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Abstract

This thesis is devoted to the study of the relation between (weighted) trace anomalies
and:

e anomalies in Quantum Field Theory —illustrated by Chern-Simons models— on
one hand,

e duality in antisymmetric field theories with a discussion of the factorization
of the geometry of determinant line bundles associated to families of elliptic
complexes, on the other hand.

It is shown that the anomaly coming from a phase ambiguity for (-regularized de-
terminants, modelling partition functions in Chern-Simons theory, can be seen as a
tracial anomaly. These arise from the fact that weighted traces fail to commute with
exterior differentiation. Since they can be expressed in terms of Wodzicki residues,
it follows that they have a local feature.

Following Schwarz’s Ansatz for partition functions in antisymmetric field theories,
duality can be interpreted as a factorization of the analytic torsion, which can be
seen as a metric on the determinant line associated to a de Rham acyclic complex.
We extend this to a “factorization” of the geometry of the determinant line bun-
dle associated to a family of elliptic complexes, showing how the curvature of the
Bismut-Freed connection decomposes as a sum of two forms which, as a consequence
of the locality of trace anomalies, carry the same locality feature as the Bismut-Freed
curvature.

The thesis also presents a Fresnel integral approach to path integrals underlying for-
mal computations used by physicist to establish duality between partition functions
in antisymmetric field theories.



Résumé

Cette theése est consacrée a I’étude des relations entre des anomalies traciales et:

e des anomalies en théorie des champs quantiques —illustrés par le cas de modeles
de Chern-Simons— d’une part,

e la dualité en théorie des champs antisymétriques, avec I’étude de la factorisation
de la géométrie des fibrés déterminants associés & des familles de complexes
elliptiques, d’autre part.

On montre que 'anomalie provenant d’une ambiguité de phase pour les déterminants
(-regularisés, qui décrivent des fonctions de partition de théories de Chern-Simons,
peut étre interprétée comme une anomalie traciale. Ceci s’explique par le fait que
les traces régularisées ne commutent pas avec la différentiation extérieure. Pouvant
s’exprimer en termes de résidus de Wodzicki, ces anomalies traciales héritent d’une
propriété de localité.

En appliquant I’Ansatz de Schwarz pour des fonctions de partition en théorie des
champs antisymétriques, la dualité peut s’interpréter comme factorisation de la tor-
sion analytique, qui peut étre vue comme métrique sur I’espace déterminant associé
a un complexe de de Rham acyclique. On étend ceci a une “factorisation” de la
géométrie du fibré déterminant associé a une famille de complexes elliptiques en
montrant que la courbure de la connexion de Bismut-Freed se décompose en une
somme de deux formes qui, en consequence de la localité des anomalies traciales,
sont elles-mémes porteuses de cette propriété de localité.

Cette these présente de plus une approche utilisant I'outil des intégrales de Fresnel
pour donner un sens aux intégrales de chemin qui sous-tendent les calculs formels
utilisés par les physiciens pour établir une dualité entre des fonctions de partition de
théorie des champs antisymétriques.



Remerciements. Je voudrais tout d’abord remercier ma directrice de
these, Sylvie Paycha, pour son enthousiasme, sa disponibilité, sa génrosité,
sa confiance et son exemple qui m’ont tant aidé pendant 1’élaboration de ce
travail. Je remercie aussi vivement Saad Baaj, Daniel Bennequin et Sheung
Tsun Tsou de m’avoir fait I’honneur de faire partie du jury.

Je remercie ’ensemble du département de mathématiques de I'Université
Blaise Pascal pour leur accueil, en particulier Jean-Yves Le Dimet et les mem-
bres du groupe de travail “géométrie, topologie et analyse fonctionelle” qui
m’ont tant appris pendant ces dernieres années.

Merci beaucoup & Annick Montori pour son aide dans mes nombreuses quétes
bibliographiques, ainsi qu’a Noélle Rouganne, Danielle Courageot, Marie-
Paule Bressoulaly, Genevieve Bernard pour leur constante collaboration au
quotidien. Je tiens également & exprimer mes remerciements a Pascale Lefort
et Damien Ferney pour leur inestimable aide informatique, et a mes collegues
Florent Nicaise, Lionel Richard, Jean-Pierre Magnot, Catherine Ducourtioux,
Marusia Rebolledo et Jérome Dubois pour leur amitié et leur soutien. Finale-
ment une pensée pour Salim, et bien sir un grand merci a Emmanuelle.

Acknowledgements. Thanks to Sergio Albeverio and Jouko Mickelsson

for the careful reading they made of this work and their many suggestions to
improve it. I am very grateful to Steven Rosenberg and Tilmann Wurzbacher
for reading parts of the work and for their valuable comments.
Thanks to ECOS-Nord, the Institut Henri Poincar (Paris), the International
Center for Theoretical Physics (Trieste), the Mathematisches Forschungsin-
stitut (Oberwolfach) and the Institut fiir Angewandte Mathematik (Bonn)
for their financial support at various stages of this work and/or for giving me
the opportunity to present parts of it. I am also thankful to the organizers
and participants of the Villa de Leyva summer schools (1999, 2001) for the
stimulating atmosphere and the opportunity I was given there to discuss and
present parts of my work.

Agradecimientos. Muchas gracias a mis colegas y amigos Andrés Caicedo,
Fabian Torres, Andrés Reyes y Jesds Zapata por su apoyo y ayuda antes y
durante la realizacién de este trabajo, asi como a Ana Cristina Gonzalez por el
impulso inicial, a Mario Valderrama por la asistencia permanente, y a Alvaro
Gongzalez, Juan Camilo Vargas, Henry Forero y Carlos Vargas por haberme
acompanado a lo lejos todo este tiempo. También recuerdo y agradezco espe-
cialmente a mis profesores de antano, en particular a Carlos Luque, Rolando
Roldan, Sergio Adarve, Sergio Fajardo y Xavier Caicedo.

Por tdltimo, pero sobretodo, mil gracias a toda mi familia por su carino y su
apoyo, en particular a mis padres y hermanos.



Contents

I

1

11

Mathematical Tools and Physical Prerequisites

Mathematical Tools
1.1 Weighted Traces of Pseudo-differential Operators, Regularized
Determinants and Tracial Anomalies . . . . . . ... ... ...
1.1.1 The Wodzicki Residue, Weighted Traces and Tracial
Anomalies . . . . . . . ...
1.1.2  Weighted Traces and (-Determinants of invertible ad-
missible operators . . . ... ..o Lo Lo
1.1.3 Variations of determinants of invertible self-adjoint op-
erators . . . . ... oL oL
1.2 Elliptic Complexes and Analytic Torsion . . . . . .. ... ...
1.2.1 Determinant and Torsion of a Chain Complex . . . . . .
1.2.2 Elliptic Complexes . . . . . . . .. . .. ... ......
1.2.3  Analytic Torsion of a Riemannian Manifold . . . . . . .
1.3 Dirac Operators and Index Theorems . . . .. ... ... ...
1.3.1 Dirac operators on Clifford bundles . . . . . . . ... ..
1.3.2 Index Theorems . ... ... ... ... .........

Physical Prerequisites

2.1 Fresnel Integrals . . . . .. ... ... ... .. ... .. ...,
2.1.1 Infinite Dimensional Gaussian Integrals . . . ... . ..
2.1.2  Fresnel Integrals . . . ... ... ... ... .. .....

2.2 The Partition Function of a Degenerate Gaussian Action Func-
tional . . . ...

2.3 Anomalies . . . . . . . ...

Tracial Anomalies and Geometry

Tracial Anomalies and Index Theorems

3.1 Logarithmic Variations of Determinant and Weighted Trace
Anomalies . . . . . . ...

3.2 The Signature Operator on an odd Dimensional Manifold



4 Geometry of Determinant Line Bundles and Tracial Anom-

alies 66
4.1 Determinant Line Bundles in Finite Dimensions . . . . . . . . . 66
4.2 Regularized Traces, Regularized Determinants and Quillen’s
construction . . . . . .. ..o 68
4.2.1 Some Geometry of Families of Fibrations . ... .. .. 68
4.2.2 Tracial Anomalies and the Locality of the Curvature of
Determinant Line Bundles . . . . . . . ... ... . ... 71
4.2.3 The Determinant Line Bundle Associated to a Family
of Dirac Operators . . . . . . . . .. ... ... ..... 78

IITI Elliptic Complexes, Gauge Anomalies and Duality 81

5 Phase Anomalies in Chern-Simons Models 82
5.1 The Chern-Simons Model and Analytic Torsion . . . . . . . .. 82
5.2 Tracial Anomalies, Phase Anomalies and the Chern-Simons Term 85

6 Splitting of the Geometry of Determinants of Families of

Complexes and Duality 89
6.1 Duality and Fresnel Integrals . . . . .. .. .. .. ... .... 91
6.1.1 Heuristics of Duality . . . . .. .. ... ... ... ... 91
6.1.2 Duality through Fresnel Integrals . . . . . . . .. .. .. 93
6.2 Analytic Torsion on Riemannian Manifolds and Duality . . . . 95
6.3 Splitting of the Geometry of Determinant Line Bundles in Fi-
nite Dimensions . . . . . . .. ..o Lo Lo oo 97
6.3.1 Milnor’s Duality and Splitting of the Torsion . . . . . . 98
6.3.2 Factorization of the Torsion of a Chain Complex of Vec-
tor Bundles . . . . . .. ... oo 101
6.4 Splitting of the Geometry of Determinant Line Bundles in In-
finite Dimensions . . . . . . . .. ..o Lo L 104
A Pseudodifferential Operators 110
B The Partition Function in Quantum Field Theory 117



Introduction and Statement of Results

In order to describe physical systems at very short distances, Quantum Field
theorists use “path integrals”, which are objects without a rigorous mathemat-
ical definition due mainly to the infinite-dimensional character of the spaces
of fields (vector valued functions, or sections of fibrations on a Riemannian or
Mikowskian space-time manifold M) on which these objects must be defined.
These “integrals” model probability amplitudes, and formal manipulations
—which rely on classical facts and properties of finite-dimensional integrals
(Gaussian integrals, change of variable formulae, Fourier transforms,...)— lead
to numerical data which are in extraordinary accordance with experiments.
This phenomenological success has encouraged mathematical physicists to
search for a mathematical theory of path integrals, but at present this goal
has not yet been reached.

The general form of a path integral is

2(F) = [D F(6) exp {~S(6)} D],

Zo

where @ is the space of configurations of the fields ¢, F/(¢) a functional on
®, [D¢] a formal Lebesgue-type measure on ® and S : & — R (or €) the
classical action of the theory under consideration. Here Z, denotes the par-
tition function of the theory, given by the integral at the right hand side
of this equation when F'(¢) = 1, a normalization factor. & is typically an
infinite-dimensional manifold, so that the formal Lebesgue-type measure [D¢]
is generally ill-defined.

Roughly speaking, there are mainly two approaches to path integrals. The
first one tries to describe path integrals as properly defined integrals, through
the study of measure theory on functional spaces. This approach, known as
the “constructive approach”, uses in an essential way the fact that Gaussian
measures (unlike Lebesgue measures) on infinite-dimensional spaces do exist.
Another approach, known as the “non-perturbative approach”, uses heuristic
manipulations of path integrals and their “semiclassical” limits. Important
examples of this second kind of approach are the so-called Topological Quan-
tum Field Theories, born from pioneering work of A. Schwarz and E. Witten
in the late 70’s and the 80’s. The search for a “regularized” definition of the
partition function for some particular models led them to set up links with
topological invariants of combinatorial type, such as the analytic torsion de-
fined by D. Ray and I.M. Singer in the early 70’s.

The basic idea is to interpret a partition function as a “regularized” determi-



nant, imitating the Gaussian integral identity
/ e 25 gy = (det TS)*%,
1%

valid for Lebesgue-type integrals on a finite-dimensional euclidean vector space
V', where S(v) = (Tsv,v) is a symmetric and positive quadratic form defined
on V, and dv denotes the “Lebesgue measure”.

(-Regularization of Determinants and Traces

In the case of action functionals defined by elliptic differential operators with
positive order acting on infinite-dimensional spaces of sections, the ordinary
determinant on the right hand side of the previous equality is replaced by the
reqularized determinant, defined by Ray and Singer through (-function regu-
larization [RS71]. Combining this with the Faddeev-Popov procedure led A.
Schwarz to a definition for the partition function associated with a degenerate
action functional. The latter mimicks Milnor’s definition of the Reidemeister
torsion of a complex of vector spaces, and therefore yields a relation with the
Ray-Singer torsion, a secondary topological invariant used to classify topolog-
ical spaces with the same homotopy type. Using this approach in his study
of three-dimensional Chern-Simons theories, E. Witten showed that in this
context the corresponding partition function must contain (a phase given by)
another secondary invariant: the n-invariant defined by Atiyah, Patodi and
Singer in order to state an index theorem for manifolds with boundary, which
corresponds to a (-function regularization of the “signature” of an operator.

Regularization techniques used to define determinants of elliptic positive-order
differential operators are also used to regularize other ill-defined extensions
of finite dimensional concepts, such as traces (see Section 1.1). The classical
identity det(AB) = det(A)det(B), that holds for finite-dimensional determi-
nants, breaks down for (-regularized determinants, giving rise to the so-called
“multiplicative anomalies” for {-determinants. This is closely related to the
fact that the fundamental tracial identity tr(AB) = tr(BA) which holds for
ordinary matrices breaks down for (-regularized traces. As a matter of fact,
it is well-known that the only trace on the algebra CI(E) of classical pseudo-
differential operators acting on sections of the vector bundle F over a closed
connected manifold M of dimension > 1 is the Wodzicki residue which, for
A € CI(E), is defined by

res(A) = ¢ Res,—g (tr(4Q %)),

where @ is any invertible admissible pseudo-differential operator and g denotes
the order of (). An important feature of the Wodzicki residue of a classical



pseudo-differential operator A is its locality, i.e. it can be described as an
integral of local density on M, namely

1

res(A) = G

/ res; (A)dpps ()
M

where n is the dimension of M, ujys the volume measure on M. A drawback
of the Wodzicki residue is that it vanishes on finite-rank operators and hence
it is not an extension of the usual trace. We therefore consider instead other
linear functionals that extend the finite-dimensional trace.

Weighted Trace Anomalies

Weighted traces of classical pseudo-differential operators are linear functionals
on the algebra of such operators, which were investigated in [P][CDMP] and
implicitly used, both in theoretical physics and mathematics, under the name
of (-regularized traces. By weighted trace of a classical admissible pseudo-
differential operator A we mean the complex number given by

tr@(A) := f.p.|.—otr(AQ?),

where f.p. refers to the finite part, the weight @ being an admissible invertible
elliptic operator of positive order. It follows from the definition that weighted
traces extend usual finite-dimensional traces, i.e. tr?(A) = tr(A), whenever
A is a finite rank operator. Taking the finite part and leaving out the diver-
gences leads to discrepancies, which we refer to as weighted trace anomalies
or tracial anomalies [CDMP][CDP]. These give rise to Wodzicki residues, and
hence have some locality features (see Section 1.1.1).

One of the purposes of this work is to relate logarithmic variations of reg-
ularized determinants of certain families of admissible operators with tracial
anomalies, thus giving an a priori explanation for the locality of these vari-
ations. For families of self-adjoint elliptic operators, such as Dirac operators
in odd dimensions, (-determinant functions can be defined using the Atiyah-
Patodi-Singer eta invariant [APSI] (see Section 3.1). For other types of elliptic
operators, such as chiral Dirac operators, one works instead with determinant
sections, namely sections of determinant line bundles.

Let us first turn to the self-adjoint case. Consider a family {As},ep,1) of
elliptic self-adjoint positive order operators parametrized by [0,1]. Then, the
n-invariant n(A;) = na,(0) varies smoothly in z modulo integers, i.e. except
for jumps coming from eigenvalues of A, “crossing zero”, and we prove in
Section 3.1 the following



Theorem 7 [CDP] Let Ay and Ay be two elliptic invertible self-adjoint oper-
ators and {Az},c01] @ smooth family of elliptic self-adjoint operators inter-
polating them, then

1
n(Ar) — n(Ao) = 20({4,}) + /0 ™ (sign(A,)) de,

where ®({Az}) denotes the spectral flow of the family and tr = [%,tr‘%] is
the variation of the weighted trace tr=.

The local term given by the Wodzicki residue coming from the weighted
trace anomaly fol £ (sign(A;)) dt corresponds to the local term in the Atiyah-
Patodi-Singer index theorem. Furthermore, since the {-determinant of a (non
necessarily positive) self-adjoint elliptic operator is given by

det< A= detc ‘A|€g(77“‘(0)_C\AI(0))7

this leads to

Corollary 1 Let {Az},cp0,1) be a smooth family of self-adjoint elliptic op-
erators with vanishing spectral flow and such that Ay and Ay are invertible.
Then, if det¢ |Az| and | 4,(0) are constant,

detg Aq ™

1
c Az, .

= - [ " Ay))d
og dete Ao 2/0 r 7 (sign(Ay)) da

1
d
— —ﬂ/ res [|AI\_1A4 dz.
2a Jo dx

Thus, under the above assumptions, the logarithmic variation of the (-determinant
is expressed as a weighted trace anomaly and is therefore local. Although these
assumptions seem strong, they are fulfilled in the case of families of signature
operators (Section 3.2).

Families of Signature Operators. Let M be a Riemannian manifold of odd
dimension n = 2k + 1, and W a Hermitian vector bundle over M with flat
connection. Given a smooth family of connections {V}",t € [0,1]} on the
exterior bundle W, there is an associated family of operators {xd;,t € [0, 1]},
where d; is the exterior differential on M coupled with the connection V}"
and * the Hodge star operator. Let *dj; denote their restriction to k-forms.
If n = 2k + 1, for k odd, *dj, is self-adjoint, elliptic and det¢ *d}, , is well-
defined, where xdj ; = *dkvt‘ker(*dkyt)L (see Section 3.2.2). Since the éigna‘cure
of the manifold M x [0, 1] is zero, then (using the results of [APSI, APSIII])

10



the index of the operator A = *d} , ® % is zero and hence the spectral flow of
the family {*d],} vanishes. Theorem 7 shows that

1 1!
n(edl 1) — i+l g) = / % (sign(xd),)) dt,
0

so that the difference of the eta invariants is given by a tracial anomaly, and
hence is local. Furthermore, in the case k = 1 (n = 3), if the family {«d} ,}
is build from a family {g}c[o,1] of Riemannian metrics, the modulus of the
(-determinant det, | xdy | is independent of ¢ on the grounds of the topological
invariance of the analytic torsion. Therefore, in view of the above Corollary,

dete (xdf ;) T . .
08 m ) {U(*dm) —n(xdf o)}

1
0 1 d
= —2/0 res [[*d’{t\ 1£*d’1’7t dt,

being an integrated tracial anomaly, and hence a Wodzicki residue, is the inte-
gral of a local term on the base manifold. This example plays a fundamental
role in phase anomaly computations in Chern-Simons theory, as we explain
in the sequel.

Weighted Trace Anomalies and Phase Anomalies in Chern-Simons theory

Using the results previously stated, in Chapter 5 we relate phase anomalies
in odd dimensions —coming from logarithmic variations of (-determinants of
Dirac operators— to weighted trace anomalies, thus giving an apriori expla-
nation for the locality we expect from these anomalies. In QFT an anomaly
occurs when a transformation in the fields, leaving invariant the action func-
tional, changes the corresponding path integral. In particular, when the clas-
sical action is quadratic, S(¢) = (T'¢, ¢), transformations in the path integral
can be read off the transformations of the regularized determinant associated
to the corresponding partition function Z = (det¢ T)fé. The “anomaly” is
defined to be the logarithmic variation of such partition function and hence
of the corresponding regularized determinants. Thus, the difference of loga-
rithms of (-determinants (log dets 77 — log det¢ Tp) in Corollary 1, seen as an
anomaly of partition functions, can be seen as an “integrated tracial anomaly”
( fol tr'* (sign(7Ty)) dx), under the assumptions of the Corollary, in which case
the anomaly term comes from the phase of the determinant.

The variation of the partition function of the Chern-Simons model in dimen-
sion 3 —under a change of metric— gives rise to an “anomaly”, which can be

11



written as an integrated tracial anomaly. Indeed, the Chern-Simons theory
in dimension n = 2k + 1 (see [ST9][W89]) is modelled by the metric invariant
action functional S,?S (wi) = (wg, *dpwy), which is degenerate on the space
QOF of W-valued k-forms. Applying Schwarz’s Ansatz to SkCS yields the cor-
responding partition function

k—1 2
Z5 (xd))) = H (detg(A;’))(fl)k_Hl dete (xdj) 2,
1=0

N

which is well defined since in n = 2k 4+ 1 dimensions, for & odd, the operator
«d) is self-adjoint and hence has a well-defined (-determinant. We show in
Section 5.1 that

(=pFtt

ZE8 () = (T(M)) —F eVt

where n(*d}) denotes the eta invariant of the operator xdj and T'(M) the
analytic torsion of the manifold M. Note that the classical action functional
S,?S is metric independent, but its associated partition function has a phase
which depends on the metric on M, i.e. there is a phase anomaly. Specializing
to the case kK = 1, n = 3 the logarithmic variation of the partition function
under such transformation reads

Z75 (xdf ;) m ! d
log ———~ >/ T AP w d" | dt
08 ZICS(*dlll,O) 9 /0 res |:| * 1,t| dt * Ay ¢ )

Zlcs(*dlll,l)
Zlcs(*d’l”o)

anomaly. This leads (in Section 5.2) to the following

so that the anomaly log corresponds to an integrated weighted trace

Theorem 12 The Chern-Simons phase anomaly between two Riemannian
metrics go and gy is an integrated weighted trace anomaly, i.e.

phase anomaly = integrated weighted trace anomaly
1 !
Zk(*d,]é 1) e 1 < xd!
log ————~ = —i— tr %kt (sign(xdy ,)) dt.
0og Zk(*d,]éyo) 24 /0 r (Slgn( k,t))

Using the APS index theorem [APSI], this anomaly is given by the Chern-
Simons term i35 [, tr(ANdA+2ANANA).

12



Factorization of the Geometry of Determinant Bundles and Topologi-
cal Field Theory

In [S79] and [ST84] the relation between the partition function of degener-
ate action functionals and the analytic torsion of the underlying space-time
manifold M is considered in the cases of Chern-Simons theories and antisym-
metric field theories. In [ST84] (see also [CO1]) the Ansatz of Schwarz is used
to study duality in antisymmetric quantum field theories, i.e. the equivalence
between two a priori different antisymmetric field theories. We riview these
facts in Section 6.2.

Let us consider two antisymmetric field theories defined by the action func-
tionals

S(wr—1) = (dg—1wk—1, dp—1Wk—_1)

and
S(wn—k+1) = (dn—k+1Wn—k+1, An—k+1Wn—k+1),

where dj, denotes the restriction to W-valued k-forms of the exterior differen-
tial coupled to the connection V'. Hodge star duality implies the equivalence
between the action functionals S(wy,—p41) and S*(wry1) = (dfwit1, dfwr1)-
The partition functions Z (M) for S(wi—1) and Z; (M) for S*(wi41), are de-
fined using Schwarz Ansatz’s here again. Z,(M) and Z; (M) combine to give
back the analytic torsion.

Proposition 17 [S79] For any k € {0,1,...,n},

k

Z(M) - ZE (M)~ = T(M) V",

Thus, the analytic torsion of the underlying space-time manifold M factor-
izes as a product of the partition functions associated to degenerate “dual”
actions. In the even dimensional case this yields Z,(M) = Z} (M), for all k,
and hence an identification of the two dual partition functions.

Proposition 17 can also be interpretated as follows. T(M) is the Quillen
metric ||, on the determinant line associated to the acyclic elliptic de Rham
complex

d dj— d dp—
0— 002 ... — Q1 ok Sk, R+l L0 T2 O 0,

Zy(M) the Quillen metric | - [;) on the determinant line associated to the
elliptic resolvent

d a5 dy
0 Q0 %, . B e o VA !

)

13



Z};(M) the Quillen metric |- [(;), on the determinant line associated to “dual”
elliptic resolvent
d; dyed

dr_ _
0— Qr "2 ... k2 A /k/—l 2780,

Proposition 17 can be read as a factorization of the metric |- | in terms of
the metrics of the two dual resolvents. Our next goal is to extend this factor-
ization to families of acyclic elliptic complexes, thus working on determinant
line bundles.

Geometry of Determinant Line Bundles. Let M ™ X be a smooth lo-
cally trivial fibration of manifolds, where X is a smooth manifold of finite
dimension and the fibre M, = 7/ () a closed Riemannian manifold. To
a Hermitian vector bundle ¥ — IM we associate the infinite-rank vector
bundle £ — X whose fibre above x € X is the space of smooth sections
& =T (M,, E;), where E, — M, denotes the restriction to M, of E. Follow-
ing [Q86] and [BF88], in section 4.2 we consider the determinant line bundle
DetT associated to a family {7, },ex of positive-order elliptic differential op-
erators T, : &, — &,. In particular, we recall the construction — by (-function
regularization— of the Quillen metric on DetT and, assuming the existence of
a connection on &£, that of the Bismut-Freed connection VB | which is unitary
for the Quillen metric. In Theorem 10, along the lines of [PR], we prove that
the curvature QBF of the Bismut-Freed connection is local, i.e. it can be writ-
ten as the integral of a local density on the fibre M/X. This is a consequence
of the fact that the Bismut-Freed connection is built point-wise from a family
of unitary connections on the Hermitian bundles {E;},cx.

Consider an acyclic elliptic complex (IE,, T, ) of positive-order differential op-
erators acting on sections of Hermitian vector bundles over the manifold M,
Ty Tp_
0—>E0&> cee = Ep_q k—}EkiEk_H—wu iy E, — 0.
For 0 < k < n, let & — X be the infinite-rank vector bundle associated
to Ey. The acyclic elliptic complex (IE,,T,) gives rise to an acyclic elliptic
complex (&, T,) of positive-order differential elliptic bundle maps on infinite-
rank vector bundles over X, namely
T Tk T Tp_
08 2%+ = &g = & 5 &1 — - = & — 0,
where each map T}, corresponds to a family {7}, ; } e x of elliptic positive-order
differential operators, parametrized by the manifold X. Quillen’s construction
associates to each positive-order differential elliptic bundle map Ty, a determi-
nant line bundle DetTy — X with smooth Quillen metric and, assuming the

existence of a unitary connection on &, a Bismut-Freed connection unitary
for the Quillen metric. From the determinant line bundles DetT},, for each &,

14



we define in Section 6.4 the determinant line bundle of the acyclic complex
(&, Ts) by

n

L1 =R)(DetT;) D"
k=0

Let | - |o; denote, for 0 < k < n, the Quillen metric on the line bundle

_1\k+1
DetTy — X. Then, the natural metric on L, ||, = ®@p_g| - |\22,<13) , is

the analytic torsion. Let us denote by Vgg , for each 0 < k < n, the Bismut-
Freed connection on DetT}, whose curvature kag is local. This implies that
the curvature of the connection VXT, induced by the unitary connections
{Vf]f; }o<k<n, also has a local curvature, denoted by Q*T. Let (5.(k), T,) and

(5.(k)*, T3) be the acyclic elliptic complexes given by

(ka)) 0—& To, o k1 ey Ti-1&-1 — 0,
and
. T T
(5.(16)) 0<—ngk+1‘_k£k+1<_"' <_1 5n<—0,

respectively. In Section 6.4 we show that the splitting of the geometry of the
determinant line bundle associated to the complex (&,,7T,) holds as in the
finite-dimensional case (considered in Section 6.3), and the locality property
of the curvature is conserved.

Theorem 13 Let L1 — X be the determinant line bundle associated to the
family {Ee v, Tex}zcx of acyclic elliptic complexes. Then,

1. The Quillen metric factorizes according to (6.19), in terms of the metrics

(k)

of the determinant line bundles associated to the complexes E ' and

o, as
_1)k+l
o =1 lwl- 15
where | - |y and | |, denote the curvature of the determinant line

bundles associated to the complezes S.(k) and Efk)*, respectively.

2. The curvature splits
Q£T = Q) @ (—1)“19&)7 (1)

where Q) and Q?k) denote the curvature of the determinant line bundles

associated to the complezes 8.(k and , respectively.

3. This splitting respects the locality properties of the curvature given by
Theorem 10.
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The text is organized in three parts; although the heart of the thesis is con-
tained in the second and third part, Part I is essential to set up the framework
used in Parts IT and III.

In Part I we introduce the mathematical tools used throughout the text
(Chapter 1) and some physical prerequisites (Chapter 2) aimed to give a self-
contained exposition of the physical applications.

In Chapter 1, Section 1.1, we define weighted traces, and we show how weighted
trace anomalies give rise to Wodzicki residues of pseudo-differential operators,
and hence are “local”. We also consider variations of (-regularized determi-
nants of invertible admissible pseudo-differential operators and eta invariants.
Elliptic complexes and the analytic torsion are considered in Section 1.2. The
first part of this section is devoted to the study of the three types of algebraic
torsions of a chain complex of finite-dimensional vector spaces (namely, the
Reidemeister torsion, the Torsion and the Analytic Torsion), their properties
and the relation between them. The analytic torsion for general elliptic com-
plexes is defined in Section 1.2.3, where its topological invariance is proven, as
well as the main features of the Ray-Singer analytic torsion of a Riemannian
manifold. Finally, in Section 1.3, we recall the definition of Dirac operators
on Clifford bundles and two index theorems for Dirac operators we use in the
sequel.

In Chapter 2, Section 2.1, we introduce the Fresnel integral approach to path
integrals along the lines of [AIH76], in which a mathematically rigorous defini-
tion can be given of heuristic infinite-dimensional integrals arising in quantum
physics. This approach to path integrals is used later (in Section 6.1) to give
a measure theoretical interpretation of duality in antisymmetric tensor fields.
In Section 2.2 we describe Schwarz’s Ansatz to define the partition function
of a degenerate action functional. This heuristic treatment of partition func-
tions underlies the geometric approach we follow in the rest of the work. The
Ansatz used to define anomalies in quantum fields is discussed in Section 2.3.

In Part II weighted trace anomalies are used as a geometrical tool. In
Chapter 3, Section 3.1, we prove Theorem 7 on logarithmic variations of
regularized determinants and tracial anomalies, and discuss in Section 3.2
its application to the case of families of signature operators —relevant in the
analysis of phase anomalies in Chern-Simons models.

Chapter 4 is devoted to the study of the geometry of determinant line bundles
through (-regularization tools. In Section 4.1 the geometry of the determinant
line bundle in finite dimensions is reviewed, as background material for the ex-
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tension in Section 4.2 to the infinite-dimensional case. We carry out there the
construction of the determinant line bundle associated to a family of elliptic
positive-order differential operators and, following Quillen [Q86] and Bismut
and Freed [BF88], we study its geometry. Finally, by means of weighted trace
anomalies, we prove Theorem 10 [PR] concerning the locality of the curvature
of the Bismut-Freed connection on the determinant line bundle.

In Part III we describe the physically relevant applications of the math-

ematical theory developed in the two previous parts, namely the study of
phase anomalies in Chern-Simons theories (Chapter 5), on one hand, and the
splitting of the geometry of determinant line bundles associated to families of
acyclic complexes (Chapter 6), on the other hand. Chern-Simons models, the
relation between the partition function —defined through Schwarz’s Ansatz—
and the analytic torsion are considered in Section 5.1, and Theorem 12 is
proven in Section 5.2.
In the last chapter, after a brief introduction to the heuristic manipulations
involved in path integral interpretations of duality, we give in Section 6.1 a
measure theoretical interpretation of this fact in terms of Fresnel integrals.
In Section 6.2 we state Proposition 17 and interpret it as a splitting in the
metric of a determinant line. Section 6.3 is devoted to the study of the split-
ting of determinant line bundles associated to complexes of finite-rank vector
bundles, and the situation in infinite dimensions is considered in Section 6.4,
where we prove Theorem 13.

Appendices A and B cover some basic background on pseudo-differential
operators and the path integral approach in quantum physics, respectively,
frequently used in the text.

17



Part 1

Mathematical Tools and
Physical Prerequisites
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Chapter 1

Mathematical Tools

In this chapter we define weighted traces, weighted trace anomalies and we
show how they give rise to Wodzicki residues of pseudo-differential opera-
tors, and hence are given by local terms. We also consider variations of
(-regularized determinants and eta invariants of invertible admissible pseudo-
differential operators, Dirac operators on Clifford Bundles and the Analytic
Torsion of an elliptic complex of bundles over a Riemannian manifold.

1.1 Weighted Traces of Pseudo-differential Opera-
tors, Regularized Determinants and Tracial Anom-
alies

1.1.1 The Wodzicki Residue, Weighted Traces and Tracial
Anomalies

Let E be a vector bundle above a smooth n-dimensional closed Riemannian
manifold M, and let CI(E) denote the algebra of classical pseudo-differential
operators acting on smooth sections of E. Let as before Ell(E), Ell*(E) and
Ell% ;-o(E) denote the set of elliptic, invertible elliptic and invertible elliptic
with positive order operators acting on sections of E, respectively, and Ad(FE)
the subset of EII}, ;- ,(F) containing the invertible admissible elliptic classical
pseudo-differential operators which have positive order.

For Q € Ad(F) and A € CI(E), the map z +— tr(AQ~*) is meromorphic
with a simple pole at zero [KV]. Given Q € Ad(FE), the Wodzicki residue of
A € CI(F) is defined by

res(A) = q Res.— (tr(AQ™7)), (1.1)
where ¢ denotes the order of (). The definition of res(A) is independent of the

choice of Q. Among the many remarkable properties of the Wodzicki residue
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(for a review see [K89]), let us point out some which will be relevant in this
work:

1. Traciality. If M is connected, the Wodzicki residue is (up to a constant)
the only trace on the algebra CI(E), i.e.

res([A, B]) =0, (1.2)
for any A, B € CI(E).

2. Locality. The Wodzicki residue of a classical pseudo-differential operator
A can be described as an integral of local expressions involving the
symbol of the operator [W69]

res

trg (0-n (2, §)) d€dpuns (), (1.3)
j¢l=1

where n is the dimension of M, ujys the volume measure on M, tr, the
trace on the fibre above z and o_,, the homogeneous component of order
—n of the symbol of A.

3. Triviality in finite dimensions. If A is of finite rank, or if its order is
less than —n, then
res(A) = 0. (1.4)

Even though property (1.2) is mathematically satisfactory, property (1.4) is
not what we want for our purposes. We should keep in mind —as recalled in
the introduction— that the heuristic objects considered by physicists in the
quantum description of field theories are built extending and imitating finite-
dimensional objects and relations between them; namely measures, integrals,
change of variable formulae, etc. But the Wodzicki residue “hides” the finite-
dimensional objects; it is not an extension of the finite-dimensional trace, and
extensions to the algebra CI(E) of the ordinary trace on trace class operators
do not exist. Instead, we shall define an object —called weighted trace— that,
even if is no longer tracial on CI(E), extends the usual trace on finite-rank
operators (matrices), allowing us to regard our work as an extension of the
finite-dimensional theory in the same line of thought as [P]. Nevertheless,
Wodzicki residues and their properties, in particular traciality and locality,
will play a very important role in the study of weighted traces.

In what follows by a weight we shall mean an element of Ad(FE), often de-
noted by ), and by ¢ we shall denote its order. We shall very often take
complex powers QQ~* of operators Q € Ad(FE), which involves a choice of
spectral cut for the operator (). However, in order to simplify notations, we
shall drop the explicit mention of the spectral cut. In the case when @ is a
positive operator, any ray in € different from the positive real half line serves
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as a spectral cut ray of the leading symbol.

Recall that the finite part at z = p of a meromorphic function ¢ with a
simple pole at z = p is given by

o=ty (410 - ST,

For A € CI(F) and Q € Ad(E) the map z — tr(AQ™?) is a meromorphic
function with a simple pole at z = 0 and we can set

Definition 1 [CDMP] Let Q) be a weight and A in CI(E). We call Q-weighted

trace of A the expression
tr9(A) = £.p.[ .0 (tr(AQ™7)). (1.5)
This definition can be extended to CI(E)-valued forms on M by
tr(w) = tr%(a ® A) = atr?(A), (1.6)

where a denotes a form on M and the CI(E)-valued form w on M is given by
w=a® A. It follows from the definition that weighted traces extend usual
finite-dimensional traces, i.e.

t19(A) = tr(A) (1.7)

whenever A is a finite rank operator.

Weighted Trace Anomalies

Unlike Wodzicki residues, weighted traces are not tracial and depend on the
weight Q. As a matter of fact both tr?([A4, B]) and tr?!(A) — tr92(A), for
Q,Q1,Q2 € Ad(E) and A, B € CI(E), can be expressed in terms of Wodzicki
residues (see Proposition 1 below). This is the price we pay for having left out
divergences when taking the finite part of otherwise diverging expressions, and
we call these obstructions weighted trace anomalies. Weighted trace anomalies
play an important role in Chapters 3, 4 and 5, where we shall use them in the
study of the geometry of the determinant line bundle, and we shall show how
they relate to phase anomalies in Chern-Simons theories.

Recall that although the logarithm of a classical pseudo-differential opera-
tor is not classical, the bracket [log @, A] and the difference IO%% - IO%% of
two such logarithms lie in CI(E) (see Appendix A).

Definition 2 1. For A,B € CI(E) and Q € Ad(FE), we define the cobound-
ary anomaly by
otr?(A, B) = tr?([A, B)), (1.8)
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where OtrQ denotes the coboundary of the linear functional tr® on the
Lie algebra CI(M, E) in the Hochschild cohomology'.

2. We define the weight anomaly, which expresses how weighted traces de-
pend on the choice of the weight, by

ASL(A) = tr91(4) — 1192 (A), (1.9)
where Q1,Q2 € Ad(E).

The following proposition shows how these tracial anomalies can be written
in terms of Wodzicki residues.

Proposition 1 1. Given A,B € CI(E), Q € Ad(E) with positive order ¢,
we have [CDMP][MN]

otr?(A, B) = —2res (Allog @, B]) . (1.10)

2. For Q1,Q2 € Ad(E) with positive orders q1,q2 we have [CDMP]

ASL(A) = —res <A <1°ng _ loe QQ)) . (1.11)
q1 q2

Proof. 1t follows from the properties of the canonical trace established by
Kontsevich and Vishik (see [KV], Proposition 3.4) applied to the holomorphic
families %[Q*Z,A]B and A (%(Ql_z - QQ_Z)), which yields (1.10) and (1.11),
respectively. O

We can extend these results to variations of traces of one parameter families of
operators, which gives rise to another tracial anomaly. Let {Qy}zex C Ad(E)
be a smooth family of weights, with constant positive order ¢ and common
spectral cut, parametrized by a smooth manifold X. We define for a fixed
operator A € CI(E)

(dtr?)(A) = d(tr?(A)). (1.12)

Proposition 2 Let {Q,}rex be a smooth family in Ad(E) with constant or-
der q, parametrized by a smooth manifold X. Then, for a fixed A € CI(E) we
have [CDMP] [P]

dtr@(A) = —;res (Adlog Q). (1.13)

Proof. It follows from the fundamental property of the canonical trace

of Kontsevich and Vishik [KV] applied to the family 4 (%(Q;Z - Q;j(x))),

where v;(x) is a 1-parameter curve starting at x, t > 0 generated by a tangent

!This coboundary extends the Radul cocycle in the physics literature
[R][M][MN][CDMP].
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vector h. O

Thus, if we consider a smooth family {A,},cx in CI(E), it follows that
dtr?(A) = (dtr?)(A) + tr¥ (dA)
1
= —Zres(AdlogQ) + tr% (dA). (1.14)
q

This extends to Cl(E)-valued k-forms on M by

0 (_1)k+1 0
dtr(w) = Tres (wdlog Q) + tr (dw) . (1.15)
An important observation in view of what follows is that all these weighted
trace anomalies being Wodzicki residues of some operator, can be expressed in
terms of integrals on the underlying manifold M of local expressions involving
the symbols of that operator.

Remarks.

1. For C € CI(E) invertible, A € CI(F) and @ any weight [CDMP]
trC Q0 (A) = trQ(CACT). (1.16)

We shall refer to this property as the covariance property of weighted
traces.

2. When @ has positive leading symbol, we can recover the (-regularized
trace (1.5) using a heat-kernel expansion. Let us first recall some results
about the Mellin transform of a smooth C*° function on the positive real
line (here we follow [BGV92]). Let f € C*°(IR") decaying exponentially
at infinity, then the Mellin Transform of f is the function defined by

M[f](2) = F(lz) /OOO FOE dt. (1.17)
Integration by parts shows that
Mt f'](2) = =z M[f](2). (1.18)

If f has an asymptotic expansion for small ¢ of the form

fO) ~ 3 futd +clogt, (1.19)

k>—n

then its Mellin transform M[f] is a meromorphic function with poles

contained in the set % — %N, and with a Laurent series around zero of

the form —cs™! + (fo — yc) + O(s), where 7 is the Euler constant.
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For A € CI(E) let f(t) = tr(Ae™*?), then f(t) behaves as in (1.19),
where ¢ = ord@ and (1.17) yields

£.p.)2=0 (tr(AQ 7)) = £.p.[.=oM[f](2) = £.p.[i=0 (tr(Ae™?)) — v -res(A)
where 7 is the Euler constant. Thus, if res(A4) = 0,
tr?(A) = f.p.|s—0 (tr(Ae_tQ)) . (1.20)

When @ is a differential operator and A = I we have, as t — 0,
k
tr(e7@) ~ Yo amu agte (seee.g. [G95]), so tr?(I) = f.p.|i=o (tr(e~*¥)).
- q

3. The notion of weighted trace can be extended to the case when @Q is
a non injective self-adjoint elliptic with positive order. Being elliptic,
such an operator has a finite dimensional kernel and the orthogonal
projection Pg onto this kernel is a pseudodifferential operator of finite
rank. Since ) is an elliptic operator so is the operator Q = Q + Py,
for the ellipticity is a condition on the leading symbol which remains
unchanged when adding Pg. Moreover, @ being self-adjoint the range
of @ is given by R(Q) = (ker Q*)J‘ = (ker Q)L so that Q is onto. @ being
injective and onto is invertible and being self-adjoint, then Q € Ad(E)
(it has the same order as ). We set

tr2(A) = £.p.Jco (t2(A(Q) 7)) . (1.21)

1.1.2 Weighted Traces and (-Determinants of invertible ad-
missible operators

Given A, @ € Ad(FE) with common spectral cut, the map z +— tr ((log A)Q %)
is meromorphic on the complex plane with a simple pole at the origin [KV].
In order to define determinants in infinite dimensions we now extend weighted
traces to logarithms of pseudo-differential operators.

Definition 3 Given A,Q € Ad(E) we set
tr?(log A) := f.p.|.—o (tr(log AQ™7)).

As before, @ is referred to as the weight and tr%(log A) as the Q-weighted
trace of log A. We shall not make explicit mention in the notation of the
determination of the logarithm underlying this definition. Extending (1.11)
to logarithms we set Ag; (log A) = tr? (log A) — tr%2 (log A).

Theorem 1 [OI], (see also [D]) For Q1,Q2, A € Ad(E) with positive orders
q1,q2 and a respectively,

Ag;(logA) = res (<logA - qglog Q1> (
1

a <log Q2 logQ > 2
— —Tes — .
2 q2 a1
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Let us recall here the definition and some basic properties of (-determinants
of admissible operators. Let A € Ad(FE), then the spectrum of A is discrete
and it is entirely contained in the real line, {\;}rez C IR. The (-function of
A is defined as the Mellin transform of its heat kernel or, which is equivalent,
the trace of the operator A%, i.e.

) = Ml (e )(e) = g [Tt ()
= wAT)= 5 (1.22)

AE€specA

which is an analytic function for z € € with ®(z) >> 0, and extends by
analytical continuation to a meromorphic function on €, regular at z = 0, as
can seen from the previous remarks about the Mellin transform.

Definition 4 [RS71] The (-determinant of A, denoted by det: A, is the com-
plex number given by

detc A = exp {—¢4(0)} = exp tr(log A). (1.23)
Remarks.

1. Given Q € Ad(E) and C € CI(E) invertible, then log CAC~! = log A
and from (1.16) it follows that

trCQC (C'log AC™Y) = tr9(log A).

Thus,
deto(CAC™) = det¢(A), (1.24)

so the (-determinant is invariant under inner automorphisms of CI(E).

2. Note that the operator A is used as a weight to define det¢ A. This is
a source of anomaly. In particular, (-determinants are not multiplica-
tive. In fact the multiplicative anomaly [KV], defined by the expression

det(AB)
Fe(A B) = g () der By

terms of Wodzicki residues, namely (see [Wo] for the case [A4, B] = 0,
[D] for the general case)

which generally differs from one, is given in

2
log F:(A,B) = ires <<logA - i b log(AB)) >

1 b 2
+ Spres ((logB “aa log(AB)> )

+ 18 (log(AB) — log A — log B)
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for any two operators A, B € Ad(E) of order a and b, respectively.
Specializing to B = A*, the formal adjoint of A for the L?-structure
induced by a Riemannian metric on M and a hermitian one on F, in
general we have F(A, A*) # 0 and hence

det¢(A*A) # | dete(A)[2.

However, if A is self-adjoint this multiplicative anomaly vanishes, i.e.
detc(A2) = detc(A*A) = ‘detc(A)P.

3. The (-determinants extends of the usual determinant in finite-dimensional
vector spaces, i.e. if A is a finite-rank operator (a matrix) then

N
detc(A) =[] M (1.25)
=1

where \;, 1 <i < N, are the eigenvalues of A.

Lemma 1 [RS71] Let {A,}rex C Ad(E) be a one parameter smooth family
of admissible operators with constant order and common spectral cut, parame-
trized by a manifold X. Then

dlogdetc A, = tr (A7 1dA,) . (1.26)

Proof. Follows from Theorem 1, using the covariance property and the
commutativity of A, with any power of itself (see [CDP]). O

1.1.3 Variations of determinants of invertible self-adjoint op-
erators

Let A € EII} ,.,(E) be a self-adjoint elliptic (classical) pseudo-differential
operator. If A is not positive, its spectrum contains negative eigenvalues but
its (-function can still be defined by (1.22), taking now A;* to be |\;| 2~ "=
if \x is negative. In [APS73] Atiyah, Patodi and Singer define, for large R(z),

the n-function of A as the trace of the operator A|A|=*71, i.e.

na(z) = Z (signAg )N~ (1.27)
keZ

They showed that this function extends meromorphically to the whole z-plane
and, moreover, that n4(z) is finite at z = 0. Its value at z = 0 measures the
asymmetry of the spectrum of A. Following [APS73] we define the n-invariant
of A by

14(0) = f.p.|.=o tr (signA|A| %) = trl4(sign(A)), (1.28)

where the sign of A is the classical pseudo-differential operator defined by
sign(A) = A|A|~L.
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The following well-known result (see e.g. [Si] [AS95]) shows that the phase of
the (-determinant of a self-adjoint operator can be expressed in terms of its
n-invariant.

Proposition 3 Let A € Ell}, ;. (E) be any self-adjoint elliptic pseudo-differential
operator. Then

detc A = exp il (log A) = detc | 4] - exp{%r(nA(O) G (0)). (1.29)

Proof. Let us give a proof here in the language of weighted traces. Let A
be an elliptic self-adjoint operator and let a be the order of A, then [APSIII]

res(Ua) = 0,

where Uy = sign(A) = A|A|™" denote the sign of A. Using the polar decom-
position A = |A|Ug = Ux|A]| it follows that

log A =log|A| +log Uy

since [|A|,Ua] = 0. Applying the results of Theorem 1, and using the fact
that Uy = exp (5 (Ua — 1)), we get

trd(log A) — trl4(log A) = —%res ((logUa)?)

= aires((UA —1)?).

But U% = I for A self-adjoint, so

2 2
tr (log A) — trl4l (log A) = a%res([ —Ua) = —a%res(UA) =0.

Thus,
det¢(A) = exp tri(log A) = exp trl4l(log A) = det, |A]e™*),

where ¢(A) = —itrl4l log(z)Us = 2 (14(0) — ¢4/(0)) is the “phase” of the

zeta determinant of A. The equality 14(0) = trl4l(U4) yields (1.29).
O

As a consequence of this, using the fact that (j4(0) = 0 when A is a dif-
ferential operator acting on sections of some vector bundle based on an odd-
dimensional closed manifold [S][Si], it follows that

im gplAl

detc(A) = det¢ |A] - e T U = det, |A] - ¢F 14O) (1.30)

whenever n is odd.
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Example 1 [BBW] Consider the operator

d
A =i— +1t 1.31
t de—i- (3)

on C®(SY), where S is identified with R/[0,27] and 0 < t < 1. Then, if
f e C™(SY), Auf(x) = Af(x) if and only if f(x) = exp{—i(\ — t)z} which,
under the given boundary condition, implies that A = n +t where n € Z, or
A= tn+t where n €Zt. Thus, the spectrum of Ay is the set {£n+t}, cz+,

so that |
gAt(Z) = Z (n + t)iz + Z (n _ t)*zefmz

neZt neZt

and

ma(z)= Y (n+t) "= Y (n—t)7

neZt neZt

In terms of the Riemann-Hurwitz zeta function ((z,t) = > 7 ((n+1t)~* these
equations can be written as

Car(2) = C(2,t) — e7™((2, )

and
na,(2) = ¢(z,t) — C(z, —1).

Hence the (-determinant of Ay reads

det¢ A = 1“(15)21“77(—75) exp {’;(1 - 2t)} : (1.32)

where I'(z) denotes the gamma function

() = / et Lt (1.33)
0
and
14, (0) = 1 — 2t (1.34)

This shows that when t = % and the spectrum of A is symmetric, n4,(0) = 0.

Finally, note that
C|At\ (Z) = C(Z’ t) + C(Z’ *t)

S0 C|At\(0) = 0, which is in accordance with our previous result for the (-
determinant of A;.

Remark. The definition of 7(A) extends to non invertible operators in a
similar way as weighted traces do, i.e. replacing A by A = A+ P4, where Py
denotes the projection on ker A (see Remark 2 at the end of Section 1.1.1).
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1.2 Elliptic Complexes and Analytic Torsion

1.2.1 Determinant and Torsion of a Chain Complex

In this section we review the theory of determinants and torsions for chain
complexes of finite-dimensional vector spaces. Three types of algebraic “tor-
sions” arising in the literature are considered (Reidemeister torsion, Torsion
and Analytic torsion) and the relation between them are described.

Determinants in Finite Dimensions. Let E be a finite dimensional com-
plex vector space. The determinant of E is the one dimensional complex
vector space det £ = A" E, where m = dim F. If there exists a Z-grading on
Eie fE=E®FE&---®E,, nec IN, where E}, is a finite dimensional
complex vector space for all k& € {0,1,...,n}, its determinant is defined by
the tensor product

(D

det B = (X)(det Ey) ,
k=0
where we denote by V~! = V* = Hom(V, C) the dual vector space to V,
letting det V = (det V)~! = (det V)* = € if V = 0.

Recall that given a linear map T : E — FE, the determinant of T is the
complex number given by the equality

(detT)(ex A---New)=Tey A+ ANTey,

ie. detT = (Te|e*), where {e1,...,e,} is an oriented basis for E, e* the
dualofe=e; A---Ne,, Te=Te; A---ANTe, and (-|-) denote duality pairing
between det £ and its dual vector space. It is equal to the product of the
eigenvalues of T', independently of the chosen basis. However, if we consider a
linear map between different finite-dimensional complex vector spaces (of the
same dimension)

T:FE—F,

the complex number given by
(detT)(fiN---Nfn)=Tex N--- NTey, (1.35)

where f1, ..., f, is an oriented basis for F', and fiA---Af,, TerA---ATe,, are
elements of the one-dimensional complex vector space det F', is no longer in-
dependent of the chosen basis for E and F'. Thus, in this case the determinant
of T must be regarded as an element of the one-dimensional complex vector
space det E* ® det F. A canonical representation of det T is giving by taking
any x € det E such that Tx # 0, then the element x* ® T'x of det E* ® det F
is independent of the x chosen.
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Algebraic Torsions of a Chain Complex

Consider a chain complex (E,,Ts) of finite-dimensional vector spaces, i.e. a set
of finite-dimensional vector spaces {Ej}r—o,. » (Which we assume equipped
with a Hermitian inner product) and linear maps {7} }x—=0,... n,

0—>E0&>---%Ek_lhEkiEkH—w--n—fiEnHO, (1.36)
such that
Tk e} Tk*l =0. (137)

Associated to a complex (FE,,Te) we shall define three objects, its Reidemeis-
ter Torsion, its Torsion and its Analytic Torsion, which generalize the idea of
determinant of a given linear map.

Reidemeister Torsion. The Reidemeister torsion of a complex was in-
troduced by Reidemeister, Franz and de Rham in the 30’s in order to dis-
tinguish topological spaces with the same homotopy type, and measures -in
some sense- the volume of the complex. (for a historical reference containing
original references see Milnor’s Collected Works [M95]).

Given a complex (F,,T,) consider the vector space IE = @) _, E;. The
standard short exact sequences

0— Zy — Ep % Byt — 0 (1.38)
and
0— By, — Zy, — Hp — 0, (1.39)

where B, = ImT},_1, Z = ker T}, and Hj, is the k*"-cohomology space of
complex, induce canonical isomorphisms det E}, = det Zp ® det By_1 and
det Zp = det By ® det Hi. Combining these isomorphisms gives an isomor-
phism

P :detlE — detH,

between the determinant space of the complex (F,, T, ), defined as the deter-
minant space of IE,

det IE = X)(det E;,) D",
k=0

and the determinant of its cohomology det H = );;_(det H k)(_l)kﬂ. Let e
be an ordered basis for E,, i.e. an ordered basis e}, = {eg, ei, ...ept}, where
ng = dim Ej, for each Ej. Let h be an ordered basis for H,. Let [e] € det IE
and [h] € det IH denote the resulting volume forms.
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Definition 5 [M62] The Reidemeister torsion of the complex (Eo,Ts) is the
non-zero complex number given by

7r(Es, e, h) = (([e])|[h] ™),

where the power —1 stands for dual and (|) denotes duality pairing in det IH.
We also define TR(Fe,€) = Tr(Fe,€,1) if the complex is acyclic, i.e. Hy =0,
Tr(E,, €) = 0 otherwise. Note that we omit in the notation the dependence of
the chain maps (Ts), although the torsion depends on it.

The canonical isomorphism ® can be described as follows [M62] [T01]. Let
e = (ep,e1,e9,...e,) be the given ordered basis of E,, and consider, for each
k, the volume element ve, = e,lC A e% Ao A eZ’“ € det E}, associated to the

basis ey, of Ei. Then [e] = vo! @ ve, ® -+ ® V((ezl)nﬂ € det IE, where the —1

_1\n+1
power denote the dual element, and [h] = V;lol ®Vh - ® vﬁlnl) " is the

corresponding ordered basis h of H,.

By exactness of the short exact sequences (1.38) and (1.39), there is a canon-
ical isomorphism Ej, = By, @& Hy & Br+1. Let us choose, for each k, a subset
br1={bi ..., bk |} of B suchthat T 1bj_y = {Tp_1bL |, . Th1b* |}
is a basis of By = ImTj_1, where [y = dim By. Then, the collection e, =
{Tx—1bk_1,hi, by} is a basis of Ej. Let us denote by T}, the transition matrix
taking the basis e, into the basis € of Ej. Then [T01],

s - o )

k=0

(b,

where ng = 327, X (IE)xH (IE) (mod 2), with xZ(IE) = S_F_, dim E}, (mod
2) and Y (E) = Zzzo dim Hy, (mod 2). The definition is of course indepen-
dent of the basis by, used in the calculations.

In what follows we shall be interested in the acyclic case (so in 7 rather
than 7g). Observe that if He = 0 then ng = 0, and the previous discus-
sion shows that we can compute the Reidemeister torsion 7 in terms of an
alternating product of determinants, as given by the following:

Lemma 2 If H, =0, the Reidemeister torsion of the chain complex (Eq,Ty)
s given by

n—1
- _1\k+1
TR(Fe,€) = H(detTk)( D=
k=0
where Ty, is the isomorphism taking the subcollection by, into the subcollection
{et s, eﬁf_ﬁll of the basis ey 1.
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Indeed, acyclicity implies that, for any 0 < k < n,
0 — By — By, 25 By — 0, (1.40)

is a short exact sequence. The result follows taking [h] = 1 in our previous
discussion.

In the acyclic case a Zs-grading is defined naturally on the vector spaces
appearing in the complex (F,,T,), and the torsion can also be computed
from the determinant of a map induced canonically for such a grading.

Lemma 3 [T01] Any acyclic chain complex (Ee,Te) of finite-dimensional
vector spaces induces a canonical isomorphism

Lf(Ehe) ET - E",
where ET = @, oven Br and E™ = @y o qq Bk, such that
TR(Fe, €) = det Lf(Ehe). (1.41)
(see also [NO1] and references therein).

The Torsion. As for the determinant of a linear map between different
vector spaces, to the Reidemeister torsion (which depends on the chosen basis
e and h involved in the computation) we can associate a canonical element
of the determinant line detIE. Let (E,,T,) be an acyclic complex and let,
for each 0 < k < n — 1, x5 € A*+1E}, be such that Tipx; # 0. Then, since
dim Frq1 = lg + lgy1, Tpxp A Xgq1 € det Ei1 is a non-zero element.

Definition 6 The Torsion of the complex (Fe,Ts) is the canonical element
of det IE given by

7(Ee, To) = x5 ' @(ToxoAx1) @(T1x1 AXg) " @+ @ (Tp_1%p1) D" (1.42)

Here, as before, canonical means independent of the xg,x1,...x,_1 chosen.
The relation between the torsion and the Reidemeister torsion of (E,,T,) is
given by a duality pairing. Indeed, observe that taking an ordered basis e of
E, and the dual of the induced element [e] in detIE, [e] ! = ve, ®vg! ® -+ ®

vé;”" € detIE"!, then
( 7(BoTo) | [e]™")

= <XQ_1 ® (T()Xo A xl) R R (Tn—lxn—l)(il)TH_l

_ —1)"
Voo ® Vel @ -~ @ v, ")

YD D

= (X ' [Veo) o (Toxo Ax1)[ve )y -+ {(Th—1Xn—1 en  )En

where (|)y denotes duality pairing between the vector spaces det V and (det V) ~!

Splitting ve, = v, A Ve

er’

( 7(Be,To) | [e]™h) =

where v, € A Ey and v], € A+ Ey, this gives

(xg (v ) B (Toxo A x1)| (Va, AVED) ™D Ey - {(Tre1%a—1) ™Y (v ) Y™
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Using the fact that 7(E,,T,) is independent of the xy, taking x; = vy _we
find that

e,
and comparing with equation (1.35), which can be written det 7 = (Te | f~1),
we recover the alternating product of determinants appearing in the expression
for 7r(Es, Ts, €) given by Lemma 2. This leads to

(T(Ea, T) | [e] ") = {(Toxo)|(ve,) ™) - {(Tu-1xp—1) 7Y

Proposition 4
TR(EMTOve) = <T(E07T°) ’ [e]71>‘

Note that the advantage of the torsion 7(FE,, Ts) over the Reidemeister torsion
TR(Ee, Te, €) is that the former does not involve the choice of a basis.

Analytic Torsion. Given a complex (E,, T, ), consider the family (77) of
formal adjoints of the family of linear maps (7,). The map 7} : Epq — Ej
is defined by

(Ther, exr1)kr1 = (ers Tg €ry1)ks

where (, ) and (, )11 denote the inner products in Ej, and Ej 1, respectively.

Definition 7 Let (E,o,Ts) be an acyclic chain complex of finite dimensional
vector spaces, and let, for 0 < k <n, Ay : Ey, — E} be the Laplacian, defined
by

A = T];ka + kalT,;k_l.

The Analytic Torsion of the complex (Eo,Ts) is the positive real number given
by [BGS88]

T(Ea,To) = [ (det A)2 Y
k=0

k+1

(1.43)

The relation between the torsion and the analytic torsion of an acyclic chain
complex is given by the following:

Proposition 5 [BGS88| Let (Feo,Ts) be an acyclic complex of vector spaces,
then
T(E,s, Ts) = |7(EW, o), (1.44)

where |-| denotes the norm on det IE induced by the norms on the vector spaces
E,.

Note that, through Proposition 4, Lemma 2 gives us an expression of 7g(E,, T, €)
k+1

as a contraction of 7(E,,T,), an element of detlE = &) _,(det Ep) DT
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with an element of (detIE)~!. In the same way, Lemma 3 can be seen as a
contraction of an element of (det IE+)* ® det IE~, where

detIET = ® det B, , detlE™ = ® det E},
k even kodd

with an element of its dual. In fact, these complex lines (one-dimensional
complex vector spaces) are isomorphic, the isomorphism being given by

ig: é(det Ek)( Dl ( ® det Ek> <® det Ek)

k=0 k even kodd
651®€1®62_1®...®6£L_1)n+1 — (ep®Re®...)" ®e ®e3® ... (1.45)

There is a canonical element in detIE, namely the torsion 7(F,), and the
determinant of the isomorphism D( Boty) = Phmo (Tt 1}) : IE" — IE~ (which
we shall denote simply by DT when no explicit reference to the complex be
necessary) gives us a canonical element in (det IE)+)>k ®det IE~. However, these

canonical elements do not correspond under isomorphism (1.45). As a matter
of fact [BGSS88]

det DT = [ [T det AL | ix (7(E., T0)), (1.46)

k even

/
where Ak = Ak|ImTk,1'

Let (E,,T,) be an acyclic complex of finite dimensional vector spaces. Con-
sider the decomposition Ey = E; & E}/, where E; = Tj_1E;_; and E} =
T} Ey+1, at each level of the complex Let A = A} & A} be the correspond-
ing decomposition of the Laplacians, so that

det A = det A}, det AJ. (1.47)
Proposition 6
n [ e (-1
T (F.,T,) H (det A},) H (det A}) 2
k=1 k=0

Proof. It follows from the definition of the analytic torsion and equation
(1.47). O

1.2.2 Elliptic Complexes

A complex of Hilbert spaces { Ej; }x=0.1,....» and continuous linear maps {7} } =01

sdyeeey TV

(E,T): 0-E 2% ... B, g .. "g o

(1.48)
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is called Fredholm if dim H* < oo for all k = 1,...,n, where H* = Z¥/B* is
the cohomology of the complex (IE, T). This is equivalent to all the Laplacians
of the complex

A = T]:Tk -+ kalT]:fl

being Fredholm operators in their respective spaces Ej. If this is the case,
Hodge’s theorem says that the dimension of the kernel of Ay coincides with
that of H*. The Euler characteristic of the complex is defined as

n

X(E) = (~1)"dim H*, (1.49)
=0

which, in the case in which dim Ej, < 0o, coincides with Y 7 (—1)* dim Ej.

Let us now consider hermitian vector bundles { £ }y—o.1.... » over a manifold M
and, for each k, let Dy : I'(Ey) — I'(Eg11) be classical differential operators
of the same positive order [. Then, if the sequence
Do Dy_1 Dp_1
0—-TI(Ey) — -+ — I'(Ey—1) — DN(Eg) — -+ — T'(E,) — 0,
(1.50)
is a complex (i.e. DyoDyg_1 =0 for 0 < k < n), it is called an elliptic complex
whenever the sequence of vector bundles
9D ODp_y 9Dp—1
0—-mEy— - — mE,, — mbk—- - — mkE,— 0,
(1.51)
is exact, where 7, : TXM — M denotes the cotangent bundle to M without
the zero section and the maps

* *
op, : Ty Ei41 — T B

are defined by the principal symbols of the operators Dy between sections of
the pull-back bundles over T M defined by 7, (see Appendix A). This means
that, for every (x,§) € T M, the sequence of vector spaces

O'DO—(x;f) AN If_l O'Dk_—l(;vvf) E’? . UDn_—1(>x75) Er _, 0’

0— EF v
(1.52)

where EY is the fibre above x in 7}, E}, is exact.

This definition of ellipticity of the complex (1.50) is equivalent to the el-
lipticity of all the laplacians

Ak = DZDk: —+ Dk—lszla

where D is the pseudo-differential operator formal adjoint to Dy, defined
with respect to the Riemannian structure on M and the Hermitian structure
on each bundle E.
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Example 2 Consider a closed n-dimensional Riemannian manifold M and
let p: m (M) — End(V) be a representation of the fundamental group of M
on an inner product vector space V. The representation p defines a hermitian
vector bundle V,, over M, with fibre V', by taking pairs (m,v), (m/,v") in M xV
to be equivalent iff v-m =m’ and v = p(y~1) -’ for some v € m(M). V,
comes with a flat connection VP which we couple with exterior differentiation
of k-forms on M to define a complex of differential forms on M with values
in V,. Indeed, consider the vector bundle of twisted k-forms AFT*M @ V, and
the operator di =dr®1P1®V? acting on the space of sections of this bundle
OF(M,p) =T ((AkT*M)* ® Vp); dZQ = 0 for all k, as a consequence of the
flatness of VP. We say that the representation p is acyclic if the sequence
0_>Q()d_g).”9k—1d’f:_*}ﬂkd_z)9k+1dz_+}‘”Qnd_fl)()’ (1.53)
is an acyclic complex, i.e. all the de Rham cohomology groups of the complex
are trivial (H*(M,p) = {0}, 0 < k < n). The representation of w1 (M) will
be fized and no specific reference to it will be given (in the notation) in the
sequel (we shall denote QF(M, p) simply by QF, and dy by dy, for all k).
The inner product on k-forms defined by the Riemannian metric on M through
the Hodge-star map * : QF (M) — Q" *(M),

(o, Br) = /M o N xSy,

and the Hermitian structure on each fibre of V,,, also couple to define an inner
product on QF. From it we define the formal adjoints to di, k = 0,1,...,n,

by
(dkwiss Mt1) = (W, Aot 1)
rom which it follows that df = (—1)""*! % d,,_,_1*. The Laplacians acting
k
on twisted k-forms are given by

Ay = d;;dk + dk—ld;;fl-

The operators dy, are differential operators of order 1 (see Example 10 in
Appendix A), and hence so are the maps dj, = d, @ 1 ®1® V* (note that the
V, component does not affect the ellipticity of dZ)' The sequence

s ARLTE N S ARTE N S AR A

where the maps are left exterior multiplication by &, is exact. From Example
10 in Appendix A we know that og, (m,&) is left exterior multiplication by
&. On the other hand, from the definition of the x-operator (which, at each
m € M is given by (w,w’) = *(w A xw')) it follows that

(=1)™ s &5 ARFITH M — AFT M

36



is the adjoint to A*T* M LN ARFYTE M. Thus, dy, is also a first order elliptic
differential operator for k = 0,1,...,n, and hence the Laplacian Ay is elliptic.
In fact

aa,(m,€) = [¢%,

which is clearly non-singular for (m,&) € T,x M — {0}.
Note that, because of the acyclicity assumption on p, we have at each level of
the complex the Hodge decomposition

OF =0 o (1.54)

where Q) =Im di_1 = Ker dj, and Q) =Im dj = Ker d;_,.

1.2.3 Analytic Torsion of a Riemannian Manifold

Consider a closed n-dimensional Riemannian manifold M and let (IE,,7%)
denote the complex

0 — T'(Ep) &-~-—>I‘(Ek) &)F(Ek_t'_l) . D I'(E,) —0, (1.55)

where the maps Dy are fixed positive-order differential operators acting on
spaces of sections of the Hermitian vector bundles Ej over M. Let A, =
Di Dy + D1 D;,_ be the elliptic self-adjoint positive Laplacian operator act-
ing on sections of Ej. The formal adjoint operators D} are defined with
respect to the Hermitian inner product h; on the spaces of smooth sections
I'(E)) induced by the Hermitian structure (-,-); on Ej, and the Riemannian
metric g on M, namely

h(o, 02) = /M<01(m), 2 () djing (). (1.56)

Thus, the Laplacians Ay, their spectra and (-regularized determinants are
functions of the Riemannian structure on M and the Hermitian structure on
the vector bundles. In [RS71], Ray and Singer define, when the elliptic com-
plex is acyclic and from a combination of (-determinants of the Laplacians,
a topological invariant of M — its Analytic Torsion, i.e. a quantity indepen-
dent of the Riemannian structure on M. They consider the case in which
Ep =T ((A*T*M)* ® V,), the space of differential k-forms with values in the
vector bundle V), associated to a representation p of the fundamental group of
M on an inner product vector space, and Dy, is the flat connection (exterior
differentiation of forms coupled to the flat connection on V,) on sections of
this vector bundle (see Example 2). This construction can be extended to the
case of general (acyclic) elliptic complexes, as observed by Schwarz in [S79].
In this section we shall review their main features.
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Definition 8 [RS71] Let Ay denote the Laplacian operator at the level k in
the acyclic elliptic complez (IEo, IDy) given by (1.55). The Analytic Torsion of
the compler (IEs, Do) of vector bundles over the manifold M is the complex
number given by

T(IE,, D,) = exp {; > (=1FkCh, <0>} : (1.57)

k=0

Note that, using the definition of the (-determinant of an elliptic differen-
tial operator (1.23), this expression yields the same equality as in the finite-
dimensional case (Definition 7).

Theorem 2 [S79] If dim M is odd, then T(IE,, Do) is independent of the
Riemannian metric on M and the Hermitian structure on the bundles Ej..

Proof. Let us consider a family {gy, (-, )}}« of Riemannian metrics and
Hermitian structures on E}, respectively, parametrized by u € [0,00). Let

hi(u) (01, 02) = /M<"1 (m), o (m))Y: dpag, (m), (1.58)

be the induced Hermitian inner product on sections of Ej, where iy, is the
Riemannian volume element on M defined by the metric g,. Then, for u # 0,
hi(0)(o1,092) = hg(o1,02) and hi(u)(o1,02) are related by

hi(u)(o1,02) = hi(Ayoi, 02),

where A, : I'(Ey) — T'(Ey) is a zero order self-adjoint positive operator,

uniquely determined by the variation of the metrics. Thus, since hgy1(Dgok, Prr1) =

hi(ok, (Aule,’;Au)npkH), where oy, € I'(Ey) and @gy1 € I'(Eg41), then
Di(u) = A, 'D} A,
and Ag(u) = AU_IDZAuDk —|—Dk_1Au_1DZ_1Au . Consider now the function
Flust) = D (=)t tr (74
k=0

where tr (e_tAk(“)) is the heat kernel of the Laplacian Ag(u). We are inter-
ested in the variation of this function with respect to the parameter u. Let
Ap(u) = ==, then

—f (t,u) = —tz ¥k tr( tA’“(")Ak(u)> ,

and 5
5o Dk = Dy(w) X = X Di(u),
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where X = A, 'A,. Tt follows that
Ak(u) =Dy 1Dj_1(u) X — Dy—1 X Dj_;(u) + Dj(u) X Dy, — X Dji.(u)Dy,

which, through the relations Ay (u)Dj(u) Dy = Agq1(uw) DD (u), implies

%f(t, u) = —t kgotr (e_tA’“(“)Ak(u)X>
[ AL (u
= ta {kZ:O<_1)k tr (e EAK( )X>}.

Thus, letting

n

F(t) =Y (-1)F tr (atﬁk(u)X) ,

k=0

for R(z) large enough, (1.18) implies that

i{ik%f@mxa}zMwwmaz—wwwma

k=0

It follows from (1.20) applied to @ = Ag(u)+ AX (since X is a multiplication
operator) that

tr ( o 1AK(w) X) _ _% % tr ( eft(Ak(u)+)\X)> '

Then for t — 0, the function F'(¢) has an asymptotic expansion of the form

o0
F(t) =) ajt’ "2,
§=0

where n = dim M, so M[F(?)] is holomorphic at z = 0 and M[F(¢)](0) = az.
On the other hand, since

n

log (T(Es, Do )(1)?) = > (=1)" k¢y, () (0),
k=0
it follows that

MIF(](0) = — o log (T (4, T)(u)?)

where T'(IE,, ID,)(u) denotes the analytic torsion defined by the (-determinants
of the Laplacians Ag(u), which implies that for n odd T'(IE,, ID,) is constant.
O
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Ray-Singer Torsion. Let us now consider the analytic torsion in the
context of Ray and Singer, i.e taking the twisted de Rham complex described
in Example 2,

Oﬁgoﬂ)...gk—l‘i’“——%gkigkﬂdk_“}...Qni)(), (1.59)

where p denote a (fixed) representation of the fundamental group of M on an
inner product vector space, di, is the flat connection (exterior differentiation
of forms coupled to the flat connection on V),) on sections of the vector bundle
QF(M,p) =T (A*T*M)* ®V,) (that we shall denote by QF) of differential
k-forms with values in V,. We assume that the complex (1.59) is acyclic. In
this case the formal adjoint to the first-order differential operator dj, denoted
dy, and defined through the Hodge-star map * : OF — Q" k acts on QF! by

di = (=)™ wd, 1. (1.60)

The Ray-Singer Torsion corresponds to the analytic torsion of the complex
(1.53), and we shall denote it by Trs(M). It follows from Theorem 2 that
Trs(M) is independent of the Riemannian structure on M when n is odd.
Other important properties of the Ray-Singer torsion of M follow from the
particular form of the inner product on QF, which is defined in terms of the
Hodge star map, and the Hodge decomposition in each level of the complex.
Recall that acyclicity of (1.53) implies, for any 1 < k < n — 1, a Hodge
decomposition (1.54)
OF =) o

where ), = Im di_1 = Ker dj, and Q) = Im dj = Ker dj_,, while Q° = Qf
and Q" = /. Hence, the spaces QF of k-forms are completely determined by
their neighbors in the complex

QF—1 =1 ok di QF+1

By restriction on the respective domains of the maps dj and dj, it follows
that
dk’Qg 1 — Yy and dlﬂﬂjc+1 Qe —

are isomorphisms, giving rise to the bijective maps
dide - QY — Q, and  dpdj: Q) — Qi
Thus, Hodge decomposition yields an isomorphism
kE ~
Q"= Qg—l ® Q?c—&—l'
Let us consider the Laplacian operator on k-forms,

Ay = de_1d_ | + didy, (1.61)
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and the restricted Laplacians, w.r.t. the decomposition (1.54),
A = Aglg, and A = Aglay. (1.62)

Note that, since A} = dk—ldLﬂ% and A} = dde|Qg, we have
A = A} + AL (1.63)

Moreover, Q0 = Qf and Q" = Q/, imply that Ag = A} and A,, = A/, so that
we have 2n positive selfadjoint elliptic operators Af,... Al Ay, ... Al
Finally, the identities

*dk,1d2_1 = dz_kdnfk* (164)
*dde = dnfkfld;,fkfl*, (1.65)

imply that
Al = A« (1.66)

which yields for the Laplacian on QF the well-known equality
*Ak = An—k * . (1.67)

As consequence of acyclicity, and the corresponding Hodge decomposition, the
zeta-regularization techniques used to define the determinant of the Laplacian
operators can also be used to define regularized determinants for the restricted
Laplacians A} and AJ. As the restriction to ) and Q] of a self adjoint
elliptic operator on a closed manifold, the operators A} and A} have purely
discrete real spectrum. Indeed, from (1.54) and the nilpotency of the dj, and
dy, operators, it follows that the set of eigenvalues of the Laplacian Ay is the
union of the eigenvalues of dy_1d;_, and djdy. Hence,

Car(2) = Car (2) + Cay (2), (1.68)

where (a7 (z) and Car (z) are the (-functions of the restricted Laplacians
(1.62), defined by

CA;C(Z) =tr (Agz) = Z N7
N eSpecA),

and
CA% (z) =tr (A’é—z) = Z N'F,

"
AeSpecA)

where X\ and )\ denote non-zero eigenvalues of A} and A}, respectively.
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Let us set E(N\) = Ker (A — \), then the Hodge decomposition (1.54) in-
duces a decomposition of such eigenspaces E;(A) = &£,(N) & &/(N), where
ELN) = &N N and E/(N) = &) N Q. Let w1 € E_1(A)’, then
dp_1Wr—1 € Q;ﬂ and

Apdp—qwp—1 = dp_1dj_dp—1wr—1 = dg— 18— 1wp—1 = Adp_1Wk—1,

so di—1 maps &_,(A\) bijectively into &/ (\), leading to a bijective correspon-
dence between (non-zero) eigenvalues (and their corresponding eigenvectors)
of the operators dj,_,dix—1 and did;, which implies

Car () = Cay_ (2). (1.69)
Using (1.68) and (1.69) we have,

Cay(2) = Cap(2) = Capy (2) + Capy(2) = - + (= 1)FCa, (2)-

Hence, from the properties of the zeta-function of the Laplacian, it follows
that, for all k, CAZ and CAZ are well defined and analytic for z € € with
R(z) >> 0, and extend by analytic continuation to meromorphic functions
on C, regular at the origin. Thus, the operators Aj and A} have honest
(-determinants.

Proposition 7

(—pktt ol k

ﬁ detc A/ 2 = H detc AH 2>

Proof. From (1.68) and the definition of (-determinant for A} and A} it
follows that

n (- 1>k+1
TRs(M) H (det< Ak
k=0

detc A = detc A;C detg A/k/ (1.70)
Since log det¢ Ay = —(,, (0), from the definition of Trs(M) we find,

- Dkt
log Trs(M) = Z log {(detg Ag) 2 }
k=0

SO
n (- 1)k+1k

Trs(M) = ] (detc Ag)
k=0
Notice that (1.69) implies that det¢ A} = det¢ A}_; which, combined with
(1.70), yields

n kst ol (-1t
Trs(M) = [ ] (dete ay) = = [ (dete A%)
k=1 k=0

O
As a consequence of these relations we find the following
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Lemma 4 [RS71] If dim M is even, then Trs(M) = 1.

Proof. Let n = 2m be the dimension of M, Proposition 7 shows that

2m (Cp)ktL m (—1FtL 2m (—pltt
TRs(M) H (detg A/ ) 2 = H detg A/ ) 2 H (detg A/) 2
k=1 k=1 l=m+1

and (1.69) implies that det¢ A} = det¢ A}, which, by *-Hodge duality (1.66),
yields
detc A;c = detc Aln—k—i-l‘

Putting this into the previous equality yields

m (71)k+1 m (71)7n+l+1
Trs(M) = [ [ (dete A pa) = [ [ (dete Ap) =2 = 1
k=1 =1

1.3 Dirac Operators and Index Theorems

1.3.1 Dirac operators on Clifford bundles

Let M be a closed Riemannian manifold of dimension n and let C(M) — M
be the bundle of Clifford algebras over M, whose fibre above m € M is the
Clifford algebra C(T;;, M) of the Euclidean space T, M. A Clifford module
over M is aZo-graded Hermitian vector bundle £ = ET @& E~ — M with an
odd action

[(M,C(M)) x D(E) — T(E)

(a,0) — c(a)o
of the bundle of algebras C(M) on sections of E, i.e. c(a)E* = ET, such that
(¢(a)or, 02) + (o1, c(a)oz) =0,

where (,) denotes the inner product on I'(F') induced by the Hermitian struc-
ture on E and the Riemannian metric on M, namely

(01,02 = /M<al<m>,a2<m>>mduM<m>. (L.71)

Let L?(E) be the completion of I'(E) with respect to the induced norm. We
say that the Clifford module E is self-adjoint when c(a*) = —c(a) for any
a€(M,C(M)).
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Let V be a Clifford connection on E i.e. a connection V on E such that,
Va € C(M), 0 € I'(E) and any X € T'(T'M),

[Vx,c(a)o = Vx(c(a)o) — c(a)Vxo = ¢(VETa)o,

where V¢ denotes the extension of the Levi-Civita connection to the bundle
C(M). From a Clifford connection V and the Clifford multiplication, we build
an associated Dirac operator Dy acting on sections of the Clifford module E
by composition,

I'(E) > T(M,T*M ® E) 5 T(E).

In local coordinates it reads

n

Dyo = Zc(dmi)vaia, (1.72)
i=1 o

where o € I'(E), {z;}, and where {%} and {dz;} denote local coordinates
for M, its tangent bundle and its cotangent bundle, respectively. Dy is a
(formally) self-adjoint first order differential operator on I'(E).

With respect to the Z2-grading of the Clifford module, i.e. the direct sum
decomposition £ = ET @ E~, the Dirac operator Dy can be written as

Dy :T(E) — T(E)

0 Dv]
o + g,
[DV 0

where D% : T'(E*) — I'(ET) denote its corresponding components, with re-
spect to the induced Zsg-graduation on I'(E).

The operator Ay = D2v is a generalized Laplacian, in the sense that its leading
symbol o (Ay) satisfies the relation oa (z,€) = |£|? for any (z,&) € T M.

Example 3 If M is an oriented spin manifold then any Clifford bundle is a
twisted spinor bundle ' =S @ W — M, where S is the spinor bundle on M
and W an exterior vector bundle on M. The Clifford connection V arises in
that case from coupling the connection V° on S induced by the Levi-Civita
connection with a connection VWV on W, V=V ® 1@ 1@ VW. The Dirac
operator thus obtained is the twisted classical Dirac operator. In the case of
an even-dimensional manifold M, the Zs grading on E is the one induced by
the Zy-grading S = ST @ S~ of the spinor bundle, the decomposition being
orthogonal for the inner product induced from the metric on M, the Dirac
0 D]

operator reads D = [ D, 0

44



Example 4 In the context of Example 2 let M be a closed Riemannian man-
ifold, p a representation of the fundamental group of M on an inner product
space V' and let V, be the vector bundle over M defined by p. Then, the bun-
dle E, = P, AFT*M @ V, is a Clifford module for the Clifford multiplication

given by
D(T*M) x '(E,) — T(E,)
(a,a) +— €(a) Na—i(a)a,

where €(a) and i(a) denotes exterior and interior product, respectively. This
Clifford bundle is naturally graded by the parity on forms:

E,=E0oE, = (@ A’“T*M@%) < (@ A’“T*M®Vp>.

k even k odd

The bundle V, comes with a flat (self-adjoint) connection V? that couples
with the Levi-Civita connection VY€ to give a (self-adjoint) connection V =
VIl 21912 VP on E, from which we can construct a Dirac operator Dy,
which we also call the de Rham operator. On the other hand, as seen in
Example 2, exterior differentiation d couples with the connection VP to yield
a twisted exterior differential d, : I'(E,) — I'(E,). Identifying d, with coVEC,
dy, identifies to —i0VEC from which it easily follows that dp+dj, = (e—i)oV =
co VLC and hence
DV = dp + d:;

1.3.2 Index Theorems

Let H and H’ be two Hilbert spaces and A : H — H’ a Fredholm operator.
Then, the (formal) adjoint operator A* : H' — H is also Fredholm, so that
ImA and ImA* are closed and there are orthogonal splittings

H=ker A ®ImA* and H' = ker A* ® ImA.

There exists a bounded operator R : H' — H, called a parametriz of A, such
that w4 = Iyy — RA and 74~ = I;y» — AR are orthogonal projectors onto ker A
and ker A*, respectively.

The analytic index of A is the integer number given by
indA = dimker A — dim coker A. (1.73)
Since coker A = ker A*, this is equivalent to

indA = dimker A — dimker A*
= dimker(A*A) — dimker(AA™).
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A positive order elliptic differential operator A : I'(E) — I'(E), where as
before I'(E) denotes the space of smooth sections of a vector bundle E on a
compact manifold, extends to a Fredholm operator A : H*(FE) — H* %(E),
where H*(E) is the completion with respect to the Sobolev H*-norms of the
spaces of smooth sections of E and a = ordA. If there exists a Zs-graduation

0 A"
— gt - —
of £ such that £ = ET ¢ E~, and A = A+ 0

odd with respect to this grading, then A~ = (A")*. In this case we have
indAT = dimker AT — dimker A~, and we define the Q-weighted supertrace
of the operator A by

is self-adjoint and

tr(A) = tr9(yA), (1.74)

where v = (é —OI> on E (i.e. ET is the &1 eigenspace of ) and @ denotes

a weight.

Example 5 In the context of Example 2, note that

D= (d+d;): P U — P
k=0 k=0 k=0

is a first order elliptic differential operator, Ay, = D?|q, , and that the index of
the operator D™ = D|q+, where Q7 = @y oyen - s the Buler characteristic
of the complex defined in (1.49).

The main goal in index theory is to express the analytic index of an ellip-
tic pseudo-differential operator acting on sections of a vector fibration over a
Riemannian manifold as a local term, i.e. as an integral on the manifold of
characteristic classes associated to the underlying geometry of the fibration.
Recall that locality is also a feature of weighted trace anomalies, so it is nat-
ural to ask if there is a relation between those anomalies and the index, a
question we shall address in Chapter 3.

The index of an elliptic operator can be calculated from its symbol, as was
shown by Atiyah, Singer and collaborators in the sixties. The original proofs
used methods of algebraic topology and K-theory [AS], but index theorems
can also be proven by heat kernel methods, which use analytical properties of
the asymptotic expansions of (some functions of) the involved operators.

Let us consider a graded Clifford module E = ET®E™ over a closed Rie-
mannian manifold M. A smoothing operator A € CI(E) has smooth kernel k
and, M being closed, its trace can be computed from the trace tr, on EndFE,
of the linear maps k(z,z) € EX ® E; 2 HomE,,

trA = /M trok(z, ) dups (). (1.75)
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Applying this to the smoothing heat kernel operator e_tDz, t > 0, where
D is the Dirac operator acting on sections of F, there is a section ki(z,y)
(parametrized by t) of the bundle EX E* over M x M, called the heat kernel,
such that

tr (e_t[ﬂ) = /M trpke(z, ) dpps(x). (1.76)

On the other hand, the McKean-Singer index formula [MS] show that, for all
t>0,
ind(Dt) = try(e %) = tr(e PP — tr(e PP, (1.77)

The Atiyah-Singer index theorem follows from the asymptotic behavior of the
heat kernel.

Proposition 8 [G95] Let M be a closed Riemannian manifold of dimension
n and E a Clifford module on M with associated Dirac operator D. Then
there exists an asymptotic expansion for the heat kernel ki of M of the form

ke(z,y) ~ he(z,y) [Ko(z,y) + tri(z,y) + ro(z,y) + -], (1.78)

where

1
hi(z,y) = —— exp{—d(z,y)*/(4t)} (1.79)
(47t) 2
and the k; are sections of E' X E* whose values ki(x,x) along the diagonal
can be computed by algebraic expressions involving the metrics, connection
coefficients and their derivatives.

Thus, from the asymptotic expansion (1.78) for the heat kernel associated to
the smoothing operator e *P 2, it follows that

trs(e—tDQ) ~ (47r1t)g [/M ko(z,x) dup(z) + t/M k1(x,x) dup(x) + -+ .

On the other hand, the McKean-Singer index formula (1.77) says that trs(e 2%
is constant so, if n is even,

in = Kkn(x, x .
a(D*) (M)g/M o (2, ) dang (), (1.80)

where K (x,z) can be expressed in terms of the underlying geometrical data,
and ind(D*) = 0 if n is odd. The Atiyah-Singer theorem [AS] (see [Pal] for a
careful exposition) gives an explicit expression of the right hand side of (1.80)
in terms of characteristic classes when the Clifford bundle is the given by the
spinor bundle on an even-dimensional spin manifold.
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Theorem 3 [AS] The index of a Dirac operator DT on a Clifford module
E = S®W based on an even dimensional spin manifold M, S being the
spinor bundle and W an exterior bundle, is given by:

ind(D+) = /M A(VEC) Cr(v™W), (1.81)

where A(VLC) = \/det (%) is the A genus of the Levi-Civita con-

nection on M and Ch(VW) = tr <6_QW> the Chern character of the Clifford
connection on W.

If we consider now a manifold with non-empty boundary, a similar statement
can be made about the index of the signature operator, having in mind some
precise boundary conditions. In this case a new term appears in the index
formula from the boundary, containing the eta invariant of a particular dif-
ferential operator. This is the Atiyah-Patodi-Singer theorem.

Theorem 4 [APSI] Let X be an oriented Riemannian manifold of dimension
41 with boundary M such that X is isometric to a product near the boundary.
Let VW be a connection on the esterior bundle W based on X and VEC
the Levi-Civita connection on X. Let Dy = @Zil(dkv + d,Y*) where dkV =
dy@1®12VW and dkv* =d;®131 @ VW as in Example 2, and let as before
D$ denote the restriction of Dy to the even forms on X. Near the boundary,

D =co (% +B7)
where B~ is the restriction to odd forms on the boundary of the operator
defined on 2p or 2p + 1 forms by By = ®_,(—1)*PHl(ex dY — dY+), €
denoting the grading operator on forms. Then, the index of the operator D$
(restricted to the subspace of smooth sections satisfying the boundary condition
Py (s|p) = 0, Py being the projector on the space spanned by eigenfunctions
with non-negative eigenvalues) is given by

indDE = /X LVEO)YCR(VY) + n(B), (1.82)

where L(VY) = \/det (%) is the Hirzebruch polynomial of V€

and n(B™) denotes the n invariant of B~.
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Chapter 2

Physical Prerequisites

In this chapter we consider the Fresnel integral approach to path integrals,
which gives a rigorous definition to some of the heuristic integrals considered
in quantum physics. We also describe the Ansatz given by Schwarz to define
partition functions associated to degenerate action functionals by the use of
(-regularized determinants, and the Ansatz to define anomalies from the path
integral point of view.

2.1 Fresnel Integrals

In this section we introduce the framework of Fresnel integrals as defined by
Albeverio and Hgegh-Krohn [AIH76].

2.1.1 Infinite Dimensional Gaussian Integrals

In a finite dimensional vector space Bochner’s theorem ensures a one-to-one
correspondence between characteristic functions ! (positive definite continu-
ous functions) and measures [Y85]. For example, to the function

x:R" — RT
£ - x(E)=e369

there corresponds a unique Borel measure on IR", called Gaussian Measure
and denoted by u, such that

X(€) —/n e du(g).

LA characteristic function on a topological vector space F is a continuous (on every finite
dimensional subspace of E) function x satisfying

N
> aiax(§ —&) >0
jk=1

forar e C,&§; € E (j,k=1,..,N.)
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In infinite dimensions, starting from a characteristic function x on a topolog-
ical vector space F, one typically ends up with a measure with support in a
larger space. Even in the case of a Hilbert space, the measure correspond-
ing to a characteristic function on this space lies in some Hilbert-Schmidt
extension of it. However, Bochner’s theorem holds in the case of continuous
characteristic functions on a nuclear Hilbert space (a topological vector space
whose topology is defined by a family {|| - ||o} of Hilbertian semi-norms such
that Vo 3o’ : || - ||o is HS with respect to || - ||or.) [GV64].

Let ‘H be a Hilbert Space (with inner product (,)s) and, for « > 0, con-
sider the characteristic function

1
Xa(&) = e 3a (&l

Corresponding to this function there is a infinite dimensional Gaussian mea-
sure (1o, which, keeping in mind the path integral heuristic expressions, can
be formally written

|
dpia(¢) = e~ 09m D,

the support of which lies in a Hilbert-Schmidt extension of H, say H’. Here
Zo = [D¢ e~ 2{®%)1 All this can be summarized in the single equation

Yal6) = [H FED 1y (), (2.1)

that generalizes the classical relation
2|7 — / ) ez‘@@—%\@?ﬁdg’ (2.2)

where ¥, € IR™ and (, ) denotes the inner product in this space. Equa-
tion (2.1) defines the function x, as the Fourier Transform of the Gaussian
measure [iy, SO we shall denote it as [iq.

2.1.2 Fresnel Integrals

Let ‘H be a separable Hilbert space with inner product (,) and norm | |,
and let M(H) be the commutative Banach algebra of bounded complex Borel
measures on H (with the norm induced by ”total variation” and the product
given by convolution [DS58]).

Definition 9 The class F(H) of Fresnel integrable functions of H is the
set of continuous bounded complex-valued functions on H which are Fourier
transforms of some element of M(H). Namely, f € F(H) if there exists
pg € M(H) such that

f(x) = /H exp (il )} dius (y). (2.3)
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The Fresnel integral of f € F(H) is defined by

#(1) = [ e {=J1el}dusto) (2.4

In [AIH76] it is shown that F(H) is a Banach algebra with identity isometri-
cally isomorphic to M(H), and we refer to [AIH76] for additional information
concerning this algebra and proofs of some of the results which we are going
to use.

Note that F(f) is not properly speaking an integral, but it verifies some
properties of integrals that prompt that name (for example a Fubini theorem
for Fresnel integrals exist). Remark also that in the very suggestive notation
used by Albeverio and Hgegh-Krohn, the expression

)= [ e {ai} s

which comes from the usual integral relation in finite-dimensional Gaussian in-
tegration, looks like a generating functional as defined in Appendix B (see also
equation 2.2). Actually the work of Albeverio and Hgegh-Krohn on oscillatory
integrals was aimed to find a mathematically rigorous theory of integration
corresponding to the heuristic Feynman path integration in quantum physics.
Among the various applications of oscillatory integrals to physics, applica-
tions to quantum and statistical mechanics and the theory of quantized fields
can be found in [AIH76], and more recently to Chern-Simons field theories in
[A1S92] [AIS95]. For more applications and the relation of Fresnel integrals
with other approaches to the Feynman integral see also [JLO0O].

Theorem 5 [AIH76] Let H = H1®Hs be the orthogonal sum of two subspaces
Hy and Hy. For f € .7-"(~H) set f(x1,22) = f(x1 ® x2), x; € H; (i = 1,2),

then, for fized xo € Ha, f: 21— f(x1,22) € Hy and

o) = [ e { =Sl pautan

belongs to F(Hz). Moreover,

/HQ exp{—;!!wg\\2}dp,g(:cg)_Aexp{_;'”x”z}dw(x)_ 25)

The case when the inner product on ‘H is defined by a symmetric bilinear form
is particularly interesting for us, for in that case we can define an associated
Fresnel integral as follows. Consider a densely defined symmetric operator B
acting on H, with domain and range equal to H, and with bounded inverse
B~1.
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Definition 10 Let
(xvy)B = <J§',By>,
then we define the Fresnel integral of a function f in Fg(H), the Banach

algebra of Fresnel integrable functions (with respect to the bilinear form defined
by B), by

Folf) = [ e { =gl 571) fdusta), (26)

where py denotes the bounded complex measure defined by f through

f(z) = /H exp {i{z, v} 5} diag (). (2.7)

Let us now consider the particular situation where H; is a closed subspace of
H such that the restriction of (x,y) to Hy x H; is non-degenerate. Let Hi
be the orthogonal complement of H; in H and Hy = B~'H{, so that H =
H1 @ Hs yields a splitting of H in closed subspaces such that the restriction
of (x,y) g to H1 x Ha is identically zero. Then the restriction of (x,y) g to
Ho X Hs is non-degenerate, and Fubini’s theorem takes the following form.

Theorem 6 [AIHT6] For any f € F(H),

Falf) = Aexp{—;@,le)}dﬂf(x)

= /H1 eXp{—;@l,B_leﬁ} [/Hz eXP{—;<$2,B_1$2>}duf($2)] dpg(z1)

where f(x1,x2) = f(x1 ® x2) with respect to the orthogonal splitting of H
defined by the inner product induced by B, the restrictions of f on the right
hand side being indicated by the subscripts.

Example 6 [AlS95] The partition function of abelian Chern-Simons theory
can be rigorously defined in the Fresnel integral approach, as shown in [A1S92]
[AIS95]. Let M be a three dimensional closed Riemannian manifold, G a Lie
group, A a Lie(G)-valued one form on M, and consider the Chern-Simons
action functional

k
S(A) = /M ANdA, ke TR, (2.8)

where dy denotes the exterior differential on Lie(G)-valued one forms. Let
D = Y d; + d! be the Dirac operator associated to the de Rham complex
(1.53), where df denotes the formal adjoint to the exterior differential d;, with
respect to the inner product (o, ) = fMa A %03, x being the Hodge star map.
Let H be the closure of Q' @ Q3 with respect to the previously defined scalar
product, and consider the operator

k
By = 5 (+DJ + Pp), (2.9)

™
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. . . 1
where J : Q' @ Q3 — Q @ Q3 is the operator given by the matriz <0 _01

and Pp denotes the projection from H onto ker D. Then B is a self-adjoint
surjective operator and its inverse Bgsl is compact. This means that the Fres-
nel integral of a function f in the Banach algebra of Fresnel integrable func-
tions with respect to the linear form defined by B, as in Definition 10, is
well-defined and reads

7

fBCS(f):/Hexp{ 2<X,Bcslx>}duf(x). (2.10)

Setting x = (A,w), from the definition of B it follows that

B = (). (T B (4w
(A, *d1 A) + (dpA, *w) — (w, dyA)
= (A,*xd1A)

which shows that this Fresnel integral models the Chern-Simons action func-
tional (2.8). We refer to [A1S92] [A1S95] for further results concerning the
treatment of Wilson loops and more general correlation functions in this set-
ting.

2.2 The Partition Function of a Degenerate Gaussian
Action Functional

Consider the partition function? (see Appendix B for the relevant prerrequi-
sites)

Z(8) =" / exp {~5(6)} (D] (2.11)

associated to a non degenerate quadratic action functional S, i.e. when
S(&) = (€,Ts¢) and kerTs = {0}, Ts being a self-adjoint elliptic positive-
order differential operator on the inner-product Hilbert space = (typically the
space of sections of a vector fibration on a manifold). As we pointed out in
the Introduction, in the “non perturbative approach” of quantum field theory,
there is a natural Ansatz to give a rigorous definition of this object through
regularized determinants, namely (as prompted by the equality (B.3) that
holds in finite dimensions) to define

Zo(S) = (det Ty)2. (2.12)

2The notation “ =” will be used to distinguish the heuristic statements communly used
in physics from mathematical equalities.
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Schwarz’s Ansatz for the Partition Function of a Degenerate Gaussian
Action Functional. The partition function associated to a degenerate ac-
tion functional was first studied by Schwarz [S79], who proposed an Ansatz
to associate to it an acyclic elliptic complex (called “resolvent”). Schwarz’s
Ansatz, inspired in the so-called Fadeev-Popov procedure, then imitates the
(combinatorial) definition of Reidemeister torsion [M66] of a chain of linear
maps between vector spaces —introduced by topologists in order to classify
topological spaces with the same homotopy type— making use of the theory of
zeta-determinants introduced by Ray and Singer in [RS71]. This was later re-
fined by Adams and Sen [AS95], who used this Ansatz to test the conjectured
behavior of the partition function of Chern-Simons theory (i.e. its behavior
for large k, in the notations of (2.8)).

Consider the partition function (2.11), but assume that ker7s # 0. Then,
given the degeneracy in the action Z,(S) heuristically diverges,

Zo(S)“ ="vol(ker T}) / exp{—5(§)} [DE].
(ker Ts)+
The formal extension of the Faddeev-Popov procedure led to Schwarz to the
following Ansatz to “compute” the divergent part of this formal equality, and
hence to define the partition function Z,(.S).

Definition 11 An elliptic resolvent for S is an acyclic elliptic complex of the
form

R(S) : 0—T(Ey) 2. - T(E) 25 T(Ey) 22 = Lo, (213)
where the I'(E;) are spaces of sections of Hermitian vector bundles E; over M,
and T;, 1 = 0,1,..., N, are differential operators of the same positive order.

Recall that ellipticity of the complex is equivalent to ellipticity of the formal
Laplacians Ay = T7Ty, + Ty 11y _,, 0 < k < N.

If the action is given by S(§) = (T&,§), kerT, = E # {0}, and there ex-
ists an elliptic resolvent R(S) associated to it, Schwarz defined the partition
function of S in terms of the (-determinants of the Laplacian corresponding
to the differential operators T* by3
1 N (—1)k+1g
Z(T) = (det; Tp) "2 [ (det¢ Ap) 7. (2.14)
k=0
Notice that the determinants det; T, and det; Ay, on the right hand side must
be understood as the (-determinant of the operators Ts and Ay restricted to
the orthogonal of their respective kernels.

3Here we follow the definition of Z(T%) given in [AS95], the original definition of [S79] is
given in terms of determinants of the maps T}, which are not defined.
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Example 7 [S79] Consider the partition function associated to the Chern-
Simons action functional (2.8) in the previous example. In this case Ts = xdy,
and the associated resolvent is

0— Q0L o 2%,

Then ) .
Z(*dy) = (det¢ *di) "2 (det¢ dodp) 2,

where xd/| denotes the restriction of xd; to QY.

2.3 Anomalies

In classical physics, Noether’s theorem associates to each symmetry of the
classical action (or Lagrangian) of a physical system, a corresponding con-
servation law or conserved current. This correspondence between symmetry
and conservation laws may not be preserved by quantization, in which case
we say that the theory under consideration suffers from anomalies. The first
historical example of this kind of phenomena is the so-called chiral anomaly,
which concerns fermionic lagrangians invariant under certain transformations
giving rise to currents that have been experimentally observed to fail to van-
ish. The relevant experimental evidence in this case is the 7° — v decay,
and the corresponding action functional is given by a Dirac type operator (a
general introduction containing an extensive list of reference is given in [Ber]).

From a path integral point of view, we say that an anomaly occurs when
a transformation in the fields, leaving invariant the action functional, changes
the corresponding “effective action” W, defined by the path integral

e*W «“ 77/[D¢} 6750(¢>) -7
(0]

The right hand side of this formal expression is the partition function of the
theory, so that the variations of the effective action under transformations
leaving the classical action invariant will be given by (logarithmic) variations
of the partition function. In the case in which the action functional is non
degenerate, the corresponding partition function is described by a regularized
determinant, so that the variations of the effective action will be given by (log-
arithmic) variations of regularized determinants. If the fields are interpreted
as sections of a vector bundle E over a closed Riemannian manifold M, and
if the classical action is the quadratic functional S(¢) = (T'¢, ¢), T being a
positive order elliptic differential operator, then the variation of the effective
action will be given by

W =" —¢dlogdet¢ T.
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Recall that here we work with (-regularized determinants, but there are sev-
eral regularization procedures to define the right hand side of this last equality.
The anomaly must be, in principle, independent of the regularization proce-
dure used to define the determinant (a different approach can be found e.g.
in [LM], and a discussion on the independence of the regularization chosen in
[Ber], section 5.3).

There are several kinds of anomalies, depending on the nature of the trans-
formation defining the symmetry of the classical action and on the way it is
performed. Let us say a word about the type of anomaly we shall come across
in this work. Recall that we consider Clifford modules over a Riemannian
manifold M, and Dirac operators defined on it, and that in both examples
we consider (the spinor bundle on a spin manifold and the bundle of twisted
differential forms on a Riemannian manifold) the connection used to define
such Dirac operators is the coupling of the “exterior bundle” connection (V"
in the first example, V” in the second) with a connection defined from the
geometry of M. Here, unlike in the case of gravitational anomalies, and as
is usual in gauge theory, we only consider the (logarithmic) variations of the
regularized determinant of the Dirac operator induced by transformations in
the “exterior” part of the connection of the Clifford bundle. Also we shall
not consider the infinitesimal (logarithmic) variations of the {-determinants,
but rather (logarithmic) quotients of (-determinants of a smooth family of
operators under gauge transformations, i.e.

A detg (Tl )

log — =log ——~=.
8 20 08 detg (T())

One of our aims is to relate this type of anomaly occurring in physics with
the tracial anomalies described in section 3.1. Other types of anomalies in
physics can also be analysed using a weighted trace approach. When looking
at the geometry of line bundles associated to families of elliptic complexes we
shall implicitely be considering (first and second) logarithmic variations of (-
determinants of degenerate actions (namely, the Bismut-Freed connection and
its curvature), which can be seen as manifestations of chiral anomalies. In the
case of Dirac operators involved in QFT anomalies, the corresponding local
terms can be expressed via index theorems as integrals over a compact man-
ifold M of local expressions involving the underlying geometric data. These
questions are partially addressed in [CDP].
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Part 11

Tracial Anomalies and
Geometry
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Chapter 3

Tracial Anomalies and Index
Theorems

Recall that in general, as shown in Proposition 1, tracial anomalies —which
can be expressed as Wodzicki residues— are local. Locality is also the main
feature of the index of a geometric operator, so it is natural to ask if there
is some relation between them, i.e. if it is possible to identify the local term
corresponding to a tracial anomaly in terms of indexes or viceversa. A first
relation between the coboundary anomaly 0tr® (see equation 1.8) and the
index of a positive-order elliptic differential operator A : I'(E) — I'(F), acting
as before on spaces of sections of vector fibrations on smooth manifolds (which
extend to a Fredholm operator on the corresponding Sobolev completions...),
can be seen as follows. Suppose E = F, let I denote the identity map on
['(E) and R be a parametrix for A. Since RA = I — 74 and AR = Ip — 7+,
where A* denotes the formal adjoint of A, it follows that

indA = dimker A — dimker A*
= tr(ma) — tr(max)
= tr9my —mar)
= t1%AR — RA) = tr9([A, R]) = 0tr%(A, R),

where @) denotes an arbitrary weight, and we use property (1.7) for the trace
of the finite-rank operator mwq — m4+.

We shall see that in the case of some differential operators acting on sec-
tions of vector fibrations on smooth manifolds, a similar feature holds for the
local term in the Atiyah-Patodi-Singer index theorem, it can be written as a
trace anomaly of the type [ t'rQ(signQ). These anomalies appear in the study
of Chern-Simons theories.
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3.1 Logarithmic Variations of Determinant and Weighted
Trace Anomalies

Our purpose here is to relate logarithmic variations of regularized determi-
nants of certain families of admissible operators with tracial anomalies, thus
giving an a priori explanation for the locality of these variations. For families
of geometric operators these variations can be expressed, via index theorems,
as integrals of characteristic forms on the underlying manifold.

Let {A;}zex be a smooth family of elliptic self-adjoint operators of constant
order A, : I'(E) — T'(FE), parametrized by a smooth manifold X. The eta
invariant n(Ag) = n4,(0) —which is part of the phase of the (-determinant of
A,— varies smoothly in x modulo integers, i.e. except for jumps coming from
eigenvalues of A, “crossing zero”. Indeed, since n(A4,) = trl4=l(signA,), it
gives the difference between the number of positive eigenvalues and negative
eigenvalues of A;, and if one of the eigenvalues of A, passes from positive to
negative n(A,) jumps by two.

Example 8 Consider for instance the family of FExample 1,

. d
A, = z£ + x,
on C®(SY), letting x € IR. The eta function is given by n(Az) = 1 — 2x for
x € (0,1) and n(Az) = 0 for € Z. Hence, the value of n(Az;) jumps by
two when x goes from a positive to a negative value, showing that one of the
eigenvalues of A, passes from positive to negative.

Let Ay and Ag be two invertible self-adjoint elliptic operators, the spectral flow
of a family of self-adjoint elliptic operators {A;},e[0,1] interpolating them,
denoted ®({A;}), measures the net number of times the spectrum of the
family crosses the zero axis, i.e. the net change in the number of negative
eigenvalues of A, as x varies between 0 and 1, it was introduced in [APSIII]
in order to study the “non-continuous” part of the n invariant. Making this
definition precise requires some care since there might well be an infinite
number of crossings of the zero axis (here we follow [Me], see also [CDP]).

Let us first observe that there is a partition xg =0 < x1 < --- < xy = 1 of
the interval [0, 1] and there are real numbers A\;,i =1,---, N, \g = An+1 =0
such that the spectrum of A, avoids A; for any z in the interval [z;,x;y1].
The spectral flow of the family {A,} is defined by (see [Me] formula (8.134)):

N
O({A:}) =) > sen(hip1 — A)m(A, ), (3.1)
i=0 \eS;

where S; = Spec(Az,) N [Ai, Aix1], m(X\, x) denotes the multiplicity of A in
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the spectrum Spec(Ag,) of A, and sgn(a) is —1,0 or 1 as « is negative, 0 or
positive. This definition is independent of the chosen partition and, if A, is
invertible for any = € [0, 1], then ®(A;) = 0 as expected.

Consider now a parametrized family of elliptic pseudo-differential operators
of positive order {A;}, where x varies smoothly in a manifold X. Let, for
z € C,

na, () = tr(Az‘A:rrz_l)’

which we recall is a meromorphic function on the complex plane.
Proposition 9 [APSIII] For R(z) > 0,

1.
dna,(z) = —=z tr(dAx\Aer*l). (3.2)

res [d (signA,)] = 0. (3.3)

Lemma 5 Let {A;}.c(0,1) be a smooth family of elliptic self-adjoint operators
of positive constant order a. Then, at points x € X for which A, is invertible,

1 d 1 d . .
—res [|Ax|_1dmAz] = —_tes [A;ldx\Aﬂ] = ¢yl (signd,) = £ (signd,)

(3.4)

Proof. Recall that from [APSIII], see Proposition 9 (2),

d
“u,) =0,
res (dm )
where U, = AI\AIF1 = |A,|A,; ! = signA,. Then

d [ d
res [|A$]_1dmAz} = res ]Azl_ldx(AIUg)}

I 1 d
= res ||Az] 1dx(|Az|Ux)]

= res |—(Uz) + Ay dm|Ax|],

from which the first equality follows.

60



On the other hand, from Proposition 2, using the fact that [U,,|A.|] =
[AI7 \A:cH =0,

. ) 1 [ d 1 d
trl 4] (signd,) — £ (signd;) = ——ves |Up——log|Ag|| + —res |Uy—~—log A,
a | T dz a dx
1 T d 1 d
= _—Zres Um\A |7t yA @ —res [U At — A]
a dx
1 1
e ——Tes |A |:| 7I‘es |:|A | 1 d x:| ’
a | dz

where a = ord(A4y), so the last equality in (3.4) follows from the first. O

The following theorem relates the variation of the continuous part of the eta
invariant to an integrated tracial anomaly:

Theorem 7 [CDP| Let Ay and Ay be two elliptic self-adjoint operators and
{Ax}xe[oﬂ a smooth family of elliptic self-adjoint operators of constant order
interpolating them. Then, at points x € X for which A, is invertible,

n(Ar) — n(Ao) = 2B({A,}) + /0 £ (sign(Ay)) de, (3.5)

where ®({Az}) denotes the spectral flow of the family and i = [%,tr“‘x].

Proof. Using the invariance of the difference n(A41) — n(Ap) under a shift
Ay — Ap 4+ a, o € R, it can be seen that we can reduce the proof of (3.5) to
the case of a family of invertible operators (for details see [CDP], section 3).
In order to show (3.5) in that case, let us first to show that

trlAel [;;signAm] =0. (3.6)
By (3.4)

T tr'A”f'(signAx)} = t'r|AI|(signAz)+tr‘A””| [chSignAz]

— _lres [A 1. oA @ + trl4el [ddsignAx] (3.7)
X

On the other hand,

d . d . 2
o tr‘Azl(ﬁgnAm)} = ﬁ[f.p.\zzo (tr (signdy|Agz|7%))]
d L
= L oo (tr (a4 )]
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But Proposition 9 (i) implies that

d d —z—1 dAm —z—1
%nAm(Z)Z%tr(Axle\ )=—ztr< |A,| >

dx

hence

d ) dA, e
T [trlAI‘(&gnAz)] = f.p.|.=0 [—ztr (dw‘Az’ 1>]

T
d
= - z= 7Ax A:): —ls
Res,—o [tr (d:): | Azl )]
1 [d .
= —ares |:daij|Ax’ :| y

where a = ordA,. Combining this with the first equality in (3.4) and (3.7)
yields equality (3.6). Now, by definition,

(A1) — n(Ag) = trlMl(signA;) — trlol(sign o),

so that, whenever A, is invertible,

n(A1) —n(Aop) —/0 % {tr‘A”(signAx) dx. (3.8)

Putting (3.6) into the first equality in (3.7) gives

1
n(Ar) - n(Ao) = /0 &4 (signa,) d, (3.9)

so, by the last equality in equation (3.4), the result follows. 0O

Remark. Notice that, even if A, is not invertible, the weighted traces trA=
can be defined as in equation (1.21) because ker A, has constant dimension
on each continuity interval.

It follows from this that variations of 7 (on continuity intervals) are lo-
cal. In particular, for families of signature operators on a three dimen-
sional Riemannian manifold, a classical result of [APSI| expresses the local
term given by the Wodzicki residue coming from the weighted trace anomaly

i £ (sign(Ay)) dx, as an integral on M in terms of the underlying geometry.

Corollary 1 Let {Az}yep0,1) be a smooth family of self-adjoint elliptic op-
erators with vanishing spectral flow and constant order a, such that Ay and

Ay are invertible. Let ¢(Az) = 5 (14, (0) — 4,(0)) be the phase of det¢ A,.
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Then, if (ja,|(0) is constant, the difference of the phases ¢(A1) — ¢(Ag) reads

™

1
oA = olde) = G [ it sien(an) do

T ! d
- A TV —A,| da. 3.10
o [ e[l fa] e

If furthermore det |A;| is constant, then

det< Aq
8 detc A()

= ¢(A1) — ¢(4o)

1
7r d
- - Ay —A, | de. 11
2@/0 res [| | T }dw (3.11)

Proof. From the equality (1.29), relating the (-determinant of a (non
necessarily positive) self-adjoint elliptic operator and its 7 invariant, it follows
that

K
log det¢ A = log det | A iy (14(0) = ¢4/(0)).

Thus, given that
| Ag Ay 1 d
trlA*‘(signAx) = trA‘(signAx) = —_tes [|Ax|_1d:UAx] ,
the result follows. O

Thus, under the above assumptions, the logarithmic variation of the {-determinant
is expressed as a weighted trace anomaly and is therefore local. Although the
assumptions of the previous corollary seem strong, they are fulfilled for the
example of signature operators of interest to us here. Indeed, there is a nat-
ural family of examples where the equality between the index of an elliptic
differential operator and the spectral flow of an associated family of operators
can be made explicit (see [BBW] [Woj] [RoSa] and references therein), and to
have (j4(0) = 0 it is enough to work on an odd-dimensional manifold. This

is ilustrated by an example described in the next section.

3.2 The Signature Operator on an odd Dimensional
Manifold

In this section we give an application of Corollary 1 to a family of geometric
operators that appears in our discussion about phase anomalies in Section 5.2.

Let M be a Riemannian manifold of odd dimension n = 2k + 1, and V,
the Hermitian vector bundle over M with flat connection V? defined by a
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representation p of the fundamental group of M as in Example 2. Consider
the acyclic de Rham complex (1.53)

d d;_ d d d
0— Q0 =% ... Q-1 Xk kRl B on Dy,

where QF = C*°(A*T*M ® V,) and dj, denotes the restriction to QF of the
exterior differential on twisted forms given by d, = d ® 1@ 1 ® V?. Then the
de Rham operator Dy = Y, (di+d}) is a Dirac operator taking even (odd)
forms to odd (even) forms. Let us set Ay = D% and define the Laplacian
operator on Q¥ by A, = didy + dip—1d;_,. Acyclicity of the complex (1.53)
implies a Hodge decomposition (1.54)

QF =0 o QY
where ) =Imd,_; = Kerdy, and ) = Imd; = Kerd;_,

In odd dimensions the square of the Hodge star operator x : QP — Q7P
is the identity map, and the operator *dj, : QF — QF as a formally self-adjoint
elliptic differential operator of order one. Restricting *dj, to €} gives us an
invertible self-adjoint elliptic differential operator that we shall denote *dJ,
which has a well defined (-determinant.

Consider a family of operators {xd,t € [0,1]} (which can be built from
a smooth family of connections {V{,¢ € [0,1]} on the exterior bundle V,,
which interpolates two given connections V§ and V¥, or from a smooth fam-
ily {g:,t € [0,1]} of metrics on M, which induces a family of Hodge star
operators) and let *d’k/’t denote their restriction to k-forms. We consider now
the manifold M x [0,1], and from the family xd}, we construct an elliptic

operator acting on sections of the bundle Q* x [0, 1], namely

A=xdl, + =
* k.t + dt
It follows from [APSIII] (see also [Woj] [RoSa] and references therein) that
indA = ®({xdy;}),

but, since the signature of the manifold M x [0, 1] is zero, then indA = 0 and
hence the spectral flow of the family {xd} ,} vanishes. Thus, it follows from
Theorem 7 that

l /!
n(xdy 1) — n(xdy o) = / " (sign(xdy ) dt, (3.12)
0

so that the difference of the eta invariants is given by a tracial anomaly, which
makes it a local quantity. Furthermore, in odd dimensions ¢} 4(0) = 0 for any
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elliptic self-adjoint differential operator A, so that

detc(rdy,) dete([xdiol) |

1 . "oy 1"
%8 et (vdy o) dete (jxdf 1) | ~ 2 {n(xdy 1) — n(xdy o)}

coincides with the tracial anomaly given by the right hand side of (3.12).
From Corollary 1 follows the following

Proposition 10 Let M be a 3-dimensional closed manifold and consider the
family of first-order invertible differential operators {*dy,,t € [0,1]} —built
from a smooth family of connections {VY,t € [0,1]} on the exterior bundle V,
or from a smooth family {g:,t € [0,1]} of metrics on M. Then the difference
of phases of the (-determinants of *dlll,t att = 0 and t = 1 is given by a
Wodzicki residue coming from a tracial anomaly

1 s
o(edfy) — d(on) = 5 [ sign(ad],)
0

1
T 1 d
= _2/0 res [\ xdy | 1@ wdi | dt. (3.13)
Finally, note that for k =1 (n = 3) the analytic torsion of M is given by
T(M) = det< Ag - (detc A,ll,t)_lv

and the determinant of A is constant given the definition of Dvy,. Hence, it
is clear that when the family {xd}} is built from a family of metrics on M,
topological invariance of T'(M) implies that

N |=

detc |+ dy ;| = (det¢ A7)
is constant. Therefore, in view of Corollary 1,

detc(*d’{ 1) T 1  xd”
s Ly D kot (o %
og detc(*d/ﬁo) 5 /0 tr Rt (sign(*dy,)) dt,

7 ! 4 d
= —2/0 res [*d’k’,tl 1a(* i) | dt.

Thus, being an integrated tracial anomaly, and hence a Wodzicki residue,
detg(*d’l”l)
detc(*d’l”o)
This example plays a fundamental role in phase anomaly computations in
Chern-Simons theory, as we explain in Chapter 5.

the term log is the integral of a local term on the base manifold.
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Chapter 4

Geometry of Determinant
Line Bundles and Tracial

Anomalies

In this chapter we consider Quillen’s determinant line bundle associated to
a family of elliptic differential operators with constant positive order acting
on an infinite-dimensional vector bundle over a closed Riemannian manifold.
Using the (-regularization method introduced by Ray and Singer [RS71] to
define determinants of elliptic operators, we follow Quillen [Q86] to define a
smooth metric and Bismut and Freed to define a compatible connection on
the determinant line bundle associated to the family. We discuss the locality
of its curvature on the basis of [PR]. Following Bismut and Freed [BF88|,
we specialize to a family of Dirac operators defined by a fibration of spin
manifolds, for which this curvature can be expressed as an integral of Chern-
Weail forms.

4.1 Determinant Line Bundles in Finite Dimensions

Let M be a smooth closed finite-dimensional Riemannian manifold, £ — M
a Hermitian complex line bundle over M and V¥ a connection on E. If in
some local frame the connection has the form

VvE=d+9, (4.1)

where 6 denotes a U(n)-valued 1-form, then the curvature of V¥, defined by
OF = (d+ 6)?, is locally given by QF = df + 6 A 0, and hence it satisfies the
Bianchi identity

dQF = [QF 9). (4.2)

Induced by V¥ there is a connection on the bundle Hom(E) = E* ® E given
by VHom(E) = VE" @ 1@ 1 ® VF, which extends to Hom(E)-valued forms on
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M and is given locally by
viom(E) — g4 19, ]. (4.3)

It follows from (4.2) that
vHom(E')QE =0,

and, for any Hom(F)-valued form « on M,
d(tr(a)) = tr ([VE, a]) ,

since tr ([0, a]) = 0. Bianchi identity shows then that tr(Q) is closed. More-
over it is related with the curvature of the connection on the determinant line
bundle det E — M induced by V¥ as expressed in the following well known

Proposition 11 Let Q4 denote the curvature of the connection on the
determinant bundle associated to E — M induced by VE. Then

tr(QF) = Qdet £, (4.4)

Proof. It follows from the definition of the Hermitian structure on det £
induced by the one on E, namely

(o,0") = det[(ai,aé-)]i,j

/

where 0,0’ € T'(det E) are given by 0 = 61 Aoy... Aoy, and o' = o Adhy ... Ao,

in local bases of sections of ££. O

If there is a Zs-graduation E = ET @ E~ such that rank(ET) = rank(E ™), a
section T € T (Hom(E™, E7)) of the homomorphism bundle Hom(E+, E~) —
M induces a canonical section, denoted detI' and called the determinant
of T, of the line bundle £ = (det ET)* ® det E~ over M. This section
associates to each m € M the element detT,, € Hom(det E det £, ) =
(det Ef)* @ det E,,,, i.e. the determinant of the map T, € Hom(E}, E, ). If
T, is invertible for all m € M we say that T is invertible, in which case det T’
defines a trivialization of the line bundle L.

As before, Hermitian structures and connections on the bundles E*, which
+ . . . .

we denote | - |p+ and VE™, respectively, induce (by fibrewise operations)
i . +

Hermitian structures | - [qet g+ and | - [gom(g=+), and connections VAt ET and

VHom(Ei), on the bundles det E* and Hom(E*, E7), respectively. The con-
nection induced on Hom(E™, E7), is given by viom(E®) = yE) 9191 ®
VE™. Tt induces a connection V# on the determinant bundle £ given, on a
neigborhood on which T is invertible, by

VE(det T) = (det T) tr g (T VHomE T, (4.5)
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where trg+ is the trace on Hom(E™). Notice that this definition of V¥ is a
generalization of the classical equality
1 d

. d _
(det Ay) 1%(detAt):tr(At %At), (4.6)

which holds for every smooth family {A;} of invertible finite-dimensional ma-
trices parameterized by t.

The curvature of V* defined by QF = (V£)? = tr(VHom(Ei))Q, is equal to
L =0F 9101008,

(we shall write this in the following QF = —QFT g QF" | the tensorization
with 1 in each case being understood). All the above mentioned results extend
(up to a sign) to the super-vector bundle setting with connection replaced by
superconnections, commutators replaced by supercommutators and traces re-
placed by supertraces (see [BGV92]), in particular d (trs(a)) = trs ([VE, ol5),
and

try(QF) = —QF, (4.7)

where QF is the curvature of the superconnection on F defined by the con-
. +
nections VE™.

4.2 Regularized Traces, Regularized Determinants
and Quillen’s construction

4.2.1 Some Geometry of Families of Fibrations

Let X be a smooth manifold of finite dimension, IM be a closed finite-
dimensional Riemannian manifold and wp; : M — X a smooth locally trivial
fibration such that 7, (z) = My, the fibre over = (which will be also denoted
by IM/X or simply M when no reference to the base point be nescesary) be
a closed Riemannian manifold. By a smooth family {F,},cx of Hermitian
vector bundles over the fibration of manifolds M — X, we mean a smooth,
Zls-graded Hermitian vector bundle ng : E — IM so that E, —the restriction
of the bundle E to M, is a Hermitian vector bundle with connection V.
Let £* be the infinite-rank bundle over X whose fibre at = € X is the space
of smooth sections £F = I'(M,,, EF), where EX — M, is the restriction of the
bundle F = EY@®E™ to M, and let VE= be the Hermitian connection on EF.

Let us assume that on the bundle M/X there is a horizontal distribution,
ie. a splitting TIM = Ty IM & T(M/X) so that the subbundle Ty IM is
isomorphic to the bundle 73,7X. This gives us a canonical projection on the
vertical tangent bundle T'(M/X)

I:TM — T(M/X),

68



with kernel the chosen horizontal tangent subbundle Ty IM. This projection
allows to lift tangent vectors & € T'X to horizontal vector fields along the fi-
bres. Let &3y € T IM to be the vector field on IM defined as a section of Ty IM
which projects to { under the push-forward 7w @ (T M)m — Trypom)X-
Then a tangent vector £(z), z € X, lifts to a vector field £, along the fibre
M,.

From the Riemannian metric gnm/x on the fibre M/X and the Hermitian
structure on EF we define a Hermitian structure on the spaces of smooth
sections £F = I'(M,, EX) by

(01,02)s = /M/X (1(2), 02(2) s dpa, (@), (48)

where 01,09 € EF and pyy, denotes the volume element defined by the Rie-
mannian metric on each fibre M, = 771741 (x).

Since the volume form gy, changes from fibre to fibre, the connection vE
fails to be unitary for the L?-inner product (4.8). Following [BF88], we modify

2 v ’ ’

where divyz, (m) is the divergence of the volume form at m in the base direc-
tions.

Definition 12 [BF88| Let & be a tangent vector to X, {pr its horizontal lift to
a fibre in IM and 1 a section of EF. The Bismut connection on the bundles
E* — X is defined as

VEY = VE y, (4.10)

Em

by point-wise action.

The choice of V* in (4.9) makes this connection unitary for the inner product
(4.8).

The Bundle CI(£). Let £ be the infinite-rank bundle over X modelled on
I['(M, E), whose fibre at € X is the space of smooth sections &, = T'(M,, E,).
Let CI(&;) be the class of operators A, : £, — &, such that, for any local triv-
ialization of £ around x

v 5‘Uw — Ucp(:c) X F(M, E),

!This modification of the connection can also be done by introducing a “density bundle”
[BGV92], here we follow [BF88].
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where ¢ is a local chart of X on an open set U, containing z, the operator
AY(z) = U(2)A,U(x)™?

lies in CI(E). The collection {CI(E;)}rex defines a vector bundle over X,
modelled on CI(E), which we denote CI(£) [P][CDMP]|. Moreover, given that
the properties (on the operators and their principal symbols) characteriz-
ing the notions of order, ellipticity and admissibility are independent of the
choice of the local trivialization V¥, it makes sense to talk about the order of
A, € Cl(E,), its ellipticity or admissibility, and these notions can be extended
to sections of CI(€). In this context a weight is defined as section @ of CI(E)
which is locally elliptic and admissible, and has a given (constant) positive
order.

Given a section A € I' (CI(£)) and a weight @, the covariance property (1.16)
implies that the expression tr@” (A‘I’) is independent of the local trivialization
V. Hence, the definition of weighted trace can be extended to sections of CI(E)

setting
trQ (4) = tr2" (AY).

In the same way, the notion of Wodzicki residue carries out to sections of
CI(E), aswell as weighted trace formulae of Section 1.1. In particular, for
A,B €T (CI(E)) and a weight @

tr? ([4, B]) = —2res ([log Q, A]B) . (4.11)

This extends to CI(£)-valued forms on X in a straightforward way using the
equality
tr? (a ® A) = atr? (A), (4.12)

for A € I'(CI(€)) and « a differential form on X. Extending (1.14) we have

that

(1)

dtr® (w) = tr9 (dw) + ~——~—res (wdlog Q) , (4.13)
q

for a Cl(€)-valued k-form w and a weight @ of order g on €£.

Proposition 12 [P][CDMP] Let £ be the infinite-rank bundle over X whose
fibre at x € X is the space of smooth sections & = T'(My, E,) and V¢ a
connection on £ which induces a connection on I' (CI(E)). Then, for any
weight Q with (constant) order q and w € T (A*T*X ® CI(€)), a CI(E)-valued
k-form

(_1)k’+1

[VE, tr9](w) = Tres (w[Vg, log Q) - (4.14)
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Proof. By definition
[V, tr9)(w) = dtr%(w) — tr2([VE, w]).

Let (U W) be a local trivialization in which V¢ = d + ©¢, where 6 is a
Cl(&)-valued 1-form on U, then

[V, w] = dw + [6F,w]

so that, given that [V€ w] € T'(CI(£)) by the assumption on V¢, [@F W] €
I'(CI(€)) and it follows from (4.11) that

tr? ([, ]) =~ res (102 Q. )
which implies that
tr® ([@ﬂw]) = tr% (dw) — 2res ([log @, @5]w) . (4.15)
Thus, from (4.13) it follows that
Ve, 02)w) = dn®ew) = 2 (dw) + res (o Q. 6°)
— (71)k+1res (wdlog Q) + ;res (log Q, ©%w)

q
(=1)*
q

(-1

= . res (wdlog Q) + res (w[log Q, 95])

= (_1;k+1res (wdlog Q) + (=D)*!
_1)k+1
= ( 1; ! res (w[Vg,log Q).

res (w[@g, log Q])

O

4.2.2 Tracial Anomalies and the Locality of the Curvature of
Determinant Line Bundles

™M

Let M —= X be a smooth locally trivial fibration, where X is a smooth
manifold of finite dimension, such that M, = 71';/[1 (x) be a closed Riemannian
manifold for every x € X. Let E be a smooth Zs-graded Hermitian vector
bundle over M. Consider a smooth family of differential elliptic operators of
order d

T, : T (M, Ef) — T'(My, E),

where EX — M, denotes the restriction to M, of the Hermitian vector
bundle EX¥ =5 M. This family extends to a family of Fredholm opera-

tors T : H¥(E}) — H*~4(E;), where H*(EF) denote the Sobolev space

71



of s-differentiable L?-sections on Ef Thus, both kerT, and cokerT, are
finite-dimensional vector spaces (of smooth sections), so that (detker T},)" ®
(det cokerTy,) defines a one-dimensional complex vector space which we call
the determinant line associated to T}, and which we denote by det T,. If T
denotes the formal adjoint of T, defined with respect to the inner product
induced by the Riemannian structure on M and the Hermitian structure on
E., then

det T, = (detker T,,)" @ (det kerTY) . (4.16)

Let £ — X be the smooth Hermitian infinite-rank Fréchet bundle whose
fibre above x € X is the space of sections £F = I'(M,, EF). We summarize
this saying that we have an elliptic positive-order differential bundle map of
order d between smooth Hermitian infinite-rank Fréchet bundles

T:&t =&,

by which we mean a family {7}, parametrized by the manifold X, of elliptic
positive-order differential operators T : £ — &, of constant order d, taking
the Fréchet space &£ into the Fréchet space £, . This bundle map gives rise
to a corresponding family of complex lines {det T}, },cx, given by (4.16). We
shall build, following [Q86], a complex line bundle over X, denoted

DetT — X

and called the determinant bundle associated to the family {T,},cx. Using
the (-regularization method introduced by Ray and Singer [RS71] to define
determinants of elliptic operators, we shall define a smooth metric on this
determinant line bundle, called the Quillen metric, which can be seen as the
regularization of the Hermitian structure induced on it by the Hermitian struc-
ture on £. Moreover, assuming the existence of a unitary connection on %,
we shall define the Bismut-Freed connection on DetT, a connection which is
unitary for the Quillen metric. Finally, following [PR], we shall show that the
curvature of this connection is “local”, i.e. can be written as the integral of
a density on the fibre X. In the next section, following [BF88] and [F90], we
shall apply these results to describe the line bundle associated to a family of
Dirac operators on spin fibrations.

Quillen’s Determinant Line Bundle

Consider a family {7, },c x of fixed positive-order differential operators acting
fibrewise from £1 to £~ as before, T, depending smoothly on  in a manifold
X. We want to patch up the lines det T, = (det ker 7,,)* ® (det ker T7¥) into a
line bundle over X.

For each z € X, let us consider the formal Laplacians,

AP =TT, and A, =T,T. (4.17)
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The construction of the determinant line bundle associated to the family
{T,}+ex is based on specific properties of the spectrum of these Laplacian
operators. Recall from the theory of elliptic operators acting on compact
manifolds, that ellipticity and self-adjointness of the “Laplacians” imply that
A and A have a discrete real spectrum, with the same set {\,} of non-zero
eigenvalues, and that the spaces of smooth sections £* decompose into direct
sums of (finte-dimensional) eigenspaces of AT and A, respectively. This
eigenspace decomposition gives us a complete orthogonal basis for the metric
(,)gx, in terms of which —when restricted to a finite number of eigenvalues—
we can define determinant spaces just like in the finite-dimensional case, i.e.
by taking direct products and sums.

Let us make this more precise. Following [Q86] [F90] (see also [BGV92]),
we exhibit a trivialization over a collection of open sets covering X. For a > 0
such that a ¢ SpecAt, let Ei*® and E, ® be the spaces defined by

pre= @B ad B0 = @) E (),
AeAS NEAL

respectively, where AX = {\ € SpecAT : X\ < a}, E}f()\) and E; ()\) denote
the subspaces (of £ and &, respectively) spanned by eigenvectors (of A}
and A7, respectively) with eigenvalues lower than a. Since the spectra of the
Laplacians A are discrete and bounded below by zero, Ef® and E;'* are
finite-dimensional spaces, and the set

U, ={x € X :a ¢ SpecA}} (4.18)

is open in X. Moreover, since T, varies smoothly with x, the number of eigen-
values of A} less than a is constant in U, so that EF® and E;® define vector
bundles over U,, from which it follows that L2 = (det E;*)* ® (det E; **) de-
fines a complex line bundle £, over U,.

On the other hand, for each x € X, the sequence
0 — ker Af — E° LR E % —kerA, —0, (4.19)

is exact, and hence, given that ker A} = ker T}, and ker A = ker T}, for each
x € X, there is a canonical isomorphism

L¢ = (detkerT,)* @ (detker T7). (4.20)

Theorem 8 [Q86] The line bundles L, over U, defined above patch up to
a line bundle over X, the determinant line bundle associated to the familly
{T;}rex, denoted by DetT — X.
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Outline of the proof. Consider the bundles £, and L, defined on a non-
empty intersection U, N Uy, for b > a. We want to see how they patch up
on U, NUy. Let E: (a.0) and E, (a:b) be the vector spaces defined similarly as
E;® and E; ", but taking into account only eigenvalues A between a and b,
then

Eft=Er e EHOY and E;Y = E;@ B0, (4.21)

From this, and the fact that

T = Tl oy BFOD — B (4.22)

T

is an isomorphism, it follows that

Lb >~ 12 @ L), (4.23)
where L™ = (det E;"(a’b))* ® (det Ex_’(a’b)). The morphism 78 induces an
isomorphism

det T4 : det (Y — det B (@9, (4.24)

which defines a non-zero local section of the line bundle £, ;) on U, NUp, with

fibre Lgfl’b). Thus, £, and £, patch up via the isomorphism

Lr — Le@L-=rb

T

4.95
Vo = e @ det TEY. (425)

When ind T, = 0, given that dim E;"* = dim E; %, the line £, has a
canonical section
det T* : det E;7* — det E, %, (4.26)

and, for b > a, the multiplicativity of finite-dimensional determinants shows
that det 7% and det 7 corresponds under the isomorphism (4.25).

Notice that we obtain a canonical global section det T of DetT picking out
the canonical element of the line L, (which is mapped to 1 by the canonical
isomorphism L, = €) when ind T, = 0 and 7T is invertible, and taking it
to be identically zero on components of X for which ind 7, # 0 or T}, is not
invertible. On components where the dimensions of kernels and cokernels of
the family -and hence the index- are constant, (non canonical) sections can
also be defined [F88].

Finally, let us point out that the determinant line bundle associated to the
elliptic positive-order differential bundle map T : £t — £~ which we denoted
by DetT (and not det &, as in the finite-dimensional case), seen as a gener-
alization of the finite-dimensional construction of a determinant line bundle,
should be seen here as the determinant line bundle associated to the bundle
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ET @ £~ equipped with an additional family of elliptic differential operators
T, because it is completely determined by the family of elliptic differential
operators. A better notation could be Det(€, T), making explicit that the
patching has been done with respect to the reference operator AT = T*T
(that plays the same role as the weight in the construction of the weighted
traces of Chapter 1), and will be the reference operator for the definition of
the smooth metric and connection on this bundle, as we shall see in the next
section.

Quillen’s Metric on the Determinant Line Bundle

Following [Q86], let us now use (-regularized determinants to construct a
smooth metric on the determinant line bundle DetT, associated to the family
of elliptic first order differential operators {7}, }.cx. There is a natural metric
on DetT, namely the metric |- |;2 induced on it by the hermitian structures
on £F, but it does not agree on the intersection of two open subsets U, and
Uy. In fact, consider a section o on the overlap U, NUp,, with b > a. If o0 on
U, takes the form

Oa=falv1 Ao Avp) @ (w1 A Awy) L, (4.27)
V1,...,Um and wy,...,w, being basis for E;* and E;®, respectively, and

fa a complex function on U,, the canonical identification of sections given by
isomorphism (4.25) yields

o =0a @ (T2 A AT 2@ () AL Axg) 7, (4.28)
where x1,...,x; denotes a basis for Ef (@9 From this it follows that
2 2
lovl7z = loalz T N
a<\;<b

where |-|;» denote the induced metric induced on L% and L% by the hermitian
structure on F and F', and \; are the eigenvalues of Agﬂ(a’b). Hence

low|7.2

|‘7a|%2

= det AF | (.0 (4.29)
so that the metrics | -|;2 do not agree in general over U, and U,
Theorem 9 [Q86] The metric defined on L% by

1
" : |Q = (detC A:—n‘r|(a,oo))2 " : HL27 (4'30)

agrees with the corresponding metric on Lg,. All these metrics patch into a
smooth metric on DetT, called the Quillen metric.
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This result follows from (4.29), using the fact that (-determinants coincide
with ordinary determinants when restricted to finite rank operators, and hence
with the ordinary product of eigenvalues. Notice that, as in the construction
of the determinant line bundle itself, the metric is given in terms of (the (-
determinant of) the Laplacian A*. As a matter of fact, for the canonical
section det T defined by (4.26), it follows that

|det T(x)|7, = det¢ A} (4.31)

The Bismut-Freed Connection

In this section, following [BF88] (where it was done in the case of a family of
Dirac operators, see next section), from the unitary connection V¢ on &, we
build a connection V" on DetT. Recall that, for each x € X, the maps

TS : B — E;° and T ; prb) _, pib)

are isomorphisms. Let V** be the projections of the connections VE® on the
bundles EX® — U,, which are unitary for the restricted metrics, giving rise
to connections V¢ on £%, unitary for the L? metric on U4,. For a < b, consider
the overlap U, NU,. We have two connections on £, V¢ and V?, such that,
on an open set containing x € X,

— mE
VE = Ve 4 tr(T, 1V T cnch), (4.32)

where VHOMZ ig the connection on Hom(E;*, E;*) induced by V%*. (Com-
pare with (4.5).)

Proposition 13 [BF88] Let us set
Ve = V4t (T 01O T, s ), (4.33)

where the second term at the right is the A -weighted trace ofTajl(VHomex)
restricted to A > a, i.e.

(T (VL) ) = {zor ((AD 7T (VI T s ) |

(4.34)
Then V¢ and V® agree on the overlap U, N Uy, for a < b, and patch together
to a conmection V' on L, called the Bismut-Freed connection.

da
dz

2=0

This fact is a consequence of the independenfe on a of the term under differ-
entiation in (4.34), and of the fact that tr®+ coincides with the usual trace
on finite rank operators, and hence with a finite sum of eigenvalues, i.e. for
a<b

+ e m* + e m* + e m*
tre (T, VHOT T 32 ) = trfe (T VHO T ysp) -+t (T VHO T ca ).
(4.35)
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Notice that, as for the construction of the determinant line dundle and its
Quillen metric, the Bismut-Freed connection is defined in terms of A}, namely
through a A -weighted trace.

Remark. Let det T be the canonical section of DetT defined before (see
equation (4.31)), then whenever T, is invertible we have

V7" det T(z) = (det Tp)tr* (T;lvHomiTx) . (4.36)

If it had not been choosen using A} as the weight in the definition of the
Bismut-Freed connection, it would not be compatible with the Quillen metric.
Locality of the Curvature of the Bismut-Freed Connection

Let us now consider the curvature of the Bismut-Freed connection on the
determinant line bundle. Recall that the Bismut connection on the bundles
E£* — X was defined by pointwise action. This means that given a section
Y of £F, ie. a map associating to each z € X a section 1, of the bundle
E, — M,, and a vector field £ in TX with horizonatl lift £y, in T'M (the
vector &, € T, X lifts to a vector field £f, along the fibre M, ), the Bismut
connection associates the section given by

:t ~
(VE 0 (@) (m) = V& . t(m),
where V= is the connection on E, given by (4.9) and m € 7~ (z) = M,.

The “point-wise” definition of V¢ - implies that its curvature Qii € A2(ST®
Wi, , ST@W|y,) is an endomorphism on the fibres, i.e. that for any section
1 and vector fields &, 7

(9 (€ mwa)) (m) = Q= (ks (m), i (m))oa (),

where QF denotes the curvature of the connection V¥ and m € n= () = M,.

Theorem 10 [PR] The curvature of the Bismut-Freed connection is local, i.e.
it can be written as the integral of a density on the fibre M/X.

Proof. Let a be a Cl(£)-valued 1-form and @ a weight of order g on £.
Then, from Proposition 12 it follows that

Ve, tr9(a) = ;res (a[Vg,log Ql)

so that
dtr?(a) = 19 ([V¥,a]) + 2res (a[VE, 1og Q]) . (4.37)
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Applying this equality to the CI(£)-valued 1-form a = D+ IyHom® p+ and
taking as weight A™ (used in the definition of the Bismut-Freed connection),
gives

. - 1
du (DI DY) = @hT ([VE, DIV D) - Cres (),

where 2 = DT 'VEDT[V* log A*]. The first term on the right hand side
breaks into two terms as follows

A ([V‘f* , D+_1VH°miD+]) — (D iQlem® py
o tI‘A+ <D+*1vHomi DJrDJr*lvHomi D+>
_ trA_ (QHom:F>

— A <D+_1VH°miD+D+_1VH°miD+)

where QoM™ s the curvature of VHom™ . Since QHom™ ig 4 multiplication
operator, tr®” (QHo™T) can be written as an integral of a density on M/X,
so that to finish the proof it is enough to show that the second term at the
right is a Wodzicki residue. Indeed, the evaluation of two tangent vectors
on the two form tr®" (D+_1VH°miD+D+_1VH°miD+> gives pointwise the
weighted trace of a commutator, so this term is a weighted trace anomaly, and
follows from our results about tracial anomalies that it is given by a local
term. This shows that the curvature of the Bismut-Freed connection on the
determinant line bundle DetT is local.

O

4.2.3 The Determinant Line Bundle Associated to a Family
of Dirac Operators

In this section we apply the previous construction to a family of Dirac op-
erators on sections of vector bundles over a fibration of spin manifolds. Our
main task here is to build a connection on the infinite-rank bundle €.

A Family of Dirac Operators

In this section we build a smooth family { E, } e x of vector bundles over a par-
ticular fibration of spin manifolds wp; : IM — X, considered by Bismut and
Freed in [BF88], and we associate to this family a family of first order elliptic
differential operators to which we shall apply Quillen’s construction of a de-
terminant bundle. The main assumptions we shall make are related with the
nature of the fibre, a compact even-dimensional manifold throughout denoted
M/X. As before, let us assume that on the bundle M /X there is a horizontal
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distribution, i.e. a splitting T IM = Ty IM & T(M/X) so that the subbundle
Ty M = 73, TX. Let T(M/X) using the projection Il : T IM — T(M/X) be
the canonical projection with kernel the chosen horizontal tangent subbundle
Ty M, from which we lift tangent vectors {(z) € TX to horizontal vector

fields &7, € T'IM along the fibres.

From the Riemannian metric gj;/x on the fibre M /X we define a Riemannian
metric gy on T IM by pulling up to Ty IM the metric gx on X, by means of
the identification Ty IM = 7, T X, and letting grr = gx @ gpr/x- From the
Levi-Civita connection V&M associated to this metric, we define a connection
VM/X on T(M/X) by VM/X = T1Vem I1. This connection is independent of
the choice of gx on TX [BF88] [BGV92|. Finally, let us assume that there
exists a (fixed) Spin® structure on the tangent space along the fibres and a
Hermitian vector bundle W over IM with compatible connection V" this
means that V" restricts to a connection on W, = W/|yy,, compatible with
the Hermitian structure on W,. The metric gy x and the spin structure
along the fibres determine a Spin(n)-bundle of frames of the vertical tangent
space over IV, we denote it by S — T'(M/X).

Let us now build from this data a family of Hermitian vector bundles and
a family of constant order differential operators coupled to W. Let Ef =
S* @ W|ar,, where ST — M is the spin fibration associated to the construc-
tion above, see example 3, and consider the smooth family {D, },cx of Dirac
operators on E, =S @ W/,

Dy : D(S @ Win,) = T(S @ Wn,),

i.e. the Dirac operators on M, coupled to the bundles Wz, via their cor-
responding connections. This yields a family of first-order elliptic differential
operators, odd with respect to the Zs-grading (+) of S,

0 D
p= (e %)

where D, " = D], and a family of generalized Laplacians {A, = D2},cx.

Let £F = I'(EY) be the space of smooth sections of EX = ST @ W |y, — M.,
and consider the infinite-rank vector bundle £* over X whose fibre above z is
EF. From the metrics on ST and W, together with the volume forms on M,
we define a L?-metric on £F by (4.8). Taking the L?-completions of the spaces
of smooth sections, and extending the family {D} },cx to a family of Fred-
holm operators, as before, we shall see it as a elliptic first order differential
bundle map
D&t =&,
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where £1 and £~ are the corresponding Hilbert bundles of sections.

As in (4.9), in order to define a unitary connection on the infinite-dimensional
bundles £* (which will be used in order to build a unitary connection on
the determinant line bundle), we modify the connection VM/X on T(M/X),
which is not unitary for the L?-inner product defined earlier. Then, taking

~ 1
VM/X — gM/X S divar, (m), (4.38)

where divyy, (m) is the divergence of the volume form at m in the base direc-
tions, gives a unitary connection 7'(M/X). Correspondingly, the connections
VE on the bundles S* ® W |y, are induced by VM/X and VW, which give
rise to the Bismut connection Vfiw = @?Mw on the bundles £*. The choice

of VM/X made in (4.38) makes this connection unitary for the inner product
(4.8).

In the particular case of a family of Dirac operators associated to the fi-
bration considered in this section, the local form of Q" (see Theorem 10) is
given by the following theorem, due to Bismut and Freed [BF8§|

Theorem 11 The curvature of the determinant line bundle is the 2-form

component of
BF

Q" =2mi A(VM/XY cn(v™), (4.39)
M/X

. OM/X [ag
AVMXY = det [ ———————
( ) “ \ sinh OM/X [4r
is the A genus of the spinor bundle on M/X, Ch(VW) the Chern form of W
and VM/X s the Levi-Civita connection on M/X .

where
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Part 111

Elliptic Complexes, Gauge
Anomalies and Duality
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Chapter 5

Phase Anomalies in
Chern-Simons Models

This part of the work uses the results stated in Section 3.1 to relate phase
anomalies in odd dimensions —coming from logarithmic variations of (- de-
terminants of Dirac operators— to weighted trace anomalies, thus giving an
apriori explanation for the locality we expect from these anomalies. We dis-
cuss in detail the Chern-Simons model and we apply the results of Section
3.2 to the study of integrated phase anomalies in this model. Finally we use
the Atiyah-Patodi-Singer index theorem to recover the Chern-Simons term as
local term corresponding to the associated tracial anomaly.

5.1 The Chern-Simons Model and Analytic Torsion

Let N be a three dimensional oriented manifold and P a principal G-bundle
over N which is assumed trivial. The non-abelian Chern-Simons model is
defined by the action functional

ses_ k[ <A/\dA—|—2A/\A/\A>,
47'(' N 3

where k is a constant (inverse of the Planck constant) and the fields A which
are Lie(G)-valued one-forms on N, elements of the space A of connections of
the principal G-bundle P over N. The study of the corresponding partition

function
CS « ) ik 2
Z = [DA]Jexps — [ tr ([ANdA+-ANANA
A 47T N 3

has been carried out by Witten in [W89], who showed by stationary phase
method (see Appendix B) that this partition function gives rise, in the “weak
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coupling limit”, to (a sum of) path integrals of the form

Zo:/Aexp{/Ntr(w/\dw)}.

Hence the so-called abelian Chern-Simons theory in three dimensions is the
semiclassical limit of the non-abelian theory. In the following we shall con-
sider abelian Chern-Simons theories over closed odd-dimensional Riemannian
manifolds (see [AS95][S79][W89]).

Let us come back to the context of Section 3.2, i.e. the acyclic de Rham
complex (1.53)

d d; d d
0_>QO_0).“QI€—1’“_1>Qlf_’€)Qlc—%-1ﬁ{”.Qn_)o7

where Q% = C°°(A*T*M®V,) and the de Rham operator Dy = &7_ (d,+d}),
seen as a Dirac operator, V being the flat connection on W. As before we
set Ay = D2v and A = Ay|gr. Recall that acycliclicity implies Hodge
decomposition (1.54)

0F = ;c ©® ;elv

where Q) = Imdj_1 = kerd;, and Q] = kerd;,_, = Imdj_,. Restricting the
operator Ay, = djdy + di_1d;_, to Q) and Q}, we get invertible operators
A = di—1dj,_4|q; and A = djdi|ay. and the (-function techniques can be
extended to define det¢(A}) and det¢(A}) (see equations (1.68) to (1.70)).

Thus,
k

det¢(Af) = exp !Z(—l)ki log det¢ (A;)
i=0

)

with the convention that d*; = d,, = 0.
The Chern-Simons model in dimension n = 2k + 1 is modelled, in the “weak
coupling limit”, in terms of a metric invariant action functional of the type

Skcs(wk) = (Wi, *xdpwi) = / wi A dpwy,
M

where M is a (2k+1)-dimensional manifold. This action presents a degeneracy
on ) for, writing w; = wj @ wj in the above mentioned decomposition,
we have S¢%(wg) = S¢¥(w). To deal with this type of degeneracy, we use
Schwarz’s Ansatz (see equation 2.14) for the corresponding partition function,
which yields

=

k

|
—

zgfs(*dk):[ (det<<A;'>>“””“] detc (+df) " (5.1)

l

I
o
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It is motivated by the formal computation

CS(*dk) “«_» /Qk [Dwk]e—<wk,*dkwk>

1
k—1 2
= [H (detC(A;/) (_1)kl+1] /// [Dw%]e_<wg7*dkwg>)
k

=0
where we have inserted inverted commas around identities involving heuristic
objects such as [Dwyg], which are to be understood on a heuristic level. How-
ever, the right hand side of equation (5.1) is well defined since in n = 2k + 1
dimensions the operator xdj is invertible, self-adjoint and hence has a well-
defined determinant. Thus, from the fact that

|dot(xdf)| = dete(| * df]) = \/det ()

it follows that

( 1yk—1+1

k—1
|ZES (xdy,)| = [H dete A) 2 ] (det Ag)%.
=0

Using Hodge duality we have

rk—1 (71>k—l+1 ) k—1 ( 1>k G+1
|Z,?S(*dk)| = H (detc A;’) 4 (det< A/k/)_z H (detg f,; j 1) 4
LI=0 7=0
(71)k+1

= f[ detg A//

(=pktt

= T(M) 2 )

where T'(M) is the analytic torsion of the manifold M. Hence the modulus
of the partition function Z{®(xdy), associated to the metric invariant action
S (wy), is metric invariant. From Proposition 3 it follows that

dete (xd) = \/meig{n*dg(o)_q*dg‘([))}‘
Using the fact that

k (—1yk—l+1

T(M) =[] (dete(a)) — =,

1=0
and (j.qy|(0) = 0 if the dimension of M is n = 2k + 1, we find

—pktl —i T "
78 (wdy) = (T(M)) "7 ¢ A, (5.2)

Notice that, for k = 1, this yields back the fact that |Z¢%(xd,)| = /T (M),
as shown in [W89].
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Proposition 14 Let Z%(xdy) and Z$%(di*) denote the partition functions
associated to the action functionals S¢®(wy) = (Wi, *dgwy) and SF5* (wy) =
(g, dj, * wg), respectively. Then, for n = 2k + 1, with k odd,

(=pFt!

OS (i) 2§ (dip) ™ = T(M) 7. (5.3)

Proof. Both S,?S and S,?S * are degenerate action functionals on QF, so
that we apply Schwarz’s Ansatz’s (2.14) in order to define the corresponding

partition functions Z{ (xdg) and Z5¥(di«). The elliptic resolvent associated
o S99 is

000 %, . =2 k- ld’“IQ/L‘lk)O (5.4)

and hence we define the partition function Z,? S(xdy) as

k .
_ )J+1
OS (dy,) = dete (+dg) T H det¢ . (5.5)
In the same way, the resolvent associated to S,?S *is
0_>Qﬂd*L_1...dz_+}Qk+liQ/};ﬁ 0, (5.6)
SO -
+
. .\t (=7t
¢ (dyx) = dete(dp) 2 [ ] (dete ALy ) (5.7)
j=1
Since for k odd dy* = *dj, from (5.2) it follows that
cs cs 1 : 7( itk L ENC Chiass
255 (xdy) - 205 (i)™ = H det = 11 (dete %)
=0 j=1
(_1)k+1
= T(]w)f7

where we used Proposition 7 and the equality dets A) = det¢ A} ;. O

5.2 Tracial Anomalies, Phase Anomalies and the
Chern-Simons Term

Recall that the (classical) action functional used to model the abelian Chern-

Simons theory in odd dimensions is metric invariant, but its associated (quan-

tum) partition function is not, since it contains a phase which depends on the
metric on M (see equation 5.2). We will refer to this as a phase anomaly in
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the partition function, since it arises as an anomaly in the quantum level in
the sense of section 2.3.

Given a smooth family of connections {V?,¢ € [0,1]} on the exterior bun-
dle V,, let d; be the family of exterior differential operators built from these
connections, and let dj; denote their restriction to k-forms. This gives rise to
a family {ZCS(*dk,t)}te[o,l] of partition functions of the form (5.2). Another
family of partition functions can be built taking a fixed connection on V, and
letting the metric g on M (and its associated Levi-Civita connection) vary.
It follows from the results of chapter 3 (Proposition 10) that the difference of
phases of the (-determinants of d ; and partition functions at t = 1 and ¢ = 0
is given by a Wodzicki residue coming from an integrated tracial anomaly.

In [W89], in order to build a metric invariant partition function, Witten adds
to the partition function (5.2) a local counter-term. For this he proceeded in
two steps, first fixing the metric and measuring the dependence of the phase
on the choice of connection and then, whenever the manifold M has trivial
tangent bundle, fixing the connection and measuring the dependence of the
phase on the choice of metric. Both these dependences can be measured in
terms of tracial anomalies along the lines of Corollary 1, i.e. the variation of
the partition function Zk(*d/k/,t) induced by a change of metric reads

Zy(vdy 1) N
m = €Xp {—Zz(ﬁ*d;”l (0) - mdg,o(o))}

where {xdj ;,t € [0, 1]} is the family of operators induced by a family {g:,t €
[0,1]} of Riemannian metrics interpolating go and g;, the connection on V,
being left fixed. As we will see, for £ = 1, and when the tangent bundle is triv-
ial —in which case we can write the Levi-Civita connection VZ¢ = d 4+ A- it
gives rise, via the Atiyah-Patodi-Singer theorem, to the familiar Chern-Simons
term [, tr (A ANdA+ %A ANAN A) arising in topological quantum field the-
ory in dimension 3 (cfr. formula (2.20) in [W99]).

The results of Section 3.1 and equation (3.10) imply that the phase anomaly
7 d//
P(xdf 1) — p(xdf 5) = log M corresponds to an integrated weighted trace

k (*d%’o)

anomaly:

Theorem 12 The Chern-Simons phase anomaly between two Riemannian
metrics go and gy is an integrated weighted trace anomaly, i.e.

phase anomaly = integrated weighted trace anomaly
1 !
Zk(*dlkl_l) e 1 -
log ———— = —i— tr e (s di,)) dt.
% Zdl) = Ui | e sizntoa )
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Using APS index theorem [APSI], is given by the Chern-Simons term
32 2
i2/ tr(ANdA+ -ANANA).
T M 3

Let us see now how the Atiyah-Patodi-Singer index theorem [APSI, APSII,
APSIII] implies that the local term corresponding to this weighted trace anom-
aly is the classical Chern-Simons term. We restrict ourselves to odd dimen-
sions n = 2k + 1 with k£ odd so that n + 1 is a multiple of 4 as required in the
Atiyah-Patodi-Singer theorem.

Proposition 15 The difference of phases ¢(xdy 1) — ¢(xdf 5) reads

™

2 2
d(xd ) — d(xdl ) = / Ch(V") 2232/ tr(ANdA+-ANANA)
’ ’ 2 Jmx[o] ™ JM 3

Proof. From Proposition 3 it follows that

s

Ol ) = 6(xdi ) = 2 (eay, (0) = ey, (0))

so that we are left to compute a difference of n-invariants which can be ex-
pressed using the Atiyah-Patodi-Singer theorem. Let X = M x [0, 1] where
M is an 4] — 1 dimensional closed Riemannian manifold and let us equip X
with the product metric so that we are in the situation described above. The
boundary of X is the odd dimensional manifold M x {0} M x {1}. With
the notations of Theorem 4, where we set p = k, since k is odd we have
By, = *dj, — d,,_i.*, where Bj, is the restriction of B to the odd k forms. Since
%2 =1 on k forms in dimension n = 2k + 1, we have dy . = — xdj, so that
the restriction By to R(d;_,) coincides with the restriction *dj.

We therefore need to compute the difference of 7-invariants of B}. Following
Atiyah, Patodi and Singer [APSII], let us first investigate the metric depen-
dence of the eta invariants n*dg(O) in order to build an invariant independent
on the choice of metric. To two metrics g and g’ on M correspond two oper-
ators B and B’, and it follows from the Atiyah-Patodi-Singer index theorem
that (see (2.3) in [APSII))

n5(0) — 1 (0) = n /M o )

using the fact that sign(M x [0, 1]) = 0 and that the connection on W is flat.
Let us now fix the metric and take two flat connections V' and V{V on W
restricted to M, this leading again to two eta invariants npy (0) and 7 BZO(O).

From the above it follows that this expression is independeﬁt of the choice of
metric (see Theorem 2.4 in [APSII]).
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We now equip W restricted to M with a one parameter family of connec-
tions V}V := (1 — )V} + VIV and correspondingly a one parameter family
of operators

B; = (—l)kﬂ’“(e k dy — dyx).

We can equip W seen as a bundle over X = [0, 1] x M with the connection
vW = % +V}V, and build the corresponding Dirac operator

Dé:co(%¢+3ﬁ%.
Because By, (0) —n By, (0) does not depend on the choice of metric, we can
choose a flat metric. Thus the L-form will be trivial. On the other hand
sign(X) = 0 for the particular choice of manifold X = M x [0, 1] we took, so
that the spectral flow ®({B}/,}) vanishes. Applying once again the Atiyah-
Patodi-Singer theorem yields’

v (0) = npr (0) = Ch(V").
nig,(0) =y (0) /MW (VW)

Finally, using Stokes theorem from the existence of a Chern-Simons form
Qs3(A) = —%ﬁtr(A A dA + 2A3) such that locally Ch(V"W) = dQ3, which
ends the proof. 0O
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Chapter 6

Splitting of the (Geometry of
Determinants of Families of
Complexes and Duality

The aim of this chapter is to extend the splitting in the analytic torsion of the
de Rham complex induced by “duality” in AFT’s to the curvature of the de-
terminant line bundle associated to a family of complexes of Hermitian vector
bundles over a closed Riemannian manifold, parametrized by a smooth mani-
fold. This involves the construction of the determinant line bundle associated
to the infinite-rank elliptic complex associated to this family, which follows
from the constructions of the precedent chapters.

Introduction: Duality in Antisymmetric Field Theories

Consider a closed n-dimensional smooth Riemannian manifold M and let QF =
C>®(A*T*M* ® V,) be the space of differential k-forms on M with values in
V,, the vector bundle over M defined in Example 2. We assume that the
complex

dy,— d d
0— 0 B0, k-1 %ol gk B gkl Bl gn dn g

is acyclic. An Antisymmetric Field Theory is a field theory in which the
“fields” are modelled by twisted forms on a manifold M, i.e. elements of the
space of sections Q = @), _, QF. A k-rank (or degree k) antisymmetric tensor
field is an element of O, and “duality” establishes an equivalence between a
particular theory of (kK — 1) and (n — k — 1)-rank antisymmetric tensor fields.

A generalization of the electromagnetic action to higher rank twisted forms,
gives rise to the classical action for the theory of antisymmetric tensor fields
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that we shall consider. The set of fields is Q%~1, and the action takes the form
Sk—1(wWk—1) = (dg—1wk—1, dg—1wWk—1) = / dp—1wp—1 A *dg_qwi—1,  (6.1)
M

giving rise to the partition function
Z(Sk-1) = /k 1exp{_<dk71wkfladkflwk71>}[Dwkfl]- (6.2)
k-

Notice that the classical action Sp_; is a degenerate functional on Q! in
fact ker dj_; = ) _, (with the notations of (1.54)). Since we can associate to
Z(Sk—1) an elliptic resolvent, Schwarz’s Ansatz (2.14) is in order. “Duality”
conjectures the equivalence of the partition function (6.2) and the one defined
on Q" *~1 by the action functional

Sn—k—l(wn—k—l) = <dn—k—1wn—k+17dn—k’—lwn—k—1>a (63)

(which is also degenerate). Strictly speaking, two field theories are said to
be “dual” if their correlation functions coincide. Here, on the grounds of the
“semiclassical approximation” explained in Appendix B, we only require iden-
tification of the partition functions. In any case, the identification between two
dual antisymmetric field theories involves identifying formal integrals, which
we shall interpret as Gaussian integrals since they are defined using quadratic
actions. Typically, duality between two theories is exhibed by means of formal
calculations, using properties of finite-dimensional Gaussian integrals, leading
to heuristic identifications. We shall illustrate that kind of manipulations in
the next section, before we give an interpretation of this equivalence in the
language of Fresnel integrals.

Let us begin by giving a very naive interpretation of this duality at the clas-
sical level, which will give us the guise of what we can attempt from the
semiclassical analysis through partition functions. Notice that both theories,
defined by (6.1) and (6.3), can be seen as contained in a (rather trivial) sole
theory of antisymmetric tensor fields. Consider the classical action

So(wr) = (Wi wr) = ol

on QF, which is clearly no degenerate. The Hodge decomposition (1.54) in
terms of which wy, € QF splits into wy, = wy, @ wy, where wy, = dp_jwi—1 €
and W} = dfwgy1 € O, for some wy_1 € Q7L w1 € QFFL yields a change
of variable so that S, reads

So(wr) = Sp—1(wr-1)  Sgp1 (Wrt1), (6.4)

where
Si—1(wg—1) = (dg—1Wk—1, dg—1Wk—1),
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and
Sl;k-i-l(wkﬂ) = <dzwk+17 dZwk+1>.

Using (1.60) and setting 1,_r_1 = *wgy1, it follows that

(drwrt1, dpwi+1) = (dn—k—1Mn—k—1, An—k—1"Mn—k—1) (6.5)

S0,
Sol(wi) = Sk—1(wWk—1) & Sp—t—1(Mn—k—1), (6.6)

which puts both classical actions (i.e. both theories) on an equal footing, as
complementary parts, in S,. Notice that the functional S, is nothing but the
metric on QF, and equation (6.6) gives a splitting of this metric in terms of
classical action functionals on QF~1 and QF*! 2= Q"=*=1_ This sort of splitting
in the geometry will also carried out in the quantum approach.

6.1 Duality and Fresnel Integrals

In this section we consider the identification of partition functions on the
basis of some heuristic calculations commonly used in the partition function
description of duality. We shall give a geometric meaning to some of these
formal manipulations in Section 6.2, following the (-function approach to
partition functions. But for now we follow a measure theoretical approach
working with generating functions rather than partition functions and using
the language of Fresnel integrals as defined by Albeverio and Hgegh-Krohn
[AIHT76).

6.1.1 Heuristics of Duality

The functionals Sg_1(wg—1) and S} | (wx11) are degenerate but, by restriction
on the respective domains, the maps

and
dy : Q;H — Q%, (6.8)

are isomorphisms, giving rise to the bijective maps
* oY/ 1"
dp_1di—1: Qg — Dy,
* . Oy /
drdy, = Qyr = Qs

Thus, the functionals

SWi_1) = (dp1wf_y, djmrwii_y) (6.9)
and R
S*(W;cﬂ) = <d72w§c+1, dzw;{?+1>’ (6.10)
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are non-degenerate on ), and Q) 41, respectively. Let us first recall some

formal calculations involved in identifying two dual partition functions. (We

use 7 = 7 to remark the fact that all the measures involved are ill-defined

Lebesgue measures on the L? spaces of forms, so these calculations are formal.)
For example, starting from the partition function corresponding to the action
functional S, on €}, using Fourier transform and acyclicity we can write

J . exp { ~5Su(m) | (D]
n_» /% (D] /Qk [Day] exp {—QiLSo(ak)}exp {i(n}, )}

» = /Qk [Day] exp {—;CLSO(O%)} § [ag = 0]

1
" [ e {-psita | o)
QY a

Hence doing the change of variables defined by the maps 6.7 and 6.8, n, =

dr—1wy_; and o)) = djw; |, we find
a d "o " Do
exp —§< k—1Wk—1, dp—1Wk_1) ¢ Tk—1[Dwy_4]

Jit
1
= [ e gt ik | FealPet]. (61
k41

where J;_1 and Jx41 denote the associated jacobian determinants J_1 :=

det(d;_,di—1) and Jp41 := /det(dpdy).
Let us make a few comments on this computation which, although very formal,

gives the gist of the dualization procedure.

1. Hodge decomposition in the case of an acyclic complex splits the space
of k-antisymmetric tensor fields (1.54) and then, through isomorphisms

previously defined,
Q" =) @0, (6.12)

The L? scalar product on QOF then gives rise to two (non degenerate)
actions S and S*, on Q,_, and Q) respectively, which are related by
a Fourier transform. The non-degeneracy in the actions comes from the
fact that we restrict ourselves to

di— d
e Y (6.13)
Thus, the field wy € Q splits into
Wi = dkflwgfl ©® d;;w];Jrl, (6.14)

giving rise to two new “fields” (gauge potentials) wy_;,w) ;.
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2. In the process of taking the Fourier Transform, the coefficient of the
quadratic action is inverted (a +— a~!), a fact often observed in dual-
ity and typical for Fourier transforms of Gaussian functions. A strong
coupling can thus be turned into a weak coupling [D98].

3. Finally, if we consider Hodge star duality on the complex, through the
relation (6.5), we recover the usual “moral” of duality in antisymmet-
ric fields [Q98]: a (k—1)-rank antisymmetric tensor field (the “gauge
potential” wy_1) is dual to a (n—k—1)-rank antisymmetric tensor field
(Mp—k—1 = *wg41) or, in “brane” language, a (k—2)(electric)-brane is
dual to a (n—k—2)(magnetic)-brane.

Acyclicity induces a decomposition (6.12), from which we find two possible
“potentials” associated to each antisymmetric field in QF, namely wy_; and
wy, 41, the first one for the exterior differential di_1, the second one for dj.
Writing the partition function of the theory with respect to one or the other
give us “dual” formulations of the same theory.

6.1.2 Duality through Fresnel Integrals
The path integrals as Fresnel integrals

Consider the Hilbert space Hy = L%(QF), the closure (with respect to the L?
inner product) of sections of the bundle 2. The decomposition QF = Q} & QY
induces two Hilbert spaces, namely Hj = L?(,) and H} = L*(Q), L?
closures of sections of Q) and €}, respectively. As metric spaces Hj, and
Hy. := H), x HJ are equivalent, i.e. there exists an isometry

¢ : Hy — Hy,

which is measurable and with measurable inverse as well. Moreover, this
isometry is such that if ) and ) are measures on Hj and H}, respectively,
then vy = ¢~ (1), ® uf) is a well-defined measure on Hy. Applying Fubini’s
theorem for Fresnel integrals (see Theorem 6) it follows that

/H glwp)dv(wy) = /H g(ny, @ np)d(pg, @ pg) (m, © )
k k

-,

From this it is easy to show that ¢ gives us canonical embeddings of F(H}) and
F(HY) into F(H). In fact, given f € F(H),) then there exists py € M(H},)
verifying

9(my:) i (ng,) /Hng(nZ)duZ(nZ)-

’
k k

f(wh) = / ATy ().
H

/
k

93



Let us take p to be §, the Dirac measure centered in zero on H}, and
Wy, = g, then vy = ¢~ (uf ®6) € M(Hy) and the last computation reduces
to

/ 9wy (wp) = / o () dy (1), (6.15)
Hy H!

k

where g € F(Hy,). Taking g(wy,) = exp{—%(w, wy)}, leads to
[ expl= jtonwndvyon) = [ expl= bkt diag o) = F(5),
Hi M,

so f € M(Hy) (a similar argument, taking p) = 0, and pj = py for f €
F(HY), shows that F(H}) can be imbedded into F(Hy)). Now, if we take in
(6.15) g(wg) to be

a(er) = exp{~5 (wn,n)},

where a denotes a real constant, this last Fresnel integral can be written as

fa(f)z/H exp{—*<nk7nk>}duf(nk) /;exp{;a<77/27772>}f(772)d7712,

(6.16)
where the last expression on the right has no meaning as an integral (is the
notation of [AIH76]). After the change of variables defined by isomorphism
(6.7) this Fresnel integral provides a rigorous realization of the heuristic Feyn-
man integral corresponding to the functional S. The same argument applied
to the function g,-1(wk) = exp{—s (wk,wr)} (and considering the embedding
of F(H}) into F(Hy))), after the change of variables given by (6.8) yields a
realization of the “dual” path integral defined by S*.

Duality in terms of Fresnel integrals

In this section we shall write down the rigorous expression giving rise to the
heuristic interpretation of duality in the literature [Q98]. Let us consider as
before a Hilbert space which splits as Hj, = Hj, x Hjy, then duality in this
context will be a consequence of the following result.

Proposition 16 Let f € M(H},) and g € M(Hy), then
[ stwdvson) = [ fndug ),
H H,

where vy = ¢~ (up ®0)) € M(Hy) as in the preceding discussion.

Proof. Tt is a consequence of (6.15) and the obvious equality

[ s@ingte) = [ rmangtn (6.17)
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which follows from the definition. O

Let us now verify that the heuristic argument implying duality can be de-
rived from this fact. We take Hy = L%(QF), where the closure is taken with
respect to the L? hermitian product defined on QF, and we consider as be-
fore the induced decomposition Hy, = Hj & H}. Consider f € M(H}), and
g € M(Hj},) such that in some convenient limit

/H/ eXP{i<w;€, 77k>}dﬂg(w;€) — 5["7;@ =0)].

k

Then, applying Fubini’s theorem we have

F () dag () = /

HE

[ /H , eXP{i<W;w77k>}dﬂg(W;c)] dpg(mr),

My

which, taking limits in both sides, leads to

feldat = [ dugta)

Hj, Hi,

where [dw;] denotes a formal Lebesgue measure on Hj. If for a constant we
take f(wg) = exp {—%‘(wk, W) }, the left side of the previous heuristic identity
is F4(g), which corresponds to the path integral defined by S, , and on the right
side we have its dual (recall the finite-dimensional equalities (B.3) to (B.4)),
all this after applying the change of variables defined by the maps (6.7) and
(6.8) as before.

6.2 Analytic Torsion on Riemannian Manifolds and
Duality

After this incursion in measure theory, which provides an interpretation for
formal path integral computations involved in establishing duality between
two antisymmetric field theories, we turn back to the (-function approach
to partition functions, which provides a geometric interpretation of some of
the steps leading to duality relations. Going back to Schwarz’s Ansatz (2.14)
naturally leads us to consider the analytic torsion of an elliptic complex. From
this point of view, a first step in establishing the duality relation is a splitting
procedure, briefly mentioned in (6.4), and which we investigate further here.

Ray-Singer Torsion and Duality

The relation between the analytic torsion of the manifold M and the parti-
tion function of an antisymmetric field theory defined on it was pointed out
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by Schwarz ([S79], see also [ST84]), when studying quantization of antisym-
metric tensor field theories defined by the degenerate action (6.1) on QF~1.
It has also been used in the context of Topological Quantum Field Theories
[W89][BT91][BBRT91][AS95]. Schwarz shows that the Hodge star duality
map and Hodge decomposition on each space QF imply a factorization of the
analytic torsion T'(M) in terms of the two partition functions, corresponding
to the actions S(wi—1) and Sp—k—1(wn—k—1)-

The relation between the two antisymmetric quantum field theories defined
by the action functionals S(wg_1) and S(wp—_k+1), and the Ray-Singer tor-
sion of the manifold M, follows from the splitting in the de Rham complex
(1.53) induced by Hodge star duality and the two resolvents associated to their
corresponding partition functions. Indeed, as follows from (6.5), Hodge star
duality implies the equivalence between the action functionals S(wy,—xt1) =
(dn—k+1Wn—k+1s dn—kr1Wn—k+1) and S*(wpy1) = (dfwrs1, djwi+1), and the
two associated partition functions Z; (M) and Z;;(M) (for the actions S(wy—1)
and S*(wp 1), respectively) have resolvents that split the complex at the k"
level, namely

d,— di— d; dy dy
00 o, %2ak—1% 1ok T ksl B mlon (6.18)

(compare with (6.13)). Let us stress this more precisely in the following

Proposition 17 [S79]
Zy(M) - ZE (M) ™" = Tre(M)D" (6.19)

Proof. The elliptic resolvent associated to S(wk—_1) is (see (2.14))

1

ot-2 %oz g T (6.20)

dj—
0— QO Mo, .. =3
and hence we define the partition function associated to that action (and

resolvent) as
k—1 (—1yk—i
Zi(M) = [ (dete AY) 2 (6.21)
j=0

In the same way, taking the resolvent associated to S*(wg1),

0 Qn d;’;71 dz+2 Qk‘-‘rQ derl Q//
—_— —_ .. =5 — Qi

S (6.22)

we define the associated “dual” partition function by

Z;(M) = (6.23)

n—k—1 (71>j+1
/
(dete A%y j41)

J

[e=]
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Thus, from Proposition 7 it follows that

Z (M) - Zp(M) !

k—1 (—1)k—i n—k—1 _1)i
(detc AF) 2 [T (dete Abyjin)
§=0 §=0
k—1 (-1 k—j n ( 1)]€+]71
(detc A;’) 2 . H (detc A;) 2
7=0 j=k+1
T " ’ . ; (=pi=t cvr
(detc AJ) 2 H (detg AJ+) 2
Jj=0 j=k+1

TRS(M)(il)I:

where we used he equality dete A} = det¢ A} ;. O

Thus, we can say that duality leads to a “factorization” of the Ray-Singer
torsion of the space-time manifold in terms of their corresponding partition
functions. Hence in even dimensions, since Trg(M) = 1, we get the expected
identification of the partition function with its dual Z(M) = Z}(M). Note
that the analytic torsion is a topological invariant of M, but there is no reason
for Zy,(M) and Z; (M) to have this property.

Remark. It follows from (5.2) that, if n = 2k + 1, the square of the modulus
of the Chern-Simons partition function is

_1\k
1255 (xdy) | = Tre(M) V",

and Proposition 17 implies that for any k

Zp(M) - Zi(M) ™t = Tre(M)V",

so that, if n = 2k + 1,

|ZE (v P = Z(M) ™" - ZJ(M).

(Compare with (5.3)).

6.3 Splitting of the Geometry of Determinant Line
Bundles in Finite Dimensions

In this section we consider the splitting of the geometry of the determinant
line bundle associated to a complex of finite-rank vector bundles over a closed

manifold.
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6.3.1 Milnor’s Duality and Splitting of the Torsion
Let (F,,Ts) be the chain complex of vector spaces

Tt Tj-1 T; Thn-1
0—>E)—% - — j71J—>Ej—]>Ej+1_>”' = E, — 0,

and consider the “adjoint” chain complex (Fo,Ty) to (Ee,Ts), i.e. the chain
complex formed by the same collection of vector spaces, but taking as chain
maps the formal adjoints to the collection (T4),

0By " oo = By B 2By = 2% By 0. (6.24)
It follows from the definition of the torsion (Definition 6) that the element
T*(Es) = T(Fe, Ty), canonically associated to this “adjoint” complex, belongs
to the vector space Q._(det Ek)(*l)n_k_l. Then, 7(E,) = (7-*(17}.))(—1)n+17
or

T(By) (*(E)) V" =1, (6.25)

which, in particular, implies Milnor’s Duality Theorem for the Reidemeister
torsion [M62]:

n

TR(Ea, €) Tr(EL, €)D" = £1. (6.26)

We interpret this result saying that the torsion, the analytic torsion and the
Reidemeister torsion of the complex (F,,T,) can be “factorized” in terms of
the torsion, the analytic torsion and the Reidemeister torsion of a (conve-
niently defined) part of the complex and a part of the torsion, the analytic
torsion and the Reidemeister torsion of its “adjoint” complex. This factoriza-
tion goes as follows. Let us consider the complexes (EEJ ),T .), obtained from
the complex (FE,,Te) by cutting at the j-th level, i.e.

T T T;
0— Eq To, D2 Ej_ fi-1 T, 1E;_1 —5 0. (6.27)

It is clear that the acyclicity of (E,,T,) implies that of (ES] ),T.), so the
torsion 7; = T(EEJ )) is well-defined. Considering the torsions of the truncated
complex and its “adjoint” complement, we can recover the torsion of the whole

original complex as shown by the following result.

Proposition 18 Let (E,,T,) be an acyclic chain complex of n + 1 wvector
spaces and (Eo,T)) the complex defined by the adjoint maps as before, then

71)n+1

Th(Es) @ 7 () = 7(E,), (6.28)

where T, (F,.) and 1} (F.) denote, respectively, the torsion of the complezes
(EX . 1)) and (ESP, T).
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Proof. From the acyclicity of the complex we have the decomposition
Ey = E, ® E}, where E; = T},_1Ey,_; and E}! = T;Ej11. We can consider
the whole complex (E,,T,) as the pasting of the complexes (Eﬁk),T o) and
(B T, ve

0 —>EOE>--~Tk—>2Ek1T—>Tk 1B — 0
&)
" Ty T
0 «— TyEp41 «— Epy— - E, 0.
(6.29)
Observe that
k—1 _
7e(E) € R)(det E) V" @ (det BJ) D
=0
and
n—k—1 )
) € ® (det Ep—j) g (det E,’C')(_l)nfkil.
7=0
By (6.25)

n—k—1

Tk(Ea) =7 (Ea) Y
where 7,,_i(FE,) denotes the torsion of the complex

Ty, T
0—>E Ek—i—l e B, 25 E, — 0,

hence the result follows from the equality
T(Ee) @ T _k(Ea) V" = 7(EL).
O

Corollary 2 The factorization of the torsion goes through to a factorization
of the Reidemeister torsion, i.e.

1)n+1

TII%(EM [e]) TII%*(EM [e])(i = TR(EM [e])7

where Tr(F, [€]), T8 (Fs, [e]) and 7" (E., [e]) denote the Reidemeister torsion
of the complexes (Feo,Ts), (Eﬁk),T.) and (Efn_k),T,*), respectively.

Proof. Follows from Proposition 4. O

Corollary 3 The factorization of the torsion goes through to a factorization
of the analytic torsion

Ti(E) - T (B) V" = T(E),
where T (E,), Ti(Fs) and T,* (Es) denote the analytic torsion of the complexes
(Fe,Ts), (Efk),T.) and (Esn_k),T,*), respectively.
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Proof. Follows from Proposition 5. It can be also seen directly from the de-
finition of analytic torsion, Proposition 6 and the equality det A} = det A} _,.
O

A particular example of this, relevant for our next applications, is the case
for which the duality operators are given by a Hodge-type operator.

Example 9 Let V be a vector space of dimension n and let us consider a basis
v = {v1,v2, ..., } of V such that the volume element voly = vi AvagA- - Av, €
det V' has norm one w.r.t a given inner product on V. Let AFV be the vector
space of alternating k-forms on V, and let v be an element in v. Define the
map

fo: ARV — ARy

Wi = Wi A,

(6.30)

whose adjoint (w.r.t the inner product in A¥V given by (a1 Aag A---Aag, B A
Ba A+ A By) = det({ci, Bj)i,j) ) is the map

= (=1 % fux : AFFIYV - ARV, (6.31)

v

being x the Hodge star operator
*: APV — ARy, (6.32)

defined by the equation (xw,n)voly = w An. It is clear that f? = f;2 =0, so
the sequences

0= A0V Loy o iy o pdy e py L e Ay g
(6.33)

and

0— APV L5 o Ay L iy B pay L poy g,
(6.34)
define acyclic chain complexes (AVs, f,) and (AVY}, f¥), respectively. Propo-
sition 17 and Corollaries 2 and 3 imply that

@ (@) = 1, (6.35)
(—1ynt

e (7h") = (6.36)

T (35T = T, (6.37)

where Ty, TE and Ty, denote the torsion, Reidemeister torsion and analytic tor-
sion of the complex (AV4, f.,) cut at the k-th level, and T}, TE* and T;,* denote
the torsion of the complex (AV}, f¥) cut at the (n — k)-th level, respectively.
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Remark. Example 9 gives a “finite-dimensional” model of antisymmetric
tensor fields (the case in which the manifold M reduces to a point in the de
Rham complex (1.53)). Notice that there is a relative sign difference between
the alternating product of determinants in (2.14) and (1.57) (see Proposition
7), which comes from the order in which the alternating product is taken.
Therefore, the finite-dimensional analytic torsion 7; of Example 9 coincides
only up to a sign (given by the size of the chain complex) with the finite-
dimensional “partition function” Zj({point}) = Z given by (6.21). In fact,
the exact relation between 75, and Zk is

Zy = (1),
and for the “duals” R -
Z = (1)

Then,

f Sx\ — *\ (—1)™ (71)k _1\k
ZuZp)7t = (B ) =TV

which yields back the finite-dimensional analog of Proposition 17.

In the next sections we generalize the previous elementary facts to cover, first
the case in which there is not only one complex but a family of complexes
(parametrized by a manifold), and then the case when the spaces arising in
the complexes are no longer finite-dimensional. We study in particular the
geometry induced by the factorization of the torsion —seen as a metric— in
those cases.

6.3.2 Factorization of the Torsion of a Chain Complex of Vec-
tor Bundles

Let us consider a chain complex (IEo,Ts) of vector bundles over X, i.e. a
collection {E; 5 X, 0 < k < n} of finite rank vector bundles over the
smooth manifold X, and the maps {7} }x=o,. » such that

0—>Egi>"'—>Ek_1Tk—71Ek£>Ek+1—>"'Tn—7%En—>0, (6.38)

is a chain complex fibrewise, where each T} must be understood as a bundle
map. As in Section 1.2.1 we define the determinant line bundle associated to
(IE., Ts) by detIE = @;_, (det Ek)(_l)kﬂ, where det Fj, is the determinant
bundle on X associated to the vector bundle Ej. If the fibration of complexes
is acyclic, which means that for all # € X the chain complex (E, 4, Te »-) given
by

To, Ty—1, Ty, Tn-1,
0— FEog—>++ = Ep1, — Epg—>Epp1o0— - — Epz— 0,



is acyclic, we can associate to each x € X a canonical element in the fibre
det IE;, namely the torsion 7,(F,) of the acyclic chain complex (Eez, 7o )
defined in (see Definition 6). We call the torsion of the fibration of chain
complexes the section defined canonically in this way, and we denote it by
7(IE,).

Consider the bundles

= P E, E- =@ E,

keven kodd

and the family of isomorphisms
n
= (Tha +T,)  Bf — B,
k=0

which induces a section det D" on the line bundle (det IE} )* @ (det IE ). Re-
call that for each x € X there is an isomorphism of vector spaces det IE* =
R (det E,f)(_l)kJr1 >~ (det IE;)*®(det IE; ) defining a vector bundle isomor-
phism

det E = (detIET)* @ (detIE™).

However, the sections 7(IE,) and det(ID") of such determinant bundles, do
not correspond under this isomorphism as shown by (1.46). The analytic tor-
sion —the modulus of the torsion— yields a natural metric on this bundle, and
Proposition 17 yields a factorization of this metric in terms of the metrics
defined on certain “subbundles” of it. We now describe the geometry of such
a determinant bundle, and extend the factorization of the metric to a factor-
ization of the curvature.

Let us assume that each vector bundle E;, =5 X is equipped with a her-
mitian structure and a connection, which we denote h; and V, respectively.
We consider the associated determinant bundle detIE = ), (det Ek)(_l)kJrl
where det Fy, is the determinant line bundle defined by Ej, 0 < k < n, with
induced hermitian structure ﬂk and connection V9 Fr from those of Ej. The
connections {VIFr}o ;. induce a connection V¥ on the bundle det IE
defined by

ydet B _ é <1 2 ® (VdetEk)(—l)kJrl o 1) |

k=0

and the curvature of V3¢ reads

n

Qdet E _ @ (_1)k+1Qk

k=0
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Setting
O =P ad o=
k odd k even

being QF the curvature on the bundle det B, 0 < k < n, it follows that
Qdet]E —_Qt o 0.

Considering now the formal adjoints 7} : Epi1 — Ej, defined by the her-
mitian structures hy on each bundle, and the induced complex of bundles
(IEe, T%), as in (6.24) we have

T*7 T* T*7 T*
0 E, 2= o = Epy —5 B, 22 By — - =% Eg— 0. (6.39)

Above each point x € X we have a factorization of the torsion in terms of the
torsion of the “subcomplexes” of (IE,, Te) and (IEe, T}) given by

(B, Ts) 0= FEy Ly oo B 2 By, — 0, (6.40)
and
T T*
(IE%, T3) 0T} Epyy <= Bpyy — -+ <= B, —0, (6.41)

respectively. Let us define the complex line bundles over X

k—1
det IE), = ®(det E@.)(*l)zﬂ ® (det E[’g)(*l)k
i=0
and
n—k—1 . k1
det IE} = ® (det By ) "V @ (det B 7
j=0

where Ej_and E}/ are point-wise defined by E}, = Ty_1Ey_1 and E}] = T} Ej1,
respectively. Then

det IE = det IE; ® (det TE)~D""" (6.42)

Proposition 17 (and its corollaries) on the factorization of the torsion and the
metric on these bundles (induced by the torsion) implies the following

Proposition 19 Let (IE,, Ts) be an acyclic chain complex of n + 1 vector
bundles over a smooth manifold X, and let T(IE) be the torsion of the associ-
ated determinant line bundle det IE, then the splitting (6.42) of det IE induce
a splitting on the torsion

n+1

7(IBs) @ 71 (Ee) V" = 7(IE,), (6.43)

where T, (IEq) and 7 (IE.) denote the torsion of the determinant bundles det IE,
and det IE}, respectively.
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As a matter of fact, this decomposition of the bundle det IE induces a decom-
position in the metric, connections and curvature. Notice that the modulus
of these torsions gives, via Corollary 3, a factorization of the metric (Propo-
sition 5) on det IE defined by the analytic torsion 7 (IE,) . The corresponding
splitting of the connection is given by

ydet B _ yydet By, o L, @1 ® et IEZ(*I)H+17

where 1; denote a product 1 ® --- ® 1, and yields a splitting of the curvature
————

i factors
Qdet E _ Qdet IE, D (_1)n+19det Ej
where the connections and curvatures on the determinant bundles are all the

induced from the original ones on the bundles Ej, (and on Ej and E| by re-
striction).

Let us stress the importance of Hodge decomposition
By =Ty 1B 1 © 1) By 1, (6.44)

that lies behind the above constructions. Using this decomposition we can
“glue” the two above subcomplexes into a single piece exactly like in (6.18),
namely

T Th— Ty Ty Ty -
0—FEy—% . 223 p OB By &2 2 R, —o. (6.45)

The splitting of the geometry result follows from this.

6.4 Splitting of the Geometry of Determinant Line
Bundles in Infinite Dimensions

In this section we generalize the results of the previous section to families
of elliptic complexes parametrized by a smooth manifold, which give rise to
complexes of infinite-rank vector bundles.

Let M ™ X be a smooth locally trivial fibration of manifolds, where X
is a smooth manifold of finite dimension and the fibre M, = 711741 () a closed
Riemannian manifold, for every x € X. Consider an acyclic elliptic complex
(IEo, Ts) of positive-order differential operators acting on sections of Hermitian
vector bundles over the manifold IM,

OHEO&)"'HEkfle_lEkiEk+1_>"'Tn—_>lEn_>o- (6.46)
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For 0 < k < n,let & — X be the infinite-rank vector bundle whose fibre above
x € X is the space of smooth sections & , = I'(M,, Ey ), where Ej, , — M,
denotes the restriction to M, of the Hermitian vector bundle Ej, =5 DM (we
are doing here the same assumptions about Ej, IM and X, for 0 < k < n,
that we do about E, IM and X in section 4.2.1). Associated to the family
{Ek »}zex there is a family of positive-order differential elliptic operators

Tk,:): : F(M1‘7 Ek,x) - F<M$7 Elf+1)7

or, equivalently, a positive-order differential elliptic bundle map Ty : & —
Ek+1 in the sense of Section 4.2. Thus, the acyclic elliptic complex (IE,, T%)
gives rise to an acyclic elliptic complex (&,, Ts) of positive-order differential
elliptic bundle maps on infinite-rank vector bundles over X, namely

O—>50E>--~%Sk_lklgk&é’kﬂ—w--n—7>15n—>0, (6.47)

where each map T}, corresponds to a family {7} ,}zex of elliptic positive-
order differential operators, parametrized by the manifold X.

Quillen’s construction associates to each positive-order differential elliptic
bundle map Ty (i.e. to the family {7} ,}rcx) a determinant line bundle
DetT; — X with smooth Quillen metric and, assuming the existence of a
unitary connection on &, one can equip DetTy with a Bismut-Freed connec-
tion, which is unitary for the Quillen metric. Moreover, as shown in Theorem
10, the curvature of this connection is “local”, i.e. it can be written as the
integral of a density on the fibre M/X.

From the determinant line bundles DetT} thus built, for each k, we shall
define the determinant line bundle of the elliptic family of acyclic complexes
(&, Ts). As in the finite-dimensional case, there are two possible constructions
for the determinant line bundle of the acyclic family. First, the alternating
tensor product of the determinant line bundles DetT}y, yields the line bundle
over X given by

n

L1 =R)(DetTy) D"
k=0

Second, the Zs-graded Hilbert bundle £ = £ @ £~ over X, where

=P & ad & =PE&,

k even kodd

gives rise to the determinant line bundle £ p = (Det ID")* ® Det D™, associ-
ated to the corresponding family of Dirac operators

DT : et - €T
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where
n

Df = Z(Tm +Tho®) : EF — &,
k=0

Dy = Df", and for each x € X, and &, and &, are the fibres over z € X
of the bundles £1 and £, respectively. Since we work with an acyclic com-
plex, there is a smooth isomorphism between the fibres of L1 and £ p which
induces a smooth isomorphism of the line bundles i : L1p — Lt (see e.g.

[BGSSS)).

Let | - |o, denote, for 0 < k < n, the Quillen metric on the line bundle
DetT) — X, and let det T} denote the canonical section of DetT}y, defined in
Section 4.2.2. Then, the natural metric on Lt

n
-1 k+1
I e = Q115 Y
k=0

is the analytic torsion, as follows from the definition of the Quillen metric
(4.30) and (1.57) (see also Proposition 7). Moreover, if we consider the canon-
ical section of L given by

n

7(Ea, Ts) = ®(det T,V
k=0

we have the following infinite-dimensional analog of Proposition 5 in Section

1.2.1

Proposition 20 Let T'(&, 5, Te ) denote the analytic torsion of the elliptic
complez (Ee z, Te ) defined in (1.57), then

I7(Ees To) (@)l = T(Eo s Toz)- (6.48)

Proof. 1t follows from (4.31) and the definition of T'(&, 5, Te z).
O

Remark. If M = M x X,ie. M, =M Vz e X, for a closed Riemannian
manifold M, taking for allz € X, Ey, = AKT*M®V,, Ty, = di, : QF — QFFL)
we recover the de Rham complex (2°,d,) of Example 2 as a particular case.
The factorization of the Ray-Singer torsion given in Proposition 17 can be then

be interpreted as a splitting in the metric of the determinant line associated
to (2°,d,).

Splitting of the Determinant Line Bundle

In the previous section we consider the splitting of the geometry of the de-
terminant line bundle associated to an acyclic complex of Finite-rank vector
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bundles, let us now do the same in the case of the acyclic elliptic complex
(&, T,), ant its associated determinant line bundle L.

Recall that, as in Sections 4.2.1 and 4.2.2, from the family of connections
{VFka},cx, for each 0 < k < n, we construct (by point-wise action) a con-
nection V& on the bundle £ — X which induces a connection on DetTy,
unitary for the Quillen metric |- |g ,; namely the Bismut-Freed connection
kaF) . Theorem 10 shows that, for each 0 < k < n, the curvature QFIS of the
Bismut-Freed connection Vf,g can be written as the integral of a local density
on the fibre M/X. This implies that the curvature of the connection V4T,
defined as the induced by alternating tensor product from the unitary con-

nections {Vfg Yo<k<n (Which is clearly unitary for the metric ||, . previously

defined) also has a local curvature, denoted by Q-T.

Let (Efk), T,) and (ka)*, T3) be the acyclic elliptic complexes given by

GR 0= & % oo — & 2 Ty &y — 0, (6.49)
and
* T*
&My 0 — T3kt k Eppr 1+ &= & 0, (6.50)

respectively. The following theorem shows that, in the infinite-dimensional
case of the complex (&,,T,), the splitting of the geometry occurs like in the
finite-dimensional case, and the locality property of the curvature is conserved.

Theorem 13 Let L1 — X be the determinant line bundle associated to the
family {Ee z,Ter}zecx of acyclic elliptic complexes. Then,

1. The Quillen metric factorizes according to (6.19), in terms of the metrics
(k)

of the determinant line bundles associated to the complexes E ' and

, as
)kt
o =1lol 1
where | - |y and | - |, denote the curvature of the determinant line

bundles associated to the complezes E.Uc) and ka)*, respectively.

2. The curvature splits
Qrﬁr = Q(k) D (—l)k—i_lQ)(kk), (6.51)

where Q) and Q?k) denote the curvature of the determinant line bundles

associated to the complezes 5£k) and ka)*, respectively.
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3. This splitting respects the locality properties of the curvature given by
Theorem 10.

Proof. This is again consequence of acyclicity, which induce a Hodge
decomposition like (1.54) of each level of the complex. Then

71)k+1

N
Lt = DeteP @ (Deté’.(k) ) ,

and this decomposition of the bundle L1 induces a decomposition in the
metric, connections and curvature. Thus, for example, there is a splitting of
the connection

) (kyxy (1)1
ver = v& g1, ol ® (vf-k )

)

where 1; =1 ® --- ® 1, and the connections V% () and V& (k), on the deter-

i factors
minant bundles Deté'.(k) and DetS.(k)* , respectively, are the induced from the
original ones on the bundles & (and on & and & by restriction), so 1. and
2. follow. In order to prove 3., i.e. the locality of the curvatures {2 and Q?k)
of the Bismut-Freed connections on the determinant line bundles associated
to the complexes (5.(16), T,) and (5.(k)*), respectively, we have to prove in first
place that the splitting do(es not affect the ellipticity of the complexes. This is

indeed the case because E.k)* and S.UC) are defined by point-wise restriction on
the range of the family of maps {7} ;}sex. On the other hand, the construc-

tion of the Bismut-Freed connections on the bundles DetE.(k) and Deté’.(k)*
is carried out from the families of connections {Vj ;}»ex on the finite-rank
vector bundles Ej. Then, Proposition 19 shows that this splitting gives rise
to a honest decomposition of the corresponding connections by restriction,
so that once again the pointwise nature of the definition of the connections
on the infinite-rank vector bundles carries out, as well as the corresponding
Bismut-Freed connections on Deté’.(k) and DetE.(k)* defined from it. The two
elliptic complexes (ka), T,) and (5.(k)*) are “independent” one of another be-
cause of acyclicity.

O

”

Concluding Remarks

1. Let m : M — X be a holomorphic submersion of complex manifolds,
with compact fibre M/X, W — IM a holomorphic vector bundle with
connection and g™ a Kaehler metric on TIM. Consider the associ-
ated family of Dolbeault complexes (2*(M,, W,),d%), parametrized by
X, where QF(M,, W,.) denotes the space of smooth sections of the bun-
dle AF(T*ODM @ Wy, ). In [BGSS8] an explicit local expression for
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the curvature of the Bismut-Freed connection on the determinant line
bundle associated to this family is given, namely

0% = 27 [/ TV M)cn(v'™), |
M/X @)

where Td(VT ™) and Ch(V") denote the Todd form of T'IM and the
Chern form of the exterior bundle W, respectively.

. The splitting in the geometry of the determinant line bundle stated in
Theorem 13 arises essentially because of the acyclicity assumption of the
complex. In the non acyclic case the situation is rather different, since
no canonical splitting is given from the Hodge decomposition. On the
other hand, there is no canonical metric on the determinant line bundle
associated to a non acyclic family of complexes. As a matter of fact,
there are several metrics on the determinant line bundle, defined from
the induced metric on the spaces of harmonic sections by the Hermitian
structures on the families of bundles, but in all the known cases these
metrics depend on the Riemannian and Hermitian structures used to
define them (recall that in the acyclic case the analytic torsion is a
topological invariant).

. Holomorphic analogs of topological gauge theories were introduced by
A.D.Popov in [Pol]. There, Chern-Simons and BF topological theories
are considered on complex, kaehler and Calabi-Yau manifolds. Among
the natural holomorphic extensions of the antisymmetric field theories
considered in this work are the given by families of complexes of (p, q)-
forms on complex manifolds, and holomorphic locally Kaehler fibrations
of complex manifolds in the sense of [BGS88]. The existence of an
explicit local expression for the curvature of the Bismut-Freed connection
of the determinant bundle in the latter case rises the question in how far
the factorization results developed here can be relevant for such theories.
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Appendix A

Pseudodifferential Operators

In this section we give a brief presentation of the basic tools in our frame-
work, namely classical pseudo-differential operators and particularly elliptic
ones, their logarithms and their complex powers, we shall follow [G95] [Sh01].

Classical elliptic pseudo-differential operators. Let U be an open sub-
set of IR™. Given a € C, let us denote by S*(U) the set of complex valued
smooth function
c:UxR" — C
(,§) — o9
satisfiying the following property. Given any compact subset K of U and

any muti-indices v = (v1,...,7) and 8 = (B1,...,6,) in IN", there exists a
constant C’fﬁ such that

|DYDlo(x,8)] < CXy(1 +¢)) ™A,

for all z in K, £ € IR", where Ra is the real part of «, | - | denotes the norm
in R" and |B] = 61 + ... + Bk. An element of S¥(U) is called a symbol of
order a.. Let SU)(U) denote, for m € Z™, the set of symbols of order @ with
Ra < m. A smoothing symbol is a symbol in

s—w)= () S“Pw)
ke IN

and the relation
o~ o0—aeS PU)

defines an equivalence relation on S(U).

The principal or leading part of the symbol o € S*(U) is defined by
o(z,t§)

oa(z,&) = t£+moo -
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A symbol of order « is called a classical symbol if there exist o,—; € S*I(U),
j € IN, such that

0'(.’1},5) >~ Zaa—j('rag)
=0

which are positively homogeneous, i.e.
Ta-j(T,t€) = 1" Vaa_j(z,€) Vte RF.

Following Kontsevich and Vishik [KV], we say that a classical symbol lies in
the odd-class if the positively homogeneous components o,—; are moreover
homogeneous i.e.

Oaj(a,t8) =t Joq_j(x,€) VtE R.

To a symbol o € S*(U) we associate a pseudo-differential operator A of order
aon U, ie amap

A:C®(U) — C®(U)
defined by
Auw) = [ exofil oo i) (A1)

where u denote the Fourier transform of the complex valued smooth funcion
u with compact support in U. Thus, Aw can also be writen as

Auw) = [ expfiler - ot Quindyds,  (A2)
R"xU
(,) denoting the inner product in IR".

The various classes of symbols introduced previously induce corresponding
classes of pseudo-differential operators. A classical pseudo-differential oper-
ator is a pseudo-differential operator such that its symbol has components
given by classical symbols, an odd-class classical pseudo-differential operator
is a classical pseudo-differential operator such that its symbol has components
given by symbols in the odd class and a smoothing pseudo-differential opera-
tor is a pseudo-differential operator given by a smoothing symbol. Smoothing
operators are representable by smooth kernels, i.e. A is smoothing iff there
exists kg € C°°(U x U) such that, for any v € C5°(U),

Au(x) = /UkA(ac,y)u(y)dy Vo e U. (A.3)

The pseudo-differential operator A with principal symbol o4 is said to be el-
liptic if o4(z,§) # 0 for all (z,§) € U x R™ — {0}. Ellipticity is not altered
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when adding a smoothing symbol to the symbol of an elliptic operator.

Let us denote by W*(U) the space of all classical pseudo-differential operators
of order a on U, and by ¥(™) (U ) the space of all classical pseudo-differential
operators of order o with Ra lower or equal to m. Thus, a smoothing pseudo-
differential operator is an operator in

v = () vW(),
ke IN

and there is an exact sequence
0— U°U) - ™ (U) - s (U) — 0.

There is a notion of product of two pseudo-differential operators and the space
of classical pseudo-differential operators on U, defined as

v() = |J v o),

meZl

is an associative algebra [Sh01]. The product of two elliptic pseudo-differential
operators is an elliptic pseudo-differential operator.

An ordinary differential operator of order d € IN is defined by a polynomial
symbol (the polynomial being of order d) in £ of the form

O-(xvg) = Z aa(x)fa) (A4)

la|<d

where the a, are smooth functions on U and £ = &7 - €52 - - €9, for £ € R"
with components (&1, ...&,). Then the corresponding differential operator is

given by
NP o o
Du(e) = 32 (~)/laa(@) sy ). (4.5)
1 k

lal<d

and its principal symbol is op(x,§) = Z|a\:d aq(x)€“. Hence, ordinary par-
tial differential operators of integer order are examples of classical pseudo-
differential operators in the odd class.

Pseudo-differential operators acting on sections of vector bundles.
The definition of pseudo-differential operators can be locally transfered to
smooth manifolds as follows. Let M be a closed (i.e. compact and without
boundary) oriented smooth Riemannian manifold with dimension n, we say
that A : C°(M) — C*°(M) is a pseudo-differential operator of order o on
M, if for any local chart (V,¢) of M such that

o:V-U
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is a diffeomorphism of V' with an open set U in IR", the operator Ay defined

by the diagram

oWy A oo

¢*1 T¢* (A.6)
cowy X o)

is a pseudo-differential operator of order v on U.

Considering matrices of pseudo-differential operators on M we can define
pseudo-differential operators acting on sections of vector bundles over M,
the context in which we shall work in what follows. Consider a manifold M
as before and consider two hermitian vector bundles £ and F over M, with
rank k and m, respectively. A pseudo-differential operator of order a acting
from the space of smooth sections of E to the space of smooth sections of F',

A:T(E) — I(F)

is a linear operator A which can locally be expressed as a (m x k)-matrix of
pseudo-differential operators of order o over M, i.e. for any local chart (V, ¢)
of M and smooth functions f,g with compact support in V', there are local
trivializations

Dp: Ely — ¢(V) x CF

and
Op: Fly — (V) x C™,

such that the map

Cr(@(V),C") —  C=(6(V),C™)

U — Tpo (I)F(gAf)(I)El u, (A7)

where 7 denotes the projection np : F' — M, is a pseudo-differential operator
of order «, and hence its symbol takes values in S*(¢(V)). A change in
the local trivializations used to define the pseudo-differential operator does
not change its order, it only changes its symbol by a smoothing one. The
symbol is obviously defined locally, only the principal symbol of the operator
transforms under a change of trivialization as a section of the vector bundle
Sym(@"T*M) @ Hom(E, F'), where Sym(®"T*M) denotes the symmetrized
n! power of the cotangent bundle to M. When E and F have the same rank,
we say that A is elliptic iff its principal symbol o4, in any local coordinate
representation on M, is a non-singular matrix for all z € U, £ € T*M — {0}.

Example 10 Consider a closed Riemannian n-manifold M, and let QF (M)
denote the space of smooth k-forms on M, for k=0,1,...,n. Let

di : QF (M) — QFFL (M)
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be the de Rham exterior differentiation operator. Then, for all 0 < k < n, dj
is a differential operator of order 1, and its symbol

04 (m,€) : AT M — AR

is simply left exterior multiplication by £. It is elliptic since og, (m,&) is an
isomorphism at m € M for each non-zero & € Tx M.

Let us denote by U(E, F) the space of all classical pseudo-differential oper-
ators of order « taking smooth sections of the vector bundle E to sections of
F, and by \If(m)(E , ) the space of all classical pseudo-differential operators
of order lower or equal to m. The symbol set S (m)(E, F) is defined by the
exact sequence

0— U °(E,F) - ¥™(E F) - S™(E,F) -0,

where U~%(E, F) = o Y ¥(E, F). When E = F, we shall denote these
spaces by ¥*(E) and W(™)(E), respectively, and when F is the trivial bundle
M x © by U*(M) and W™ (M), respectively. When M is compact, there is
a notion of product of two pseudo-differential operators and

v(E)= | (B

meZ

defines an associative algebra [ShO1]. As before, the product of two elliptic
pseudo-differential operators is an elliptic pseudo-differential operator.

Notation. Let E be a vector bundle above a smooth n-dimensional Rie-
mannian manifold M, and let CI/(E) denote the algebra of classical pseudo-
differential operators acting on smooth sections of E. We shall denote by
ElU(E), Ell*(E), Ell, ,-0(E), BlUz%. o(E) and Ell, ,_,(E) the class of ellip-
tic, invertible elliptic, invertible elliptic with strictly positive order, self-adjoint
elliptic and positive self-adjoint elliptic operators with strictly positive order

acting on sections of F, respectively.

Admissible elliptic pseudo-differential operators. If M is compact, and
we shall asume that in what follows, the spectrum of A € Ell}, ;- ,(E), de-
noted spec(A), consists of isolated eigenvalues with finite multiplicity [Sh01].
There is therefore a disc Dy of positive radius around the origin which does
not contain any point of spec(A). We shall say that A has a spectral cut Ly
if there is a ray Ly = {\ € C,arg(\) = 0} in the complex plane which does
not intersect spec(A). Such an operator will be called admissible and we shall
denote by Ad(FE) the set of admissible operators acting on sections of E. Any
element of EIl} , (E) such that the matrix given by its principal symbol
has no eigenvalues in some non empty conical neighborhood A of a ray in
the spectral plane is admissible, since in that case at most a finite number

114



of eigenvalues of the operator are contained in A [Sh01]. We have following
inclusions

EBlly . 0(E) C ElIGEo(E) C Ad(E),

where the superscript * means that we are restricting to the subset of invert-
ible operators in each one of the considered classes.

Complex powers and logarithms of elliptic operators. Let A € Ad(FE)
with spectral cut Lg. For Rz < 0, the complex power A of A is the bounded
operator on any space H*(FE) of sections of E of Sobolev class H®, defined by
the contour integral
)
Aj=— [ N(A-xD)"tdx
ey RYCEEY

where I'g = I'1 g UT'29 UT'39 is the path on the complex plane given by
Tig={A=rer >R} Tog={\=Re?0>¢>-0} I'sp={\=
re!0=2m) p > R}, R being the radius of a disc around the origin which does
not intersect spec(A). Here A* = exp{zlog A} with log A = log |A|+if on T g,
and log A = log |A| 4+ i(6 — 27) on I'z p.

The definition of Aj is independent of the choice of R but depends on the
choice of the spectral cut Lg and yields, for any z € €, an elliptic opera-
tor of order z-ord(A). When z = —k, with £ € IN, A® coincides with the
usual operator A= of order —k - ord(A). The operator AZ is independent of
the choice of 8 only if A is essentially self-adjoint, in which case it coincides
with the corresponding complex power defined using spectral representations.
However, in the following we shall focus on operators in Ell(‘; 4>0(F) and use
the principal branch of the logarithm, taking 8 = 7, and dropping the mention
of 4.

For arbitrary k € ZZ, the map z — A} defines a holomorphic function from {z €
€, Rz < k} to the space of bounded linear maps from H*(E) to H*~*ord(4)(E)
for any real s. We set the logarithm of A € Ad(E) to be

0
logg A= —A}
0g9 8Z 0 0 Y

which defines a non classical pseudo-differential operator of zero order, and
hence a bounded operator from H*(FE) to H* ¢(E) for any € > 0 and any
s € TIR. In local coordinates (x,£) on T*M, the symbol of the operator
logg A is the sum of ord(A) - log|¢| Iz with the symbol of a classical pseudo-
differential operator of order 0. Hence, although the logarithm of an injective

admissible elliptic classical pseudo-differential operator with spectral cut Ly
is not itself a classical pseudo-differential operator, for two operators A, B €
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Ad(FE), admitting spectral cuts Ly, and Ly,,

logy, A logy, B
ord(A) ord(B)

e Cl(E).

In the same way, for A, Q € Ad(FE), the bracket [log @, A] is a classical pseudo-
differential operator.
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Appendix B

The Partition Function in
Quantum Field Theory

The Action in Classical and Quantum Field Theory

A field theory, from a physical point of view, is defined by a (finite-dimensional)
space-time manifold M (with a Riemannian or Minkowskian metric structure),
a target space F' (usually a manifold playing the role of fibre in a given vector
fibration E over the space-time manifold), the set of fields ® = I'(F) (vector
valued functions or more generally sections of the above mentioned fibration),
and relating M, E, F' and ®, and defining the dynamics of the theory, a func-
tional on the set of fields, S : ® — IR (or €), called the Action. Aditional
information cames from the possible symmetries of the theory, that can be
incorporated by means of group actions (on the space-time, the target space
or the total space of the fibration) or by symmetries in the functional form of
the action (see Freed and Deligne Lectures in [Dea99]).

The action is taken in general to be a functional of the form

S = /M L(.96) dyuas,

where duys denotes the volume element defined by the metric on M and L
is the lagrangian density of the theory, function of the fields (and its deriv-
atives). Classical dynamics of the fields is determined by the solution to a
variational problem, or “least action principle” [BS80] [IZ88]. This means
that the physical fields ¢, are those described by the solutions to the extremal

problem g—g . = 0 or, equivalently, the Fuler-Lagrange equations of the field.
P
A quantum field is a generalized function gZ; taking values in a space of op-

erators acting on a Hilbert space, satisfying some particular axioms (which
we shall no discuss here, see Kazhdan’s Lectures in [Dea99]). Thus, from an
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empty state |0) in the Hilbert space, all the dynamical information of the quan-
tum field theory can be obtained through the quantities (0] : ¢(z1)p(x2) - -
qg(xn) : |0), called correlation functions, which represent probability ampli-
tudes, the : : denoting a decrasing temporal order in z,xs,...,z, € M.
From a path integral point of view, quantum dynamics can be also entirely
defined by the action, this time through the corresponding path integrals. The
basic idea in functional or path integral quantization is to consider that the
probability amplitudes can be expressed in terms of integrals over the space

of all the possible dynamical trajectories of the system, i.e.
. - ~ 1
(0] - p(z1)p(x2) - - p(n) - 0) = ZOA¢($1)¢(:U2) - @(an) exp{=5(9)} [De],

where [D¢| denotes a formal measure on the space of all the fields ¢ and S
the classical action of the theory under consideration. We sall then consider
generating functionals, i.e. formal objects of the form

Z(S,F) = ~ /@ F(6) exp {—~5(6)} [Dd), (B.1)

Zo
where F' a functional on the space of fields. Here Z, denotes the partition
function of the theory, given by equation (B.1) when F(¢) = 1, a normaliza-
tion factor in order to have (0|0) = 1. ®b eing tipically an infinite-dimentional
manifold , the formal Lebesgue-type measure on ®, [D¢], is ill-defined in gen-
eral.

Perturbative Expansion and Stationary Phase Approximation

An action functional generally contains two kinds of terms: kinematical and
interaction terms. Hence, it can be wirtten as S = S, + 5;, where S, denotes
a quadratic (kinematical) functional in the fields and S;, assumed to contain
all the information about the interactions of the fields. Thus, the formal
integral in equation (B.1), through a formal series expansion of the exponential
containing the interaction term, can be written as

o0

—i - —iS, 1 Q.
| P@es oo = [ P (Z S S»’“) el (B2)

k=0

giving the whole path integral as a sum of (infinite-dimensional) Gaussian
integrals. Even if Z,, [, and [D¢] make no sense as mathematical objects,
physicists make manipulations of the whole object imitating the well-known
techniques and results about Gaussian integrals in finite dimensions (change of
variable formulae, Fourier transforms, ...), obtaining numerical results which
are in extraordinary accordence with experimental measures. This indicates
that, even if the heuristic object has no mathematical meaning, a well defined
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mathematical object must be behind it.

Perturbation theory, through Feynman rules, shows how to associate to each
term in the formal sum (B.2) of heuristic path integrals a well-defined integral,
which sometimes diverges but can be made finite by the use of renormalization.
A great amount of physical information can be so obtained perturbatively.
However, not less relevant (physical and mathematical) information can be
obtained from the theoretical study of the formal object (B.1), through the
constructive point of view or the so-called non-perturbative methods. Con-
structive field theory tries to make sense of path integrals as properly defined
integrals, i.e. through the study of measure theory on functional spaces, con-
sidering each single model and giving a sense to the corresponding measure,
partition function and generating functionals. The idea, following the Wiener
measure approach in stochastic analysis, is to consider the formal measure
thogether with the exponential of the quadratic part of the action as defining
a Gaussian measure dug on the corresponding functional space, thus taking of
the fact that Gaussian measures (contrary to Lebesgue measures) on infinite-
dimensional spaces do exists. It has been developed by many physicists and
mathematicians —E. Nelson, A. Jaffe, S. Albeverio and many others— and has
lead to many interesting results in theoretical physics as in stochastic analysis
(see e.g. [AIHT6][AL97]).

Non-perturbative methods have lead to not only physically relevant results,
but also —and most at all- mathematical results, in particular about the geom-
etry and the topology of the underlying components of the field theoretical
description (the manifold playing the role of space-time, the fibration,...). In
the last twenty years the study of these methods, initiated by the pionier-
ing works of A.Schwarz and E. Witten, and developed by many others after,
gave rise to a whole branch of mathematical physics called Topological Quan-
tum Field Theories (for a review, containing abundant reference to the orig-
inal bibliography see [BBRT91]). Regularized determinants of differential or
pseudodifferential operators acting on infinite-dimensional vector spaces are a
fundamental component of this point of view, where they model the partition
funtions.

In the following section we shall consider the main facts about finite-dimensional
Gaussian integrals which promped some of the formal manipulations of heuris-
tic path integrals.

Gaussian Measures and Fourier Transforms on Finite-dimensional
Vector Spaces

Let V' be a n-dimensional oriented vector space, with inner product (,) and
a basis {v1, va,..., v,} such that

vl/\vg/\“-/\vn:vol(v),
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where vol(y/y (also denoted dv) denotes the oriented volume element on V, or
“Lebesgue measure”, defined by the metric induced on V' by its inner prod-
uct. The Gaussian approach we follow here is based in the finite-dimensional
Gaussian integral

/ e"290) gy = (det TQ)_%, (B.3)
1%

where Q(v) = (Tv,v) is a symmetric and positive quadratic form defined on
V.

To each inner product on V there is an associated Gaussian Measure given

by
1
w(X) = - / e_%<”’”>dv.
(2m)2 Jx
Let S(V) denote the Schwartz space of rapidly decreasing smooth functions
on V. Then the Fourier Transform of a function f € S(V) is the function
f e S(V*) given by

flx) = b v)e HT) gy
i) = Gy [, Fwe e

The Fourier inversion formula

implies that F2(f)(v) = f(—v), where

F:8(V) — 8(V¥
f o= I

For example, the Fourier transform of the function f(v) = e (Av.Av) (where
A is a nonsingular and symmetric matrix) is

Flo) = g o3
(2m)2 det A

The Fourier Transform of a (positive) measure p in V' is the function on V*
(identified with V' through the inner product (,)) defined by

@) = [ e duto) (B.4)
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The Stationary Phase Method for Finite Dimensional Path Integrals

The stationary phase method studies the asymptotic behavior of integrals of
the form

I(h)—/ eés(m)a(:n)dx,
%

when h — 0, where S : V — IR is a C* function and a € C°(V, ),
and V is a n-dimensional vector space. The constant # is the analog to the
Planck constant in path integrals, and the limit A~ — 0 physically means
taking the classical limit of the theory. The following Proposition shows that
the main (asymptotic) contribution to I(h) come from the non-degenerate
critical points of S.

Proposition 21 [Hor| Let {z1,x2,...,zm} € Supp(a) be the only non-degenerate
critical points of S(z) = (T°z, ), then for each N € Z*

L “sign(9) N
I(h) = (2mh)2 > { > o <D’“ ) (z;)hF } +O(rV*T+32), (B.5)
=1

| det TS|z P

where D is the differential operator given by

DZEZTS_l 9 i

It follows from this that

/ensm (2)dz ~ m%z
1%

i=1 ’ det TS| 2

“sign(S

which, in the case of a positive definite matrix T° give us

m

/ ei5@a(z)dr ~ (2rh)3 Y (det TS) 2a(z).
\%

=1

Notice that in classical mechanics the critical values of the action are the
classical trajectories (or fields). Here, if there is only one non-degenerate
critical value at x,

/ e 5@ g(2)dz ~ (27h) 3 (det TS) " 2a(z,),
1%

so, in the limit A~ — 0, the quntum dynamics can be seen as a perturbation of
the classical dynamics. Moreover, recall that in our finite- dlmensional model,
the partition function of the path integral I(h) is (det T%)"2. Applying this
to the heuristics of the path integrals, the stationary phase method shows that
from the partition function of the theory the “semiclassical” information of
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the field theory can be obtained through perturbative methods [IZ88]. Thus,
the computation of many path integrals in field theory are done from the
partition function of the theory, i.e. generalizating the well-known properties
of purely Gaussian integrals in finite dimensions (change of variables, Fourier
transforms,...), where they can be given a mathematical meaning.
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