (207) for the absorption cross section.

• Start with

lim
r→∞

Φ ∼ 1
2ipr

∞∑
l=0

(2l + 1)Pl(cos θ)
(
(−1)l+1e−ipr∗ + e2iδleipr∗

)
. (208)

• Deduce an expression for the ingoing flux passing through a sphere of radius r in the limit
r →∞. (Use the expression for the probability current Jr and integrate over solid angle.
The apply the identity ∫ π

0
sin θPl(cos θ)Pl′(cos θ)dθ =

2δll′
2l + 1

. (209)

Remove inconvenient cross terms by taking an average over time.)

• Divide the total flux through the sphere by the flux of the incoming wave to get result
(207).

The phase shifts and transmission factors may be approximated analytically, or computed
numerically. Here we will consider the low-coupling regime, and then tackle the problem numer-
ically.

5.2.1 The comparison Newtonian problem

For the scalar wave, a low-coupling approximation may be derived by considering the small-Mω

limit of the scalar wave equation. First, we make the substitution u = (1 − 2M/r)−1/2y in
equation (57). Then the radial equation in the Schwarzschild coordinate system becomes[(

1− 2M
r

)2 d2

dr2
+
(
ω2 +

M2

r4

)
−
(

1− 2M
r

)(
l(l + 1)
r2

+ µ2

)]
y = 0. (210)

Let us now expand this equation in the large-r limit and only keep terms up to r−3. We find

d2y

dr2
+
[(
ω2 − µ2

)
+

2M(2ω2 − µ2)
r

+
4M2(3ω2 − µ2)− l(l + 1)

r2
+O

(
1
r3

)]
y = 0 (211)

In the limit l(l+ 1) � (Mω)2 and l(l+ 1) � (Mµ)2 the angular momentum barrier term in the
potential, which goes as 1/r2, dominates over all higher-order terms. Neglecting terms of r−3

and higher, we see that equation (211) is the same as the radial equation for non-relativistic
Coulomb scattering, if βC = Zαµ/p is replaced by

βG =
M(2ω2 − µ2)

p
. (212)
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The “Newtonian” phase shifts are therefore the same as for the non-relativistic Coulomb
scattering problem

e2iδN
l =

Γ(l + 1− iβ)
Γ(l + 1 + iβ)

. (213)

It is well known that the problem of non-relativistic Coulomb scattering can be solved exactly
in parabolic coordinates. Hence the “Newtonian” phase shift series may be summed using the
Coulomb result to

fN (θ) ≡ 1
2ip

∑
l=0

Γ(l + 1− iβ)
Γ(l + 1 + iβ)

(2l + 1)Pl(cos θ) =
β

2p
Γ(1− iβ)
Γ(1 + iβ)

[sin(θ/2)]−2+2iβ . (214)

It is more difficult to sum the series directly, because it is poorly convergent. This is related to
the fact that an infinite number of Legendre polynomials are required to describe the divergence
at θ = 0.

The Newtonian scattering cross section is simply |fN |2, that is,

dσ

dΩ
=

β2

4p2 sin4 (θ/2)
=

M2(1 + v2)2

4v4 sin4 (θ/2)
. (215)

It is interesting to note that this is exactly the same cross section as was derived via perturbation
theory at first order (181). This result is equivalent to the Rutherford scattering cross section for
electromagnetic scattering. Note that the cross section diverges as θ−4 in the forward direction.
It is the 1/r term in the potential that is responsible for this divergence, and an infinite number
of partial waves contribute to it.

5.2.2 Partial wave amplitudes

To calculate the scattering amplitude we need to determine the phase shifts. These may be
computed using direct numerical integration of the radial wave equation. Figure 13 shows
numerical phase shifts as a function of angular momentum, l, for the scalar wave at Mω = 2.
The real part of e2iδl is compared with the real part of e2iδ

(N)
l from the “comparison Newtonian

problem” of section 5.2.1. The Newtonian phase is matched to the numerical phase at l = 80.
Note that waves of low angular momentum are partially absorbed by the black hole, as |e2iδl | < 1.

Due to finite computing power, the partial wave series must be truncated at a certain value
of l = lmax. With modern computing power, it is easy to compute phase shifts up to l ∼ 80.
This may seem impressive but the partial wave series are poorly convergent. An infinite number
of partial waves are required to correctly describe the divergence in the amplitude at θ = 0.

For the scalar wave, it is possible to get round the convergence problem by using results
from the “comparison Newtonian problem”. The amplitude can be split into two parts, f =
fdiff + fNewt. The amplitude fdiff is computed from the difference between the numerical phase
shifts and the Newtonian phase shifts. The Newtonian amplitude fNewt is known analytically.
The overall phase of the scattered wave is fixed so that the numerical and Newtonian phase
shifts match at l = lmax. Any remaining difference above lmax is neglected. This method works
very well for the scalar wave, but fails for waves of higher spin. Here we outline an alternative
method.
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Given a Legendre polynomial series

f(θ) =
∑
l=0

a
(0)
l Pl(cos θ) (216)

that is divergent at θ = 0, one may define the mth reduced series,

(1− cos θ)mf(θ) =
∑
l=0

a
(m)
l Pl(cos θ). (217)

The reduced series is obviously less divergent at θ = 0, so one may hope that the reduced series
converges more quickly. Using the properties of the Legendre polynomials, it is straightforward
to show that the new coefficients a(i+1)

l are related to the old coefficients a(i)
l by the iterative

formula
a

(i+1)
l = a

(i)
l − l + 1

2l + 3
a

(i)
l+1 −

l

2l − 1
a

(i)
l−1. (218)

I have found this to be an excellent method for summing the series numerically, and two or three
iterations are sufficient.

[Exercise : Use the Legendre polynomial recurrence relation

lPl(x) = x(2l − 1)Pl−1 − (l +m− 1)Pl−2 (219)

to prove result (218).]
Figures 14 and 15 show numerically-determined scattering cross sections for the massless

scalar and spinor waves. There are oscillations at intermediate angles suggestive of diffractive
effects. The magnitude of the oscillations, and their angular frequency, increases with black hole
mass. The massless scalar wave has a peak on-axis in the backward direction (called a glory),
whereas the massless spinor wave tends to zero here.

The origin of the oscillations in the cross section can be understood from geometric argu-
ments. Consider a pair of geodesics scattered by a Schw. hole, passing around the hole in
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Figure 14: Scalar scattering cross sections. Shows the massless scalar wave cross section for various
couplings ME ≡ GMω/c3. Note the logarithmic scale on the y-axis.
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opposite senses (i.e. clockwise and counter-clockwise). If one geodesic is scattered through an
angle θ and the other is scattered through an angle 2π−θ they will emerge in the same direction.
There will be a path difference between the two rays which depends on the angle of scattering.
If the path difference is an integer number of wavelengths then constructive interference arises;
if it is a half-integer multiple of λ then destructive interference results.

Black hole wave scattering also produces a diffraction effect familiar from optical phenomena:
a glory. A glory is a bright spot or halo that appears on-axis in the backward direction from
the scatterer.

Ford and Wheeler [7] derived a semi-classical approximation of the glory scattering cross
section for scalar (s = 0) waves. The approximation may be extended to arbitrary spins [20] using
path integral methods. For massless waves, the backward glory cross section is approximated
by

dσ

dΩ

∣∣∣∣
glory

≈ 2πEbg2

∣∣∣∣dbdθ
∣∣∣∣
θ=π

J2s
2(Ebg sin θ), (220)

where s is the spin of the particle, J2s is a Bessel function, and bg is the impact parameter at
which backward scattering occurs, θ = π.

To find bg one must integrate the orbit equation (??). The exact solutions u(φ) describing
the scattering trajectories may be expressed in terms of elliptic functions. By using asymptotic
results for elliptic functions it is possible to show that for geodesics passing close to the unstable
orbit,

b− bc ≈ 216× bc ×

(√
3− 1√
3 + 1

)2

e−πe−θ ≈ 3.48Me−θ (221)

where bc = 3
√

3M .
Hence we have bg ≈ 5.3465M , and |db/dσ| = 0.1504M , so

M−2 dσ

dΩ

∣∣∣∣
glory

≈ 2πEM × 4.30× J2s
2(5.3465EM sin θ). (222)

For the scalar wave, the intensity has a peak in the backwards direction, whereas for the spinor
wave the intensity is zero on-axis.

5.2.3 Absorption

In addition to scattering the incident wave, the black hole will absorb a proportion of the
incident flux. The absorption cross section (207) is found a sum over the transmission factors
(206). Transmission factors for the first few modes are shown in Fig. 16. They are plotted as a
function of the dimensionless coupling Mω ≡ GMω/c3.

Figure 17 shows the absorption cross section as a function of coupling Mω. The oscillatory
pattern is due to the contribution of successive modes. At low couplings (i.e. λ � rs), the
cross section tends to σa = 16πM2. At high couplings (λ � rs) the cross sections tends to the
geometric optics value of σa = π(bc)2 = 27πM2.
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It turns out that the absorption cross section in the long-wavelength limit depends on the
spin of the wave under consideration.

lim
Mω→0

σa =


16πM2 s = 0
2πM2 s = 1/2
0 s = 1 or 2

(223)

In other words, electromagnetic and gravitational waves with very long wavelengths (λ � rS)
are not absorbed. In the short-wavelength (λ � rs) semi-classical limit, the spin is not so
significant, and all cross sections tend to the geometric optics value. This behaviour is clearly
shown in Fig. 18.

6 Acoustic Black Holes

This section borrows heavily from the following references:

• Unruh WG. Experimental black hole evaporation? Phys. Rev. Lett. 46 (1981) 1351.

• Visser M. Acoustic black holes: horizons, ergospheres and Hawking radiation. Class.
Quantum Grav. 15 (1998) 1767.

• Barceló C, Liberati S, and Visser M. Analogue gravity. Living Rev. Relativity 8 (2005)
12. [www.livingreviews.org/lrr-2005-12].

• Cardoso V. Acoustic black holes. [arXiv:physics/0503042].
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Why is gravity so much weaker than the other Standard Model forces? One explanation of
this the hierarchy problem is provided by models with “large” extra dimensions. Such models
posit the existence of additional spatial dimensions which are “large” in comparison to the
Planck length (R � lp ∼ 1.6 × 10−35 m), but which have thus far escaped detection. In these
models, gravity leaks into a higher-dimensional bulk whereas the Standard Model forces are
constrained to a (3+1) dimensional brane. Naturally, this raises the possibility that quantum
gravity effects may be felt at much lower energies than EPl. One interesting speculation is that
high-energy collisions may create ‘mini’ black holes, which would decay in a tiny fraction of a
second through the Hawking process. Recently, speculations about the possibility of transient
black holes at the LHC have garnered much hyperbolic media attention. [?].

Naturally, the possibility that systems with (some of the) properties of black holes may be
created in the laboratory is exciting. Thankfully, we do not have to invoke higher-dimensional
models, not smash particles together at extreme velocities to create black-hole like systems. In
1981, Unruh [?] formulated the idea of a dumb hole: a region of fluid from which no sound may
escape. A dumb hole (or acoustic hole [?]) is bounded by an apparent horizon (on which the
normal flow velocity is equal to the speed of sound in the fluid) and may be surrounded by
an ergosphere (a region of supersonic fluid flow). In this section, I will introduce two simple
models for acoustic holes: a spherically-symmetric 3D hole called the canonical acoustic hole
and a rotating solution in 2D, called the draining bathtub model. Other authors have proposed a
range of analogue systems, for example in superfluid helium [?], in electromagnetic waveguides
[?], in optic fibres [?, ?] and other systems [?].

Under certain assumptions (inviscity η = 0, barotropy ρ = ρ(P ), irrotationality ∇× v = 0),
it turns out that the Navier-Stokes equations describing small perturbations to potential flow
turn out to be formally identical to the equations for a massless scalar field propagating in a
(3+1) Lorentzian geometry. That is [?],

�ψ ≡ 1√
−g

∂µ

(√
−ggµν∂νψ

)
= 0, (224)

where ψ is a small perturbation to the potential describing the fluid velocity, v = v0−∇ψ. The
effective metric gµν is an algebraic function of the background flow v0, the local density ρ(P ),
and the speed of sound c2 = ∂P/∂ρ. Example metrics are given in the next section.

Acoustic black holes are expected to emit a thermal spectrum of phonons, since Hawking’s
original arguments follow through without essential modification [?]. On the other hand, the
laws of black hole thermodynamics do not follow. It seems that the association of entropy with
horizon area is a special property of the Einstein equations [?]. The Hawking temperature for the
canonical acoustic hole, TH ≈ 1.2×10−9 K m (c/1000ms−1)(c−1dv/dn), is sufficiently small that
direct detection of Hawking radiation has not been achieved. However, as has been pointed out
[?], there are a range of interesting classical wave phenomena which should be more amenable
to experiment.
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6.1 From Navier-Stokes to Klein-Gordon

In this section we show that the equation governing small perturbations to a background fluid
flow is indeed the Klein-Gordon equation on a curved geometry (224).

The starting point is the two fundamental equations of fluid mechanics: (i) the continuity
equation

∂tρ+ ∇ · (ρv) = 0, (225)

and (ii) Euler’s equation

ρ
Dv
Dt

= ρ [∂tv + (v ·∇)v] = f (226)

where here Dv/Dt signifies the convective derivative. Let us assume that the fluid is without
significant viscosity (inviscid) and that the only forces acting are the pressure P and some
arbitrary gradient-derived force fext = −ρ∇Φ (such as gravity).

f = −∇P − ρ∇Φ. (227)

The convective derivative can be rewritten using the vector triple product,

v × (∇× v) =
1
2
∇v2 − (v ·∇)v (228)

Let us now assume that the fluid flow is vorticity free or irrotational ∇ × v = 0 (except for
possibly in some compact region – see later). Then Euler’s equation (ii) can be written

∂tv = v ×−1
ρ
∇P −∇(1

2v
2 + Φ) (229)

In the absence of vorticity, we may introduce a potential ψ so that v = −∇ψ.
The pressure term can also be written as a total derivative if the fluid is barotropic. That

is, if the density is a function of pressure only, ρ = ρ(P ). Then we may define an enthalpy

h(P ) =
∫ P

0

dP ′

ρ(P ′)
⇒ ∇h =

1
ρ
∇P. (230)

Euler’s equation (ii) may then be written as Bernouilli’s equation in the presence of an external
potential Φ, as

−∂tψ + h+
1
2
(∇ψ)2 + Φ = 0. (231)

Now let us consider small fluctuations in the flow, v = v0 − ε∇ψ1, which will lead to
fluctuations in the pressure P = P0 + εP1 + O(ε2) and density ρ = ρ0 + ερ1 + O(ε2). We will
linearize equations (i) and (ii) to find the perturbation equations.

Linearising the continuity equation (225) yields

∂tρ1 + ∇ · (ρ1v0 − ρ0∇ψ1) = 0 (232)

and linearising Bernouilli’s equation (231) yields

−∂tψ1 + P1/ρ0 − v0 ·∇ψ1 = 0 (233)
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Here we have used the barotropic equation to h = h0+εP1/P0. Equation (233) may be rearranged
to

ρ1 =
dρ

dP
P1 =

ρ0

c2
(∂tψ1 + v0 ·∇ψ1) (234)

where
c−2 =

dρ

dP
. (235)

Now, we substitute (234) into (232) to find a wave equation for ψ1,

−∂t

(ρ0

c2
(∂tψ1 + v0 ·∇ψ1)

)
+ ∇ ·

(
ρ0∇ψ1 −

ρ0

c2
v0(∂tψ1 + v0 ·∇ψ1)

)
= 0. (236)

Note that this equation features only ψ1 and the background (zeroth-order) quantities v0, P0, ρ0.
Perturbations in the scalar potential ψ1 determine the (first-order) perturbations in P and ρ;
hence the wave equation completely determines the propagation of acoustic disturbances.

The wave equation can be rewritten in more familiar form,

∂µ(fµν∂νψ1) = 0 (237)

by defining the symmetric 4× 4 matrix

fµν(t,x) =
ρ0

c2

 −1
... −vj

0

· · · · · · · · · · · · · · · · · · ·

−vi
0

... (c2δij − vi
0v

j
0)

 . (238)

This is nearly in Lorentzian form (224), but note that the determinant of the metric is absent.
This can be rectified with the substitution fµν =

√
−g gµν , noting that det(fµν) = det(gµν) = g

and
√
−g =. Therefore the inverse acoustic metric is

gµν(t,x) =
1
ρ0c

 −1
... −vj

0

· · · · · · · · · · · · · · · · · · ·

−vi
0

... (c2δij − vi
0v

j
0)

 . (239)

and the acoustic metric is

gµν(t,x) =
ρ0

c

 −(c2 − v2
0)

... −vj
0

· · · · · · · · · · · · · · · · · · ·

−vi
0

... δij)

 . (240)

Equivalently, the acoustic interval can be expressed as

ds2 =
ρ0

c

[
−c2dt2 + (dxi − vi

0dt)δij(dx
j − vj

0dt)
]
. (241)

This form of the metric is analogous to the (3+1) ADM split used in numerical relativity, with
lapse α and shift βi functions(clarify).

Since the perturbation equation (224) is simply the Klein-Gordon equation on a curved
background, we may employ standard field-theory techniques. We allow the field ψ to take
complex values, and construct the conserved current

Jµ =
1
2i

(ψ∗∂µψ − ψ∂µψ
∗) (242)
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satisfying
∇µ (gµνJν) = 0. (243)

Alternatively, for direct comparison with acoustic experiments we may work directly with the real
part of the field Re(ψ), which corresponds to perturbations in the flow velocity, δv = −∇[Re(ψ)].

The appropriate choice of observable (Jµ or ψ) depends on the point of view adopted. If we
consider acoustic scattering experiments to be a model for black holes irradiated by incoherent
electromagnetic radiation, it makes sense to work with Jµ, which behaves like an intensity. If on
the other hand, we are interested in coherent gravitational radiation impinging on a black hole,
we should consider the field ψ itself. Interferometers such as LIGO will measure a dimensionless
strain h = ∆L/L ∼ 1/r rather than an intensity I ∼ 1/r2 [?]. In the remainder of the paper,
we will take the former approach, and apply standard techniques from quantum mechanics [?].

6.2 Acoustic Holes Example I: Canonical

To make this discussion more concrete, let us consider two examples. In this section we define
metrics for two simple models of acoustic holes.

The first example is the canonical acoustic hole: the simplest spherically-symmetric solution
in three dimensions. Let us consider a spherically-symmetric steady flow of incompressible fluid
in three dimensions, with a source (+) or sink (−) at the origin r = 0. Conservation of fluid
implies a radial velocity vr = ± cr2h/r2, where rh is the radius at which the flow speed exceeds
the speed of sound in the fluid. It corresponds to the horizon radius. Perturbations δv = −∇ψ
to the steady flow are governed by eq. (224) with the effective geometry

ds2 = gµνdx
µdxν = −c2dt2 +

(
dr2 ±

r2h
r2
cdt

)2

+ r2
(
dθ2 + sin2 θdφ2

)
. (244)

We will henceforth choose the (−) sign, so that the system is analogous to a black (rather than
white) hole. To realise this system experimentally, flux must be removed at the origin r = 0 at a
constant rate in a smooth manner, and rapidly enough to create a sizable horizon; a technically
difficult task.

By introducing an alternative time coordinate cdt̄ = cdt ± (r2h/r
2)(1 − r4h/r

4)−1 the metric
may be written in diagonal form,

ds2 = −c2f(r)dt̄2 + f−1(r)dr2 + r2(dθ2 + sin2 θdφ2), (245)

where f(r) = 1 − r4h/r
4. Note that the time parameter t̄ diverges as r → rh. This coordinate

system is analogous to “Schwarzschild coordinates” for the astrophysical black hole. Again, we
see that it is impossible to satisfactorily describe geodesics that cross the horizon with a diagonal
metric.

Exercise

• Find the orbit equation for null geodesics on the metric (245) [That is, the equivalent to
equation (20)].

57



• Derive the weak-field deflection angle

θ ≈ 15π
16

r4h
b4

(246)

• Show that the null orbit radius is rc = 31/4rh and that the critical impact parameter is
bc = 33/4/21/2rh.

6.3 Acoustic Holes Example II. The draining bathtub

A second simple example of an acoustic hole is the so-called draining bathtub model. This is an
idealised model for (2+1)-dimensional flow with a sink and vortex at the origin.

Let us consider a flow of incompressible fluid which is locally irrotational (∇×v). From the
equation of continuity the radial component of the fluid velocity satisfies ρvr ∼ 1/r. To satisfy
the irrotationality condition, vθ ∼ 1/r also. By conservation of angular momentum ρvθ ∼ 1/r,
so ρ is constant. Hence the background pressure P0 and speed of sound c are also constant. The
background fluid flow is

v0 =
Ar̂ +Bθ̂

r
(247)

where A and B are arbitrary constants, and the corresponding potential is

ψ0(r, θ) = A ln(r/a) +Bθ (248)

Note that, in this case ψ0 is not a true potential function because there is discontinuity in the
potential upon passing through 2π radians. This is because, if the fluid is circulating (B 6= 0)
there is vorticity in the core at the origin.

The corresponding line element is therefore

ds2 = −c2dt2 +
(
dr − A

r
dt

)2

+
(
rdθ − B

r
dt

)2

(249)

(where we have chosen units so that the position-independent prefactor is unity).
The event horizon is the surface on which the normal component of the velocity is equal to

the speed of sound. It lies at the radius

rh = A/c (250)

The ergosphere is the region of supersonic flow, and it lies within the radius

rerg = (A2 +B2)1/2/c (251)

The existence of an ergosphere suggests that, in principle, rotational energy can be extracted
from the hole via the superradiance mechanism, in analogy with the Kerr black hole.
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7 Further Topics?

7.1 The Dirac Equation

In this section we show how to formulate the Dirac equation on the Schwarzschild space-time.
We start by reviewing tetrad theory, and show how tetrads are used to construct a covariant
derivative operator for the spin-half field. Next, we consider the Dirac equation in a general
coordinate system, and show how to separate out the angular part to leave two coupled first-order
equations for the radial functions. We conclude with a discussion of the probability current, and
the behaviour of solutions at the horizon and at infinity.

We expect the Dirac equation on a gravitational background to take a similar form to the
Minkowski Dirac Equation (81), that is

iγ̂µD̂µ(xν)ψ = µψ (252)

where D̂ = γ̂µD̂µ(xν) is a 4 × 4 derivative operator that is a function of the coordinates. In
the next section we show how to construct a derivative operator that behaves correctly under
coordinate transformations, and local rotations and boosts.

The precise form of the Dirac equation depends not just on our choice of coordinate system,
but also on a choice of local tetrad field. A ‘tetrad field’ is a basis of vectors that may vary
from point to point in the space-time. Unlike the scalar field, the Dirac field will ‘feel’ rotational
effects (such as frame-dragging) that act through the tetrad field. In other words, we must
set up the equations to allow for a coupling between the spin of the field and the geometry of
space-time.

Ultimately, any physical predictions of the theory must be independent of the choice of
coordinates, and also independent of the choice of tetrad field. Together, we call the coordinate
system and the tetrad the ‘gauge’ degrees of freedom. Our ultimate aim is to extract observables
that are ‘gauge-invariant’. In general, the higher the spin of the field, the greater the number
of degrees of gauge freedom.

7.1.1 Tetrads and the spin-connection

A non-coordinate basis êa and êa may be defined in terms of the coordinate basis dxµ, ∂µ by
introducing a tetrad (or vierbien) field eaµ and its inverse eaµ, so that

êa = eaµdx
µ, êa = ea

µ∂µ. (253)

Here, roman letters (a, b, c, . . .) will be used for the non-coordinate basis, and greek letters
(µ, ν, λ, . . .) for the coordinate basis. The non-coordinate basis may be assumed to be orthonor-
mal, with Lorentzian inner products êa · êb = ηab = diag[1,−1,−1,−1]. Alternatively the basis
vectors may chosen to be null; this is the starting point for the Newman-Penrose formalism.

With an orthonormal basis, the metric is defined by

gµν = eaµe
b
νηab, ηab = ea

µeb
νgµν . (254)
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Tensors can be expressed in terms of non-coordinate components,

X = Xa
bêa ⊗ êb = Xµ

ν∂µ ⊗ dxν , (255)

and the coordinate and non-coordinate components are related by

Xa
b = eaµeb

νXµ
ν . (256)

The spin-connection ωµ
a
b is defined by

∇µX
a = ∂µX

a + ωµ
a
bX

b , (257)

where ∇µ denotes the covariant derivative with respect to coordinate xµ. In other words, the
spin-connection plays the role of the affine connection when we take a covariant derivative of a
quantity resolved on to the orthonormal basis.

The spin-connection is related to the affine connection Γµ
νλ by

ωµ
a
b = eaνeb

λΓν
µλ − eb

λ∂µe
a
λ . (258)

where
Γµσλ = 1

2g
µν (∂λgνσ + ∂σgλν − ∂νgσλ) (259)

The spin-connection can also be determined without first calculating the affine connection,
by use of the Ricci rotation coefficients γabc. These are related to the spin-connection by

γabc = −ecµωµab (260)

and can be calculated through the pre-rotation coefficients λabc:

γabc =
1
2

(λabc + λcab − λbca) , (261)

where
λabc = (ebµ,ν − ebν,µ) eaµec

ν . (262)

The pre-rotation coefficients λabc are antisymmetric under the interchange of first and last in-
dices, and the Ricci rotation coefficients γabc are antisymmetric under the interchange of the
first pair of indices. For more details on this approach, see for example Chandrasekhar’s book
[3].

7.1.2 Derivative operator for the Dirac field

The tensor equations of GR are covariant: they do not change in form under general coordi-
nate transformations (GCTs). Equations written in terms of a tetrad basis must transform
correctly under GCTs, and they must also transform correctly under Local Lorentz Transfor-
mations (LLTs) of the non-coordinate frame. In this section, we briefly demonstrate how these
requirements constrain the derivative operator for the Dirac wavefunction. For more detail on
this approach, see for example Nakahara [15]. These ideas are succinctly expressed in the Gauge
Theory of Gravity (GTG) formulated by Lasenby, Doran and Gull [10].
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Under an infinitessimal Local Lorentz Transformation Λa
b = δa

b +εab, the Dirac wavefunction
ψ transforms as

ψ → ψ′ = ρ(Λ)ψ where ρ(Λ) = 1 +
i

2
εabΣ̂ab (263)

and
Σ̂ab =

i

4

[
γ̂a, γ̂b

]
. (264)

The derivative of the wavefunction must transform as a vector under a LLT. That is,

D̂aψ → D̂′
aψ

′ = ρ(Λ)Λa
bD̂bψ. (265)

To be covariant under a GCT the derivative must include the tetrad field. To transform correctly
under LLTs, D̂a must also include an extra term, so that

D̂a = ea
µ (∂µ + Ωµ) . (266)

Under LLTs, the transformation property (265) requires that

Ωµ → Ω′
µ = ρΩµρ

−1 − (∂µρ)ρ−1. (267)

It turns out that the spin-connection ωµab provides the required transformation properties (see
Nakahara [15]) and that

Ωµ =
i

2
ωµabΣ̂ab. (268)

The Dirac equation on a general background can then be written as

iγ̂aea
µ

(
∂µ +

i

2
ωµbcΣ̂bc

)
ψ = µψ. (269)

The Ricci rotation coefficients γabc, and thus the spin-connection, are easily calculated with the
aid of a symbolic algebra package, such as GRTensor [14] and Maple.

7.1.3 The Dirac equation on a Schwarzschild background

In this section we formulate the Dirac equation on the Schwarzschild background, following the
approach of Lasenby et al. [11]. We start with the most general possible form that satisfies the
constraints of spherical symmetry, and use this form to guarantee that various expressions are
gauge invariant.

Let {γ0, γ1, γ2, γ3} denote the standard gamma matrices in the Dirac–Pauli representation,
defined in equation (83). Next, introduce polar coordinates {r, θ, φ}. From these we may define
the unit polar matrices by

γr = sinθ(cosφγ1 + sinφγ2) + cosθ γ3 ,

γθ = cosθ(cosφγ1 + sinφγ2)− sinθ γ3 ,

γφ = − sinφγ1 + cosφγ2. (270)
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In terms of these we define the four matrices representing the non-coordinate basis,

gt = a1γ0 − a2γr, gθ = −1
r
γθ,

gr = −b1γr + b2γ0, gφ = − 1
r sinθ

γφ, (271)

where (a1, a2, b1, b2) are scalar functions of r satisfying

a1b1 − a2b2 = 1,

(b1)2 − (b2)2 = 1− 2M/r. (272)

The reciprocal set of matrices are therefore

gt = b1γ0 − b2γr gθ = rγθ

gr = a1γr − a2γ0 gφ = r sinθγφ. (273)

These matrices satisfy

{gµ, gν} = 2gµνI

{gµ, gν} = 2gµνI

{gµ, gν} = 2δµ
ν I (274)

where µ, ν run over the set (t, r, θ, φ), I is the identity matrix, and {gµ, gν} = gµgν + gνgµ. The
line element defined by this metric is

gµνdx
µdxν =

(
1− 2M/r

)
dt2 + 2

(
a1b2 − a2b1

)
dt dr −

(
(a1)2 − (a2)2

)
dr2 − r2dΩ2. (275)

This line element is the most general form one can adopt for the Schwarzschild solution. There
is only one degree of freedom in equation (275), since the terms are related by

(1− 2M/r)
(
(a1)2 − (a2)2

)
+ (a1b2 − a2b1)2 = 1. (276)

As discussed for the KG equation in section 3.1.3, this degree of freedom corresponds to the fact
that the time coordinate is only defined up to an arbitrary radially-dependent term. As before,
let us examine the consequences of a transformation of the time coordinate,

t→ t+ α(r). (277)

The new line element will be independent of the new time coordinate. Rather than think in
terms of changing the time coordinate, it is simpler for our purposes to always label the time
coordinate as t and instead redefine a1 and a2. These then transform as

a1 7→ ã1 = a1 − b2α
′

a2 7→ ã2 = a2 − b1α
′, (278)

with b1 and b2 unchanged. Throughout, dashes denote derivatives with respect to r. It is
straightforward to confirm that the new set (ã1, ã2, b1, b2) still satisfy the constraints (272).

62



The four variables a1, a2, b1 and b2 are subject to two constraint equations, so must contain
two arbitrary degrees of freedom. The first arises from the freedom in the time coordinate as
described in equation (278). The second lies in the freedom to perform a radially-dependent
boost (a LLT), which transforms the variables according to(

a1 b1

a2 b2

)
7→

(
coshβ sinhβ
sinhβ coshβ

)(
a1 b1

a2 b2

)
, (279)

where β is an arbitrary, non-singular function of r. This boost does not alter the line element
of equation (275). Outside the horizon we have |b1| > |b2|, and in the asymptotically flat region
b1 can be brought to +1 by a suitable boost. It follows that we must have

b1 > 0 ∀r ≥ 2M. (280)

At the horizon we therefore have b1 positive, and b2 = ±b1. For black holes (as opposed to white
holes) the negative sign is the correct one, as this choice guarantees that particles fall across the
horizon in a finite coordinate time. This sign is also uniquely picked out by models in which the
black hole is formed by a collapse process. We can therefore write

b2 = −b1 at r = 2M. (281)

Combining this with the identity a1b1 − a2b2 = 1 we find that, at the horizon, we must have

a1b2 − a2b1 = −1 at r = 2M. (282)

The diagonal form of the Schwarzschild metric sets a1b2 − a2b1 = 0, so does not satisfy this
criterion. But for this case the time coordinate t is only defined outside the horizon, and the
horizon itself is not dealt with correctly.

We now have a general parameterisation of the Schwarzschild solution in an arbitrary gauge,
which we can substitute into our expression for the Dirac equation (269). The components of
the spin connection may be found through the Ricci rotation coefficients. These turn out to give

gµ i

2
ωµ

abΣab = 1
2

(
b′2 +

2b2
r

)
γ0 − 1

2

(
b′1 +

2(b1 − 1)
r

)
γr (283)

which may be substituted into (269).
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