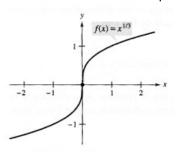
Funciones con Valores Escalares: Geometría, Límites y Continuidad

Alexander Cardona Universidad de los Andes

Enero de 2018

Representación gráfica de una función con valores reales

Una función $f: \mathbb{R} \to \mathbb{R}$ se representa como una curva en un plano:

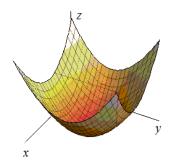


La curva es el subconjunto del plano que se escribe como

$$C = \{(x, y) \in \mathbb{R}^2 \mid y = f(x) \text{ para } x \in \mathbb{R}\}.$$

Representación gráfica de una función con valores reales

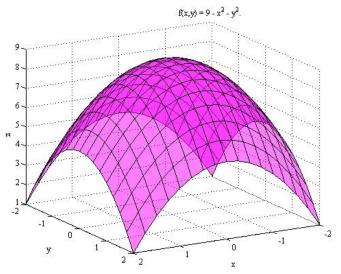
En forma análoga, una función $f: \mathbb{R}^2 \to \mathbb{R}$ se representa como una superficie en el espacio tridimensional:



La superficie es el subconjunto del espacio \mathbb{R}^3 que se escribe como:

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y) \text{ para } (x, y) \in \mathbb{R}^2\}.$$

Una superficie puede verse como una familia infinita de curvas:



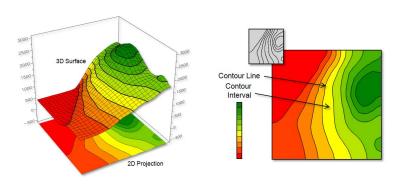
Identificar tales curvas es a menudo crucial para identificar la superficie.

Conjuntos de Nivel

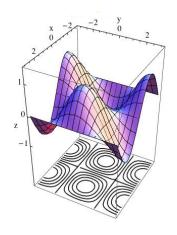
El comportamiento de una función $f: \mathbb{R}^n \to \mathbb{R}$ puede entenderse a través de sus conjuntos de nivel:

$$S_k = \{\vec{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid f(x_1, x_2, \dots, x_n) = k\}.$$

En el caso de una función $f: \mathbb{R}^2 \to \mathbb{R}$ estos conjuntos de nivel definen curvas en el plano:



Un ejemplo en dos dimensiones:

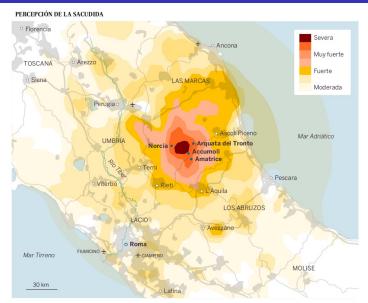


La figura a la izquierda ilustra las curvas de nivel de la función

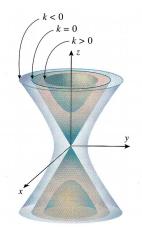
$$f(x,y) = \sin x \cos y,$$

es decir las curvas que corresponden a las ecuaciones $\sin x \cos y = k$ para k constante entre -1 y 1.

Un ejemplo de la vida real:



Un ejemplo en tres dimensiones:



En el caso de una función

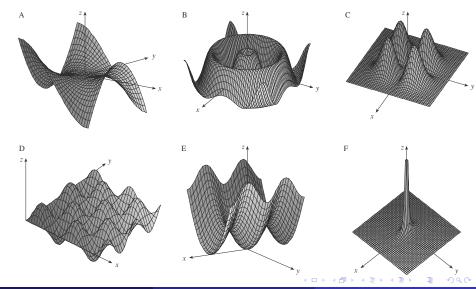
$$f: \mathbb{R}^3 \to \mathbb{R}$$

los conjuntos de nivel definen superficies en el espacio. Por ejemplo, la figura a la izquierda ilustra las superficies de nivel de la función

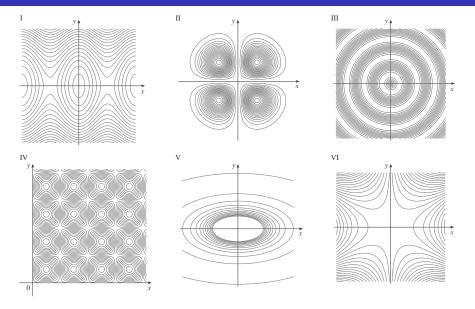
$$f(x, y, z) = x^2 + y^2 - z^2,$$

i.e. conjuntos solución de ecuaciones de la forma $x^2 + y^2 - z^2 = k$ para k constante, estas superficies son hiperboloides de uno o dos mantos, dependiendo del signo de k.

Un ejercicio: Observe las siguientes superficies



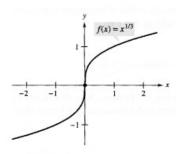
... Encuentre sus respectivas curvas de nivel



Continuidad

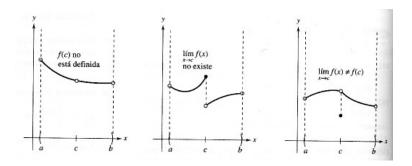
Una función f(x) es llamada continua en un punto $p \in \mathbb{R}$ si

$$\lim_{x\to p} f(x) = f(p).$$

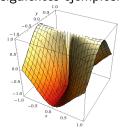


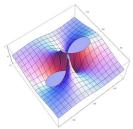
La figura a la izquierda ilustra una función continua en todo punto. La siguiente figura ilustra diferentes tipos de discontinuidad.

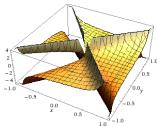
Discontinuidades



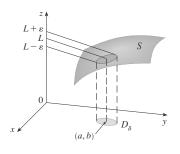
En dimensiones mayores las discontinuidades pueden como en los siguientes ejemplos:







Límites



Si z = f(x, y) es una función, decimos que

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

si, para cualquier $\epsilon>0$ existe un $\delta>0$ tal que

$$|f(x,y)-L|<\epsilon$$

siempre que

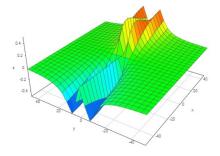
$$\sqrt{(x-a)^2+(y-b)^2}<\delta.$$

Cuando un límite existe, es independiente del camino que se usa al calcularlo.

Por ejemplo, si $z = f(x, y) = \frac{xy^2}{x^2 + y^4}$ el límite

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^4}$$

no existe.



Una función f(x,y) es llamada continua en un punto $(x_o,y_o)\in\mathbb{R}^2$ si

$$\lim_{(x,y)\to(x_o,y_o)}f(x,y)=f(x_o,y_o).$$

Una función f(x,y) es llamada continua en un punto $(x_o,y_o)\in\mathbb{R}^2$ si

$$\lim_{(x,y)\to(x_o,y_o)}f(x,y)=f(x_o,y_o).$$

Las reglas usuales del cálculo de límites en una dimensión se aplican idénticamente para límites en dimensiones superiores:

Si un límite existe debe ser único.

Una función f(x,y) es llamada continua en un punto $(x_o,y_o)\in\mathbb{R}^2$ si

$$\lim_{(x,y)\to(x_o,y_o)}f(x,y)=f(x_o,y_o).$$

Las reglas usuales del cálculo de límites en una dimensión se aplican idénticamente para límites en dimensiones superiores:

- Si un límite existe debe ser único.
- El límite de una suma, siempre que exista, es la suma de los límites correspondientes.

Una función f(x,y) es llamada continua en un punto $(x_o,y_o)\in\mathbb{R}^2$ si

$$\lim_{(x,y)\to(x_o,y_o)}f(x,y)=f(x_o,y_o).$$

Las reglas usuales del cálculo de límites en una dimensión se aplican idénticamente para límites en dimensiones superiores:

- Si un límite existe debe ser único.
- El límite de una suma, siempre que exista, es la suma de los límites correspondientes.
- El límite de un producto, siempre que exista, es el producto de los límites correspondientes.

Una función f(x,y) es llamada continua en un punto $(x_o,y_o)\in\mathbb{R}^2$ si

$$\lim_{(x,y)\to(x_o,y_o)}f(x,y)=f(x_o,y_o).$$

Las reglas usuales del cálculo de límites en una dimensión se aplican idénticamente para límites en dimensiones superiores:

- Si un límite existe debe ser único.
- El límite de una suma, siempre que exista, es la suma de los límites correspondientes.
- El límite de un producto, siempre que exista, es el producto de los límites correspondientes.
- **③** En general, en cualquier dimensión, si $\vec{x} = (x_1, x_2, ..., x_n)$ y $f(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x}), ..., f_n(\vec{x}))$, para $f_i : \mathbb{R}^n \to \mathbb{R}$, $\lim_{\vec{x} \to \vec{x}_o} f(\vec{x}) = \vec{b}$ si y solo si $\lim_{\vec{x} \to \vec{x}_o} f_i(\vec{x}) = b_i$.