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 I.- Differential Geometry for Physicists: 

1.- Manifolds 

2.- Tangent space; tangent bundle; vector fields and flows 

3.- p-forms; integration. de Rham cohomology. Other tensors. Metrics 

4.- Connections in Tangent Bundle. Levi-Civita connection in (M, g) 

5.- Curvature, and tensors: Riemann, Weyl, Ricci, Scalar curvature      

6.- Homotopy groups and Spin groups. 

 

 II.- Holonomy: 

1.- Parallel transport and holonomy 

2.- Reduction theorem and holonomy theorem (Ambrose-Singer) 

3.- The different types of holonomy: O(n) and SO(n) (for reals |R) 

4.- Almost complex and Complex manifolds; symplectic; Kähler manifolds 

5.- U(n) (Kähler) and SU(n) (Calabi-Yau) holonomies 

6.- Quaternionic and hyperkähler manifolds (|H): holonomy q(n) and Sq(n) 

7.- Exceptional holonomy and octonions O: G2 and Spin(7) manifolds. 

 

 III.- Higher Dimensions and Strings 

1.- Higher dimensions in physics: Kaluza-Klein reduction 

2.- Physics in ten dimensions: The Five SuperString theories 

3.-Membranes, M-Theory  (11-dim)  and F-Theory (12 dimensions) 

4.-Standard (SM) & Minimal Supersymmetric Standard Model (MSSM). 
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 IV.- Some issues on Compactification 

1.- The general problem of Compactification 

2.- Compactification from the Heterotic String H-E: Calabi-Yau  3-folds 

3.- Compactification from M-Theory: G2 holonomy manifolds 

4.- Compactification from F-Theory (12-dim); K3 and del Pezzo surfaces. 
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  I.- Differential Geometry for Physicists  

 1&2.- Manifolds and Vector Fields. A d-dimensional Manifold M is 
a topological space covered by open sets Ui, each homeomorphic to an 
open set Vi in |Rd space; if φi: : Ui →Vi, φi(P) = {x1, x2, …, xd } are the 
coordinates of point P ∈ M in the system {Ui, Vi}. If  P ∈ Ui ∩ Uj, the 
functions  φi o φj

-1 are supposed to be C∞ as maps from |Rd to Rd. 

 We recall: M is compact if any open covering {Ui} has a finite 
refinement. M is connected if one can go continuously from any point to 
another. M is simply connected if any loop (= closed path) drawn from any 
point is contractible (shrinks to the point continuously). 

 Call E(M) the set of C∞ functions f: M → |R; it is a commutative, 
∞-dim |R-algebra; a vector v in P is the operator v: f → ∂f/∂n|P, where ∂f/∂n, 
the directional derivative along v, can be expressed as Σ ai ∂/∂xi. The set of 
vectors in P make up the tangent space at P, TP(M). The union of all TP, P 
in M, make up the (total space of) the tangent vector bundle T(M): 

   τ: Rn  → T(M) → M            (I-1.1)     

 This is a vector bundle, as the fibres are vector spaces; M is the base, 
TM = T(M) the total space, Rn (=F) is the fibre. If {ei}P is a frame in P ( a 
base of TP), the totality of frames in P for all P make up the frame bundle, 
which is a principal bundle, as the group GLn(R) acts freely in the fibers: 

   GLn(R) → B → M  Principal Bundle    
       ↓         ||       
        |Rn   →  TM  → M Associated Vector Bundle           (I-1.2) 

  (Cross) Sections s in a bundle π: E → M are maps: point P in M to 
point u in the fibre over P, u ∈ π-1(P).  Call Γ(τ) the set of sections of TM: a 
section defines a vector field X; in coordinates (ξm are functions in E(M) ) 

    X = ξm ∂/∂xm                (I-1.3) 

 A vector field X in a manifold M defines a flow, or set of curves 
tangent to X: if γ: xμ(t) is such parameterized curve, the system of 
differential equations of the flow are 

   dxμ/dt = ξμ,       μ: 1, 2, …, n          (I-1.4) 

 The set of all vector fields L(M) = Γ(TM) has a rich structure: on 
one hand is a ∞-dim Lie algebra upon commutation, [X, Y] := XY – YX 
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(notice the second-order derivative terms cancel), and it is also a derivation 
algebra of the commutative algebra of functions E(M), as Leibniz´rule 
holds, X(fh) = (Xf)h + f(Xh): the two structures are related, as algebras of 
derivations are Lie´s. L(M) is also, as any type of tensors, an E(M)-
module, meaning fX=Y linearly. 

 

 3.- p-forms. Other tensors. Metrics. de Rham cohomology.  Let 
T*P(M) be the dual vector space to TP(M), and T*M := ∪P T*P (M) the 
union for all P: it is the cotangent bundle, still a |Rn-vector bundle. Sections 
θ in it are called 1-forms, θ  ∈ Γ(T*M); so θ (X) is a function f ∈ E(M). 

 Define now a map d: E(M) → Γ(T*(M)) by 

    df (X) = Xf,           (I-3.1) 

called the differential of a function. Apply to f = xμ, the coordinate 
functions, to obtain 

    dxμ (∂/∂xν) = δμ
ν             (I-3.2) 

so dxμ is the dual base of ∂/∂xμ. Hence, θ := pμdxμ is the general dual field 
of  a vector field, called a 1-form.  

 Dual to the rôle of vector fields  X as derivatives, 1-forms θ serve to 
integrate: let γ be a path, a sort of 1-dim subspace of M; then 

   ∫γθ := ∫t0 t1 pμ(xν(t)) dxμ/dt · dt         (I-3.3) 

is the integral of 1-form θ on the curve (path) γ: it does n ot depend on 
parameterization γ: xν(t)  The set of sections of the cotangent bundle ⇔ set 
of 1-forms are written also Ω1(M) (=Γ(T*(M))). 

 If V is a vector space, call T(V) the tensor space over it. T0
0 are the 

scalars (field numbers), T1
0 the vectors, T0

1 the dual forms, T0
2 the bilinear 

forms, T0
n include the volume forms, etc. So one can form the tensor 

bundle TM on a manifold, by union of the tensor vector spaces on each 
point: 

  GLn(R) → B → M        
      ↓          ||        
      T(V) → TM  → M          (I-3.4) 

whose sections define tensor fields on the manifold, of paramount 
importance in physics & maths. We shall consider two special types only, 
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p-forms and metrics. Each type of tensor, say Tp
q, with dim np+q, where dim 

M = n, is an E(M)-module. 

 Let us call ∧T0
2 the antisymmetric ⊗-products, formed by taking two 

1-forms in a point and the wedge (∧ = antisymmetric) product: a ∧ b := 
(a⊗b –b⊗a)/2; generalizing,  sections of ∧T0

p are called p-forms. For 
example, a 2-form is expanded as 

   ω = pμν dxμ∧dxν , etc.          (I-3.5) 

 In each point the totality of forms make up an algebra of Σk {n, k} = 
2n dimensions. The p-forms (as tensor fields) are closed under the wedge 
product; the exterior differential operator d: 

   d: Ωp(M) → Ωp+1(M)          (I-3.6) 

is defined as an antiderivation of the wedge product, d(ω1∧ω2) = (dω1) ∧ω2 

+ ω1∧(−deg 1) dω2, with the “correspondence” df as above, also d(cons)=0; 
and finally, by 2-nilpotency, d2 = 0. Notice the wedge algebra of even p-
forms is commutative. 

 Functions, lying in Ω0 , or 0-forms, “integrate” in points, ∫Pf = f(P). 
1-forms integrate on curves, ∫γθ; 2-form in surfaces, so ∫∫S ω makes sense 
(e.g. in string theory), etc.: n-forms integrate in volumes. For a submanifold 
N with boundary ∂N, it is 

    ∫∂N ω = ∫N dω            (I-3.7) 

which is called Stokes´ theorem. 

 A p-form is closed if dω=0; it is exact if ω = dθ (of course if exact is 
closed, as d2=0); in |Rn any closed form is exact (Poincaré lemma), but in 
general, the closed nonexact forms give topological information: this gives 
rise to the de Rham cohomology of the manifold M: 

 Call Zp = Zp(M) the p-cocycles (closed forms) of M, and Bp = Bp(M) 
the p-coboundaries  (exact forms) of M. Also, call   Hp(M, |R) = Zp/Bp 

 Dim Hp(M, |R) =   bp(M) < + ∞,      p: 0, 1, … , n =dim M.     (I-3.8) 

 Hp(M, |R) are called the p-th (real) cohomology group of the 
manifold M; the dimensions bp are the Betti numbers, and are topological 
invariants of the manifold: de Rham theory, suggested by É. Cartan, is an 
“access to the topology of manifolds via exterior forms”. It is called co-
homology, because the original definition of homology, H*, makes use of 
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cycles and boundaries as given by a triangulation of the manifold 
(topological space, in general). 

For example, for Rn, b0=1, all others = 0. b0 measures # of components. 

 For Sn, we have: all b´s zero except b0 = bn = 1. For the n-Torus, bk = 
{n, k}; etc. For a compact oriented space, bk = bn-k (Poincaré duality). 

 Metrics. In a vector space V, a bilinear form b is a T0
2 tensor; it is 

symmetric (antisymmetric) if b(v, w) = ± b(w, v); it is regular (or 
nondegenerate) if the induced map b*: V → Vdual is isomorphism 
(equivalently, in any base b becomes a matrix (b), with det (b) ≠0). 

 A Riemannian manifold (B. Riemann, 1854) is a manifold endowed 
with a symmetric regular bilinear field, called the metric field, and definite 
(positive); in coordinates, 

   g;  g|U = ds2 = gμν dxμ dxν          (I-3.9) 

and it serves to define areas: length of curves, areas o surfaces, volume of 
manifolds, etc. Positivity, gP(u, u) ≥ 0, is relaxed in the Lorenztian case. 

 Any manifold admits a Riemann  metric:  

      O(n)      
       ↓      
      GL(n) → B(M) →M   
       ↓      
      |RN ------ E ----- M       (I-3.10) 

where N = dim GL(n) – dim O(n) = n2 – n(n-1)/2 = n(n+1)/2: 

 As the |RN space is contractible, the associated bundle ---- is trivial, 
hence the GL-bundle reduces to the O-bundle (this requires M 
paracompact, but this is included in the definition of M); and, of course, as 
O(n) is the isotropy group of a symmetric regular positive bilinear form, 
any manifold can be endowed with a Riemann metric; but not any manifold 
admits a metric with signature ≠ 0. 

 Riemann spaces were introduced in physics by Einstein,1915 (with 
signature (n-1, 1; n=4)). The idea (anticipated by Riemann and considered 
also by Clifford) is that the geometry of our space(time) is not fixed a 
priori, but determined by the matter/energy content of the universe. Metrics 
with g not definite are as easy to handle as with g positive; the crucial 
property is regularity, i.e. det (g) ≠ 0. 
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 A symplectic manifold (M, ω) is a manifold M endowed with a 
regular 2-form ω. This requires, at least, M to be even dimension and 
orientable: if A = − tA and det A ≠ 0, dim A is even; on the other hand ωn is 
a volume form, hence M must be orientable.  

 The typical domain of the symplectic geometry is classical 
mechanics: let us recall the construction of Hamiltonian mechanics: let H = 
H(q, p) the Hamilton function, and let ω = dp ∧dq (= dp dq) the symplectic 
form. Construct now the row 

   H → dH → ω-1(dH) :=XH  → (integ.) τt
H,    the flow or motion.     (I-3.11) 

 As ω is regular, one takes inverses, to convert 1-forms θ in vector 
fields X; the integration of the generator X = XH gives the curves of 
motion. There is a restricted inverse process: 1-parametric groups τt of 
symmetries generate constants of motion; we skip the details. 

 

 4 & 5.- Connections and curvature. Curvature as something intrinsic 
(= embedding independent) was introduced for surfaces by Gauss (1827) 
and generalized by Riemann (1854); it was seen as consequence of 
connections, rather than of metrics, by Levi-Civita and Weyl (ca. 1917). 
Understood as operation in general bundles by Ehresman (1950). We shall 
define connections on vector bundles; but more generally, they are defined 
in principal bundles [KN].  

 Let ξ: V → E → M be a vector bundle. A connection ∇ is a linear 
map from sections in ξ to sections in the tensor product ⊗ of ξ with the 
cotangent bundle T*M, which is a derivation: if f ∈ E(M), f s=s´ makes 
sense, as Γ(ξ) is E(M)-module, and the defining properties of the 
connection are 

  ∇: Γ(ξ) → Γ(ξ ⊗ T*M);          ∇(fs) = (df)·s + f∇s       (I-5.1) 

∇ is also called the covariant differential (of the connection). The covariant 
derivative with respect to a vector field X is the contraction with the vector 
field X: 

    ∇X s = X↵∇s        (I-5.2) 

 So covariant differential increases the indices by adding a covariant 
one, whereas covariant derivative conserves de index. A connection in 
coordinates is a matrix of 1-forms: if {si} is a frame, {si} = ε (in some 
coordinate patch U), ∇si = ωij sj, where ωij is a n × n (with n=dim fibre) 
matrix of 1-forms in M, so for short we write ∇ε = ωε. Connection 
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components transform inhomogeneously; they are not tensorial: take 
another frame ε´= g· ε, where g is unique, and define 

 ∇ε´ := ω´ε´; then  ∇ε´=∇(gε) = (dg)·ε + gωε = ω´gε,  or 

  ω´= dg·g-1 + g·ω·g-1           (1-5.3) 

 What about curvature? Write ∧2M for the (total space of) the bundle 
of 2-forms, and try to prolongate ∇ as antiderivation:                                
∇o∇ := ∇2 : Γ(ξ) → Γ(ξ⊗∧2M)    

  ∇ (θs) := dθ ·s – θ ∧∇s           (I-5.4) 

 One shows [Milnor] that Ks := ∇2s is tensor, i.e. it satisfies   K(fs) = 
f K(s), and it is called the curvature of the connection. The connection is 
named flat (not zero, which makes no sense) when K=0 (which does!). In 
terms of the 1-form matrix ω, it is 

  ∇2s  = Ks = ∇(ωs) = dω·s - ω∧∇s = dω ·s –ω ∧ ω s,   or   
     K = dω – ω ∧ ω           (I-5.5) 

formula familiar to physicists (“ F = dA + A∧A” for Yang-Mills fields). 
Here K is clearly (in the frame s) a n × n matrix of 2-forms (“field strength” 
in physics); we have also 

 Bianchi identity: apply d (not ∇!) to (1-5.5); it is 

dK =-(dω)∧ω+ω∧(dω)= −(K+ω∧ω)∧ω+ω∧(K+ω∧ω ) = − ω∧K + K∧ω 

⇔   ∇K = 0, with the natural definition  ∇K := dK + ω∧K - K∧ω        
               (I-5.6) 

[ For all this see Milnor-Stasheff, Ap. C].  

 

 Take now as bundle the tangent bundle TM; there is an extra tensor, 
the so-called torsion of the connection, T = T∇ 

 T(X, Y):= Z = ∇X Y - ∇Y X – [X, Y]         (I-5.7) 

 It is a tensor, namely T(fX, Y) = fT(X, Y) = T(X, fY)          (1-5.7´) 

 The Levi-Civita connection. If (M, g) is a Riemannian manifold, 
there is a unique connection, characterized for being torsionless ( ⇔ 
symmetric, T = T∇ =0) and isometric (∇g=0). The theorem is constructive, 
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in the sense that the explicit form of the connection is computable easily, 
and allows for signature; for the positive (g>0) case or not, the coordinates 
of the connection are given by the classical Christoffel formulas: 

  [μν, λ] := ½ (gνλ, μ – gμν, λ + gλμ, ν )         (I-5.8) 

  Γλ
μν = gλρ [μν, ρ]            (I-5.9) 

 The curvature in TM can be defined as a 2-form operator on vector 
fields, or a 2-form Endomorphism-valued: 

   R(X, Y) = [∇X, ∇Y] – ∇[X, Y]       (I-5.10)  

Hence R(X, Y)·Z = W, or in coordinates ∂λ = ∂/∂xμ 

   R(∂μ, ∂ν)·∂λ := Rρ
λμν ∂ρ        (I-5.11) 

 

 The Riemann tensor has symmetries (consider four lower indices 
Rσλμν, called the Riemann-Christoffel tensor at times, Rσλμν = gσρ Rρ

λμν) 

i) Antisymmetric in μν and in σλ  independently 

ii) Symmetry changing both pairs μν ⇔ σλ 

iii) Fully antisymmeric part =0  (from Bianchi identity*) 

Hence the Young Tableau symmetry of Riemann´s is [22], with 

  Dim Riemann = n·(n+1)·(n-1)·n · 2/4! = n2(n2-1)/12     (I-5.12) 

which gives dim Riem = 0, 1,6, 20, 50 for dim = 1, 2, 3, 4, 5. 

Properties i) and ii) mean the liberties are [12]∨[12] = [22]+[14]; but 
iii) eliminates [14]. 

The Riemann tensor Riem, a T1
3 tensor, has two contractions: First 

  Ricλμ := Rρ
λμρ  , which is symmetric; and also        (I-5.13) 

  R = Rsc = Tr (g-1·Ric) = Rm
m               (I-5.14) 

 So in general    Riem ≈ Weyl + Ric(trace-less) + Rsc                      (I-5.14´)
 * Sometimes Bianchi identity is reserved for a cyclic derivative 
property of Riem; (Cfr. [KN],I, p. 135). 

 

where Weyl = (traceless part of Riemann´s) has 
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  dim Weyl = dim (Riem – Ric) = n(n+1)(n+2)(n-3)/12          (I-5.15) 

 Let us consider the lowest-dimension cases: 

 

 If dim M = 1, g = ds2 = f(x)·dx2; with  y = ∫ √f ·dx, it becomes g = 
dy2: any curve is rectifiable: curvature requires bi-planes, x⊥y and there is 
none in 1 dim. 

 

 If dim M = 2, a single curvature suffices, as only a biplane; indeed 

   K = Curv(Gauss) = Rsc/2       (I-5.16) 

 For example Ric = ½ g·Rsc. Similar for Riemann itself,  

   Rσλμν = ½ (gσνgλμ – gσμgλν) Rsc                       (I-5.17) 

 In this dim 2 case the choice of coordinates (uv) (u´v´) allows a 
general metric g = ds2 = E(uv)du2 + 2F(uv)dudv + G(uv)dv2 to be put in 
Geodesic (I) or Isothermal (or conformal) (II) forms    
            
 (I): ds2 = du2 + G(u, v) dv2               (I-5.18g) 
 (II): ds2 = exp[2σ(u, v)](du2 + dv2)               (I-5.18i) 

 

 In dim M =3, we have: dim Riem = 6 = dim Ric, hence Weyl = 0. In 
three dimensions, this means g can be put in orthogonal or diagonal form 

  G = ds2 = E(uvw)du2 + F(uvw)dv2 + G(uvw)dw2           (I-5.19) 

 It is in only in dim ≥ 4 that the Riemann tensor, Riem, exhibits all its 
grandeur; for example, in dim 4, dim Weyl = dim Ric = 10, so 

 dim Riem = 10 + 10 = 20. Gravitation in 3-D is “conic”, with no 
propagating modes; gravitation in 4-dim has the same degrees in the 
gravistatic part as in the radiating part. Also, as 2 = 4/2, the curvature of 4-
dim manifolds can be (anti-)selfdual. 

 One shows that Riem is the obstruction to flatness (Christoffel): any 
(M, g) manifold can have a metric sum of squares iff  Riem = 0. 

 One shows likewise that the Weyl tensor W is the obstruction to 
conformal flatness (Gauss in 2-dim; Weyl in general): any (M, g) manifold, 
dim ≥ 4 can have a metric sum of squares but for a common factor, that is 
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ds2 = g  = exp[2σ(xi)]( dx1
2 + … dxn

2) iff  Weyl = 0 (Weyl, 1917); 
somehow conformal is associated to traceless: 

 In dim 1, Riem = 0; in dim 2 Ric(traceless) = 0; in dim 3 Riemann 
traceless (= Weyl) = 0. In dim 2: any metric is conformally flat; in dim 3, 
any metric is orthogonal (above). The obstruction to conformal flatness in 
3-dim is measured by a different tensor, the Cotton (1899) tensor. 

 

 6.- Homotopy groups and Spin groups. The reader knows perhaps 
the fundamental group π1(X) or first homotopy group of a topological 
space X: call ΩP the set of loops ( = closed paths) starting and ending in      
P ∈ X. Composition of loops is immediate: the second starts when the first 
ends; declare two loops equivalent if deformable continuously one onto the 
other; then ΩP/(equiv. relation) = π1(X, P) becomes a group, the 
fundamental group of the manifold (H. Poincaré, 1896): the Id is the class 
of contractible loops (= deformable to a point, shrinkable to a point, nul-
homotopic). If the space is arcwise connected (all connected manifolds are) 
the P-dependence is spurious, and one talks only of π1(X).  

 Some examples: π1(S1) = Z, π1(S2) = 0, π1(SU(2)=S3) = 0, π1(SO(3) 
= |RP3) = Z2; other examples later.     (I-6.1 & 2) 

 Hurewicz generalized in 1935 (in 1940 died from accident visiting 
the Maya ruins in Mexico) to higher homotopy group: 

 The π0(X) set is the set of maps: S0 → X; as S0 is just two points, it 
just measures the distinct connected pieces of X: 

  X connected ⇔ card π0(X) = 1         (I-6.3) 

If  X = G is a Lie group, then π0(G) is a group; for example, =(3, 1) has 
four components, and     π0 (Lorentz 3, 1 group) = Z2 × Z2 = V.     (I-6.4) 

 The fundamental group can be seen, of course, as maps from 
(pointed) circles S1 to (pointed) X, with suitable equivalence. Then the 
generalization is obvious: πn(X), n = 0, 1, 2, … are the classes of maps 
from Sn → X with suitable distinguished points, equivalence and quotient; 
we omit details (see e.g. Steenrod, Nakahara). All these are important 
topological invariants. J. P. Serre found (ca. 1952) that the homotopy 
groups of spheres were (generally) finite, and computable. πn(Sn) = Z is an 
old result; but π3(S2) = Z2 is a surprise! 

 We have, summing up 
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    0) π0(X) is just a discrete set; if X= G Lie group, π0(G) is a group.          

    1) π1(X) is, in general, a nonabelian group; but if X=G, a Lie group, it is 
abelian. For example, π1(Σg) is nonabelian for g > 1, where Σg is a Riemann 
surface of genus g: sphere, torus and “pretzel” for g= 0, 1, 2.  For the tours 
T2 = (S1)2, we have clearly π1(torus)=Z+Z.  

   2) Any connected space with π1(X) > 0  has a unique universal covering 
space X^, with a natural onto map X^→X with inverse images ≈ π1(X): 

    π1(X) → X^ →X             (I-6.5) 

   3) πn>1(X) is an abelian group. 

   4) If G is a (finite-dim!) Lie group, π2(G)=0 (no simple proof!)   (I-6.6) 

   5) The homotopy groups exist for any n, regardless the dimension of the 
space X; for example, π4(S3) = Z2. In this it differs from co-& homology. 

 The homotopy groups of a space X are naturally topological 
invariants; let us include the following result of Hurewicz: 

--- The first nonnull homology group of a manifold, Hk(X; Z) coincides 
with the abelianized of the first nonnull homotopy group, πk(X)   (recall: 
for any group G, Ab(G), the abelianized of G, is G/ΩG, with ΩG is the 
commutator or first derived group of G). For example: b1(pretzel) = 4, and 
π1(pretzel) is generated by 4 elements a, b, c, d subjected only to the 
relation abcda-1 b-1c-1d-1=1: the abelianized H1(pretzel; Z)  is clearly Z + Z + 
Z + Z. 

 To end up this fast survey of homotopy, let us “see” the homotopy 
solution to the problem of the types of principal bundles over spheres: 

   G → P → Sn            (I-6.7) 

 How many principal bundles P there are? The spheres are covered 
with two charts, skipping e.g. the poles, as Sn\{0} ≈ Rn. Then, as the two 
charts overlap at the equator, one shows the possible total spaces P´s are 
given by homotopy classes of maps from the equator in Sn to the group G; 
indeed, the precise result is (Steenrod) 

   G-bundles over Sn ≈ πn-1(G)         (I-6.8) 

 

 Spin Groups. Spin(n). Consider now the real orthogonal group O(n) 
= O(n, |R): n = 0, 1, 2, …; the n × n matrices o verify too=1: hence det o = 
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±1: the orthogonal group has two connected components; call SO(n) the 
piece connected with the identity; it is called the rotation group. We have: 

 O(1) = Z2 ≈ S0.   Hence SO(1) = Id.           (I-6.9) 

SO(2) = U(1) = S1, the circle. We have π1(S1) = Z. All higher π´s of the 
circle S1 are zero, as comes from the “exact homotopy sequence”, where |R 
is the universal covering of the circle (Steenrod): 

   Z → |R → SO(2) ≈ S1           (I-6.10) 

because |Rn is contractible ( ⇔ all homotopy groups ≠ 0 are zero). 

 SO(3) ≈ RP3: any 3d rotation has an axis and an angle, so SO(3) ≈ 
solid 3-dim ball with radius π, but with antipodal points in the boundary 2-
sphere identified; this is clearly homeomorphic to |RP3, the 3d real 
projective space, ≈ S3/Z2, where the quotient is by the antipodal map. 
Hence π1(SO(3)) = Z2, and this result holds for all higher rotation groups: 

   π1(SO(n)) = Z2, n ≥ 3     ⇔     Z2→Spin(n) →SO(n)          (I-6.11)  

 Hence, for n ≥ 3 there is a unique double covering of the rotation 
group, which is (clearly) also a group, called the Spin(n) group. The reader 
should see that SO(3)^ = S3, and also = SU(2), as he knows from quantum 
mechanics. There are also other coincidences, to wit 

Spin(1) = Z2; Spin(2) ≈ U(1); Spin(3) =SU(2); Spin(4) = [Spin(3)]2 (I-6.12) 

Spin(5) = Sq(2); Spin(6) = SU(4); Spin(7, 8, 9) relat. to octonions  (I-6.13).  

 For n = 1, 2 the definition of Spin(1, 2) is just a double covering, it is 
not the universal one, but it is well defined (through Clifford algebras). 

 

 The orthogonal groups in 2, 4 and 8 dimensions are special. In dim 
2: the rotation part is abelian and divisible, SO(2)/Zn ≈ SO(2); the existence 
of the complex numbers and the regular plane polygons is related to this 
fact. 

  Dim 4: The Spin(4) group factorizes: Spin(4)=[Spin(3)]2: the Lie 
algebra are 2-forms in |R4, hence split in self & antiselfdual. The existence 
of the quaternion numbers |H and of the special regular polytopes in 4 and 
3 dimensions (e.g. the 24-cell in 4d, the icosahedron in 3d) are 
consequences of this fact. 

 Dim (8): Spin(8) exhibits triality, an outer automorphism group S3, 
of order 6: it is at the base of SuperSymmetry in physics! It starts with the 
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two chiral and the vector representations of dim 8 the three: they are 
permuted by this S3. 

 For all this see e.g. [Conway-Smith] 

 Finally, the homotopy of orthogonal groups enjoys Bott´s periodicity: 
for a generic  spin (n big enough), the stable homotopy groups are 

π01234567 (O(n), (n >>) ) = Z2, Z2, 0, Z, 0, 0, 0, Z.       (I-6.14) 

whereas for the symplectic groups there is a shift by four: 

π01234567 (Sq(n), (n >>) ) = 0, 0, 0, Z, Z2, Z2, 0, Z.       (I-6.15) 

 For completeness we add the periodicity TWO for unitary groups 

π01234567 (SU(n), (n >>) ) = 0, Z, 0, Z, 0, Z, 0, Z.      (I-6.16) 

 

 Spin(n) groups appear often in physics through representations; for 
the rotation group SO(n) the set of irreducible (unitary) linear 
representations, irreps, are given, starting from the vector, dim n, by the 
traceless Young tableaux; for example, for SO(5), the first irreps are of 
dim 1 (identity); 5 (vector); 5·6/2-1=14, type [2]´; 5·4/2 = 10, type [12]. Etc 

 Spin(2ν+1) has a primitive irrep of dim 2ν, call it Δ. But Spin(2ν) has 
two, of different chirality, called ΔL,R and dim again 2ν. All (true, linear) 
irreps of SO(n) are real, of course, but the character (type) of the (one or 
two) spin irreps varies: 

Δ(n), and ΔL,R(n) types: real for n = 0, ±1; complex for dim 2, 6; quasireal 
(or quaternionic, or pseudoreal) for n = 4±1          (I-6.17) 

 The Spin groups realize projective representations of the rotation 
group; this is why they are important in physics, as quantum mechanics 
seeks projective (or ray) representations of physical symmetries; the 
ubiquitous appearance of SU(2) in Quantum Mechanics is because all 
projective irreps of SO(3), the physical rotation group, come from the 
linear irreps of the covering group, SU(2) = Spin(3). 
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II.-  H o l o n o m y 

 

 1&2.- Parallel transport and holonomy. When there is a connection ∇ 
(in any bundle; in our case in the tangent bundle) vectors (or sections) are 
propagated along curves; in particular, geodesics (in the affine conception) 
are defined by the flow of auto-parallel vector fields, 

   ∇X X = 0            (II-1.1) 

which in coordinates becomes the conventional geodesic equation 

      d2xλ/ds2 + Γλ
μν dxμ /ds dxν /ds = 0          (II-1.2) 

with length = arc; as it is a second order equation, we have two Cauchy 
data: for any point and in any direction starts a geodesic (e.g. meridians in 
the sphere).  

 In a Riemannian space (M, g) there is a metric definition of 
geodesics, minimizing the distance function 

   Δ∫ds = 0,             (II-1.3) 

which yields the same equation (II-1.2). 

 A vector field Y is parallel translated along the flow of another 
vector field X; the first order equation is (X and Y0 known; find Y= Y(t)) 

  ∇X Y = 0             (II-1.4) 

with a unique solution from a particular value Y0=Y(P0)=v. We know: if 
the connection is flat, there is no curvature; how do we measure curvature 
from parallel transport? Through holonomy: consider eq. (II-1.4) for a 
frame (a base) ε in P, and make it run through a loop γ; at the end it 
becomes another frame ε´ in the same point P: as any two frames at the 
same point are related by an isometry (when the connection, as it is our 
case, is the Levi Civita connection  ∇g=0), we have an element o of the 
orthogonal group O(n) depending of the loop γ: o(γ) ∈ O(n). It is easy to see 
how all loops starting/ending from a point P0 compose, and the isometries 
make up a subgroup of O(n), called the holonomy group  of the connection, 
Hol( ∇) = Hol (g ) (in our case); (Cartan, 1926). 

 One expects Hol = Id for flat connections, but there is a constructive 
counter-result: 
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 The Ambrose-Singer theorem, 1953: The Lie algebra of the 
holonomy group is generated by the curvature (see e.g. [KN], Ch. 2; 
Nakahara p. 343). 

 It is a reasonable result, as the curvature Rρ
λμν is 2-form (μ, ν) Lie-

algebra evaluated (ρ, λ): antisymmetry in the second pair implies 
holonomy lies inside the orthogonal group (whose Lie algebra consists of 
tA = − A antisymmetric matrices). 

 For contractible loops the holonomy group has to lie in SO(n), the 
connected part of O(n). In fact, this is the general case for orientable 
manifolds; let us see this in detail. A manifold is orientable if the transition 
functions between charts Ui and Uj (see Ch. I)  can be chosen in GL+, the 
connected part of GL (GL has det > 0   OR < − 0: two connected 
components). Let us see the obstruction: 

 GL+ →          
 ↓           
  GL  →  B(M)   →  M        
 ↓               ↓             ||        
  Z2 →   B´(M) →   M           (II-1.5) 

The middle row generates the lower row, which defines the first Stiefel-
Whitney class w1 (of the tangent bundle of) the manifold M. The middle 
row lifts to an upper row GL+ -> B´´  M  iff this class is zero: 

  M orientable  ⇔ w1 (M) = 0        (II-1.6) 

 This is a nice example of measuring properties by absence of 
obstruction: the obstruction of orientability is given by the first sw class. 

 By a simple extension, if one asks when an oriented manifold admits 
a spin structure; it is to ask when the tangent bundle, with group SO(n), 
lifts to the spin bundle, with group Spin(n):      
     Z2         
     ↓         
   Spin(n) ….. > B^

0 …. > M     
      ↓      ↓  ||     
      SO(n)   →  B0(M)  → M   (II-1.7) 

 We have the result (Nakahara): the lower row lifts to the middle row, 
that is, the manifold admits an spin structure, iff the second Stiefel-Whitney 
class of the tangent bundle is zero, w2(TM) = 0. For spheres it is easy to 
show that all are spinable,        
     w2 (TSn) = 0    (II-1.8) 
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 For oriented surfaces Σg, g the genus (0, 1, 2 for sphere, torus, 
pretzel) there is no obstruction to spin structures: w2(Σg)=0. Let us see it 
just for the ordinary 2-sphere S2: The principal bundle of the tangent 
bundle is 

  SO(2)  SO(3)  S2          (II-1-9) 

But this have a “square root”, because SU(2) covers SO(3) universally: 
hence lifting: SO(2) lifts to a double covering, and this is the spin bundle. 
Alternatively, the Euler “class” carries to the top sw class, and as χ(S2) = 2, 
it is = 0 under mod 2; so w2(S2)=0; compare [Milnor, p. 99].  

 Once a manifold admits a spin structure, how many (inequivalent) 
does it admit? It is easy to see: as many as elements in H1(M, Z2). This 
result bears on String Theory, as one is supposed to sum over all possible 
spin structures; in fact H1(Σg, Z2) = 22g, which is therefore the number of 
spin structures in a “worldsheet” of genus g [GWS II, p. 278]. 

            [Any n-dim real vector bundle has w1, w2, …, w2n Stiefel-Whitney 
classes, which take values in the Z2 cohomology, wi ∈ Hi(M, Z2); [Milnor]].  

 In the connection of connections, we have also the reduction theorem 
(Cfr. again [KN], Ch. 2): 

 Reduction Theorem: The structure group of the (vector) bundle 
reduces to the holonomy group. 

 This means: the transition functions can be taken in the holonomy 
(sub)group. The theorem is again reasonable, because we can arrange the 
transition functions from the parallel transport, so they transform among 
themselves with the holonomy group.  

 As a consequence, for an orientable manifold the holonomy group 
lies in SO(n); but it can be smaller, of course, when the connection 
conserves some particular objects (some tensor field, for example); see 
below. 

 3-6.- Classes of Holonomy groups. It is interesting to see when the 
holonomy group is smaller that O(n) or SO, but not Id. The problem was 
dealt with by M. Berger in 1955, with nearly complete results; the outcome 
is related to which subgroups of the orthogonal group still act transitively 
on spheres. 

 [Disgression: A Lie group G acts “differentiably” in a manifold M if 
g·x=y is diffeorphism (g in G; x, y in M); the action is effective, if g·x=x 
for all x => g = Id. Otherwise there is a ineffectivity kernel K, and G/K 
operates effectively. The action is transitive (trans), if G·x= M, from any x. 
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In general, the images G·x are called “the orbit of G through x”. The 
isotropy group (called little group (Wigner) in physics) is G0, when 
G0·x=x: points x, y in the same orbit, G·x = G·y have conjugate isotropy 
groups.  When G acts trans in M, the quotient space G/H =M has a well-
defined sense as manifold, and M is called a homogeneous space; 
symmetric spaces are an enhancement of homogeneous spaces (Helgason)], 
when there is a geodesic reflection symmetry. 

 It is interesting to see when the holonomy group is smaller that O(n), 
but not Id. It turns out the possible holonomy groups of any Riemann 
manifold are related to the four division algebras |R, C, |H and O !! They 
are also, as said, related to transitive action of groups on spheres, and 
thirdly they depend on Riemannian spaces leaving some other object 
(besides the metric), invariant under parallel displacement (for example, the 
holonomy group of orientable manifolds leaves a volume form 
invariant…).  

 Let us consider (M, g) an irreducible nonsymmetric Riemann 
manifold; the possible holonomy groups are 2 × 3 series for the fields (or 
skew-)field = |R, C and |H) plus two exceptional cases (for Octonions O). 
Product manifolds have product holonomy groups; and all symmetric 
spaces are known, so they are excluded from the list by convention. 

 Let us comment on the Table below. Holonomy reflects the 
“parallel” tensors  ∇T=0; as said, orientable manifolds maintain a volume 
fix, hence Hol(∇) = O(n)∩SL(n) = SO(n): It is the most common case, as 
most manifolds are required to be orientable (for integration, etc.). Recall a 
complex manifold (M, J) can acquire an hermitian metric: the “g” part is 
automatic (i.e., always possible) in any Riemann manifold, and ω is 
concocted from J: g(J) = ω. The natural Levi-Civita connection leaves 
ONLY g invariant; but the manifold is called Kähler if also leaves ω fix, 
that is, ∇ω = 0, equivalent to ω closed, dω=0: hence the holonomy of 
Kähler manifolds is O(2n)∩Sp(2n, R) = U(n). If the holonomy descends to 
SU(n), the manifold is called Calabi-Yau (for historical reasons). 

 Quaternionic and hyperkähler manifolds similarly preserve some 
object related to the skew-field of the quaternions. As Sq(n) ⊂ SU(2n) ⊂ 
SO(4n), hyperkähler manifolds are at least Calabi-Yau, Kähler and 
orientable. Quaternionic manifolds need not to be CY nor Kähler. 
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 There also two singular cases related to the Octonions O. 

 [Recall the complex numbers ¢ are a 2-dim composition and division 
algebra over |R with the unit (0, 1) = i fulfilling i2 = -1; the quaternions (4-
dim over |R) have two independent units, i and j, with i2 = j2 =  (ij=k)2 = ijk 
= −1. For the octonions O there are three independent units: i, j, k, anti-
involutive and anticommuting, and the same for the products (ij, jk, ki, 
(ij)k), which forces alternativity, en lieu of associativity, namely (ij)k = 
−i(jk). The octonions  (8-dim over |R) are a division algebra; but one 
cannot proceed beyond: no division or composition |R-algebras except in 
dim 1, 2, 4, 8: (Hurwitz´ theorem, 1895); see e.g. [Conway]]. 

 

  Table  of   H O L O N O M Y    G R O U P S 

 O(n)       SO(n)   |R 
 generic          orientable, w1=0 

 

 U(n)       SU(n)   C 
 Kähler, ∇ω=0        Calabi-Yau CY, c1=0 

             

 q(n)       Sq(n)   |H 
 Quaternionic        Hyperkähler    

 

  Spin(7)      G2           O=octonions 
    Dim M =8       Dim M = 7 

                 (II-3.1) 

  The descent from U(n) to SU(n) is similar to the commented 
O(n) to SO(n): the Det map generates the bundle U(1)=U(n)/SU(n) → 
B´(M) → M, which defines the first Chern class (of the tangent bundle, 
c1(TM)) of the complex manifold M; M Kähler becomes Calabi-Yau (CYn, 
Calabi-Yau n-fold, real dim 2n) iff c1(M) = c1(TM) = 0.   

 [ For complex vector bundles η, Chern classes ci, (i: 1 to dim η) take 
values in H2i(M, Z): there is a “trasgression” from U(1)-bundles to H2        
Z-comomology because the resolution, alluded to above, Z → |R →S1 = 
U(1), and similar for higher Chern classes].  
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 The hermitian metric with quaternionic entries admits the isometry 
group Sq(n) (sometimes written Sp(n): it is the real compact form of the 
Cn-series of Cartan´s simple complex Lie algebras). As Sq(n) ⊂ SU(2n), 
hyperkähler manifolds are also CY, with first Chern class = 0 (as they are 
oriented, of course, because U(n), SU(n), q(n) and Sq(n) are connected and 
all lie in some SO(N) ). 

 The group q(n) [ notation not universal! ] is defined as 

    q(n) =  Sq(n) × /2 Sq(1)        (II-3.2) 

and  the quotient is by the common centre  Z2. We have in particular  

   Sq(1) = SU(2) = Spin(3) ≈ S3      q(1) =SU(2)2/Z2=SO(4)            (II-3.3) 

  

 7.- Octonions and Octonion-related Groups. Finally, as the octonions 
O are not associative, there are only FIVE groups related to then, Cartan´s 
exceptions G2 (dim 14), F4 (dim 52), E6 (dim 78), E7 (dim 133) and E8 (dim 
248); in some ways the spin groups Spin(7, 8 and 9) can be considered also 
as octonionic groups, and indeed G2 as well as Spin(7) can act as 
exceptional holonomy groups (see Joyce´s book). It is to be remarked that 
both types of exceptional holonomy manifolds are Ricci flat (but neither 
Calabi-Yau). In particular a manifold with holonomy G2 preserves a 
generic 3-form in 7-dim (check: 72 − {7, 3} = 49 – 35 = 14 = dim G2), 
whereas one with Spin(7) holonomy preserves a particular four-form 
called a Cayley four-fold; recall the spin representation(s) of SO(7) acts in 
|R8: 2(7-1)/2= 8, real type, so Spin(7) ⊂ SO(8) in a natural manner. 

 So the G2 & Spin(7)-manifolds have a Ricci-flat metric, that is, the 
Riemann tensor is given just by the traceless part, the Weyl tensor; this 
makes the construction of these manifolds difficult, as witness [Joyce]´s 
book. 

 The five exceptional groups G2, F4, E6,7,8 are related to the octonions; 
in particular G2 = Aut (Oct): it acts trans on the 6-dim sphere of unit 
imaginary octonions, S6, so the defining representation has dim 7. The 
isotropy group is SU(3) (14−6=8), acting on the diameter S5 ⊂ R6 through 
the real irreducible 3 + ⎯3 representation; it is another suggestion that 
perhaps the group SU(3) appearing in physics (as color and flavour group) 
might be connected with the octonions, also! 

 F4 acts in the 3×3 hermitian traceless Jordan octonionic matrices 
J(3), with real dimension (3·8+(3-1)=26, which is the defining 
representation of F4; there is a famous octonionic projective plane ( it 
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should be called the Moufang plane, not the Cayley plane), OP2: the 
isometry group is again F4, and OP2 = F4/Spin(9), 2·8 = 2·26 −9·8/2 => 16 
= 52 – 36), and in fact there is a natural inclusion OP2 ⊂ J(3), as a class of 
idempotent elements. A noncompact form of the E6 group also acts in O2 as 
projective transformations; E7 and E8 have a more complicate definition 
(Freundenthal, 1955; Tits). We expect our understanding of these two final 
exceptional group will increase in the future; for example, there is a 
mysterious relation between the four exceptional groups (besides G2) and 
spiun group, in the following sense (Adams): 

 F4 can be formed from O(9) and the spin representation: 36+16=52: 
this is based on the OP2 space of above        (II-7.1) 

 E6 can be formed from O(10) and the spin representation + U(1): 
   10·9/2 + 2·(210/2-1) +1 = 78 = dim E6               (II-7.2) 

 E7 is formed starting from O(12), the spin representation and Sq(1): 
  12·11/2 + 2·(212/2-1) + 3 = 66 + 64 +3 = 133               (II-7.3) 

 E8 is concocted from O(16) with one of the spin representation: 
  16·15/2 + 216/2-1 = 248                  (II-7.4) 

 The two intermediate cases need en extra ingredient, U(1) for E6 and 
Sq(1) for E7: this is well understood, as E6 is complex-type, and E7 is 
quaternionic type.  

 E8 is the most spectacular of these exceptional groups: its 
fundamental representation is the adjoint one (dim 248) (a unique case 
among all simple Lie groups), it has no centre, neither outer 
automorphisms; it has 5-torsion, also unique among Lie groups. It appears 
in modern physics in several disguised forms: the square of it (E8

2) is the 
gauge group of the heterotic exceptional strings; it acts also as gauge group 
in M-Theory (D. Freed); it is related to the Hodge diamond of the K3 
surface (see later), etc. 
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   III.- Strings and Higher Dimensions 

 1.-Higher dimensions in physics: Kaluza-Klein theories. The 
traditional tool for microphysics has been the Quantum Theory of Fields, 
developed since the 20´s and much improved with the renormalization 
program of 1947/52 (Schwinger, Feynman, Dyson…) and for the 
nonabelian case (`t Hooft) in 1971/73. Starting around 1975, physicists 
were frustrated by their unability to quantize gravitation (it is intrinsically 
non-renormalizable: the coupling constant GN has dim (length)2 ), and one 
should look for new avenues; three merit our attention here: 

 1) Extra dimensions (of space-time) 

 2) Supersymmetry (mixing bosons with fermions) 

 3) Extended objects (like strings, membranes, etc.)      (III-1.1) 

 In 1919 T. Kaluza wrote an letter to Einstein, showing that if one sets 
up general relativity in five dimensions, and somehow disregards the fifth 
dimension as unobservable, the fields appearing in 4-dim were three: the 
usual gravitation field h = hμν, a vector field A = Aμ and a scalar φ. He went 
on to show that the usual Einstein –Hilbert (EH) lagrangian in five 
dimensions 

  S[h5] = (cons.) ∫ √g Rsc(h5) d5x          (III-1.2) 

decomposed in 4-dim as the usual EH action in four, plus the lagrangian for 
the e.m. field Fμν

2 (plus an extra piece for the φ, called the dilaton field). 
Later O. Klein interpreted the unobservability of the fifth dimension as due 
to compactification in a very small circle S1, which incidentally proved to 
quantize the electric charge in the natural quantum version of the model: 
the two signs of the charge were the two ways to run through the circle. 

 KK´s ideas were clearly premature, if very exciting; they were 
retaken in the 80s, sixty years later (!), when the ideas of Grand Unified 
Theories (GUT) appeared and also SuperSymmetry.  

 Let us here only observe here why graviton in 5-dim generates extra 
matter in four: if M, N run ≤ 5, and μν ≤ 4; it is 

  gMN  gμν + Aμ5 + Φ55          (III-1.3) 

 The idea of unifying e.m. with gravitation kept Einstein busy until 
his death, in 1955 (but not necessarily only in the KK approach). 

 For Bose fields is not difficult to generalize (III-1.3): besides the 
graviton, the other Bose fields which appear in modern theories are just p-
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forms; call them φ, A, B, C, D… for 0-, 1-, 2-, 3- and 4-forms respectively. 
Then in one-dimension descent we have 

    gd+1  gd + Ad + φd;  Ad+1 = Ad + φd;                             
 Bd+1  Ad + Bd;    Cd+1  Bd + Cd; etc.                        (III-1.4) 

 The split of Fermi fields (gravitinos and ordinary, spin ½ fermions) 
is not so regular, as spinors have dimension powers of two; it will be 
indicated in each case later. 

 

 SuperSymmetry. There are no compelling arguments to unify bosons 
and fermions, and several for not doing that: different statistics (in 
principle!) and different transformation law under the Lorentz group. 
Nevertheless, since 1974 (with some Russian antecedents) theorists have 
looked at enlarged symmetry schemes, mixing up fermions and bosons; it 
is an ample subject, and we just put some simple examples 

 1) The Wess-Zumino model (1973/74). There are a scalar field A, a 
pseudoscalar field B and a Majorana spinor χ living in Minkowski space. 
The lagrangian is free massless at first instance: 

  L = - ½ (∂μA)2 - ½ (∂μB)2 - ½ χ γ·∂ χ         (III-1.5) 

Although just for three massless fields unmixed, the action ∫Ld4x has a 
bose-fermi symmetry: define 

 δA =   ⎯e  χ,     δB = i ⎯e γ5 χ,     δ χ = ∂· γ (A + i γ5 B) e       (III-1.6) 

where e is a fermionic parameter (e2=0); these transformations leave L 
invariant; the supersymmetry generator is called Q, so the transformations 
should be understood e.g. roughly as 

 exp(-eQ)·A·exp(+eQ)=(1-eQ)·A·(1+eQ) = A+δA =A + [Q, A]e   (III-1.7) 

as {Q, e}=0. Q and e are fermionic (spinorial) objects in some precise 
sense. One can go on and add (equal) masses and (some) interactions 
preserving this (super)symmetry (see e.g. P.West´s book): supersymmetry 
can be maintained. 

 2) Super Yang-Mills model in 10 dimensions. Massless fields 
transform with the (compact) little group of the light cone, here O(8) (it 
corresponds to O(2), helicity label, in 4-dim). The three primordial 
representations of the Spin(8) group have dimension 8: 

    dimension vector, 8.- dim chiral ΔL, R = 28/2-1 = 8, real type         (III-1.7) 
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which makes it easy to write down a Susy Yang-Mills action in 10 = (1, 1) 
+ (8, 0) dimensions: 

 S = ∫L dx = ∫ dx (- ¼ F2 + (i/2)  ⎯ψ  Γ·D ψ )                 
(III-1.8) 

where F·F  = F2 with the explicit form, where  

  F = Fμν
a = ∂μ Aν

a - ∂ν Aμ
a + g fa

bc Aμ
b Aν

c              (III-1.9) 

is the field strength, and where “a” labels an index of the gauge group G, 
a= 1, 2, …dim G.; notice ψ in (1.8) is a chiral field, so S is parity-violating. 
By dimensional reduction, we get a N=4 theory in 4-dim: 

A in 8-dim gives A plus 6 φ´s in 4-dim; ψ in 8 gives 4ψ´s in 4; the Susy 
pairing is: A ψ1, and 3ψ´s  6 φ ´s. Etc. This N =4 theory enjoys 
wonderful convergence properties (it is finite; Mandelstam). 

 3) SuperGravity theory in eleven dimensions. The particle content is 

  h   - Ψ   + C  (graviton, gravitino and 3-form)          (III-1.10) 
          44      128        84 

 This is a remarkable theory: first 11 is the highest dimension one can 
set-up SuperGravity (Cremmer-Scherk); second, it turns out the three-form 
C is coupled to a membrane (Townsend); third, the dimensional reduction 
to 10 dimensions reproduces the particle content of the IIA string theory 
(see below). Recently has been some progress in dealing with the apparent 
divergences of this theory. 

 Extended Objects. As in so many things, P. A. M. Dirac was pioneer: 
the first study of quantum physics of extended objects was a paper of Dirac 
(1962), trying to describe muons as an excited membrane of the electron; it 
lead nowhere. String theory emerged around 1970, and it has an interesting 
story; milestones were the set-up of fermions in 1971 (P. Ramond), the 
ambition to cover gravitation (1975) (J. Scherk-J. Schwarz), a first hint of a 
theory “of everything”; SuperStrings appear in 1978, with Susy also on the 
target space, and no tachyons (GSO projection); uniqueness and claims for 
“Theory of Everything (T.O.E.)” (1984) (Green-Schwarz), when anomaly 
cancellation pointed out to select the gauge groups (besides the dimension); 
advent of M-Theory (1995) (below), and general dismissal by the 
community of physicists (~ today!). 
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 2.- Physics in ten, eleven and twelve dimensions:   
 strings, membranes, M- and F-Theory. 

 We just shall talk briefly of the FIVE superstrings theory established 
around 1985 as all the five are i) viable theories, ii) include gravitation, iii) 
include fermions with Susy & Sugra, iv) 3 of the five include gauge groups, 
potentially covering the group of the standard model “3, 2, 1”, and they are 
v) potentially renormalizable. 

 The FIVE SuperSymmetric theories fill up a pentagon 

    IIA -----   Het-Exceptional    
      |    |      
      |    |      
    IIB -----      Het-Orthogonal    
                 \    /    
                   \                                /     
           \                             /     
           Type I                  (III-2.1) 

 

 A brief description follows: 

IIA: Describes closed, nonchiral, N=2 Susy strings with no gauge groups 

IIB: Describes closed, chiral, N =2 Susy strings with no gauge groups 

Het-Exceptional: Describes closed, N =1 Susy strings with E8
2 gauge 

group 

Het-Orthogonal: Describes closed, N =1 Susy strings, O(32) gauge group 

Type I describes open (and closed) strings, N =1, O(32) gauge groups. 

 

 The particle content of SuperStrings is easy to write: The 
fundamental SuperSymmetry is in 8 euclidean dimensions, as said 
(triality!): 

   8v ⇔ ΔL ⇔ ΔR          (III-2.2) 

for instance, for the IIA theory, the particle content is 

(8v – ΔL) × (8v – ΔR) = (h + B + φ, A + C; Ψ1, 2 + ψ1, 2)      (III-2.3) 
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that is: graviton h, 2-form B and dilaton φ appear always (NS sector); in the 
RR sector multiply two fermions, and one gets A (a 1-form) and C (a three 
form); and then, two gravitinos Ψ (N=2) and two fermions ψ. 

 For the IIB theory, the chiralities are the same: 

   (8v – ΔL) × (8v – ΔL) = (h + B + Φ, B´ + D+ + Φ´; Ψ1, 2 + ψ1, 2)     (III-2.4) 

where D± is a (anti-)selfdual 4-form. 

 For the Type I theory, with open and closed strings, we get 

 (8v – ΔL) ∧ (8v – ΔL) = (h  + Φ, B; Ψ1 + ψ1)        (III-2.5) 

plus the gauge group O(32). The wedge ∧ just means: take the symmetric 
part of the bose product, and the antisymmetric one of the Fermi, etc. 

 The content of the heterotic strings is the same, but the gauge group 
is E8

2 in the first (exceptional) heterotic string. The name “heterotic” comes 
from the fact that closed N=1 Susy is performed by substituting the 24 +2 
– (8+2) dimensions of the “bosonic” string with a gauge group of rank 16, 
either O(32) or E8

2. 

 This is obviously not the place to deal with string theory in extenso. 
We mention only some of the outstanding features: one writes a lagrangian 
minimizing area of the worldsheet, and tries to quantize it. Gravitons 
follow at once from the closed sectors; the theory is potentially anomalous, 
(mainly because endurance of conformal symmetry to get quantized), that 
is, some of the symmetries of the naïve classical theory do not survive 
quantization, unless some conditions are met: this fixes dimensions of 
target space (24+2=26 for the original, bosonic string, and 8+2=10 for the 
superstring) and also the gauge groups (as stated above). This critical 
anomaly cancellation was the big advance in 1984/85 (Green-Schwarz). 

 Incidentally, we are at odds when quantizing higher extended 
objects: there is no, at the moment, accepted scheme for quantizing 
membranes (p = 2) or higher p-objects (it was for this reason that a long 
time the “pope” Ed Witten was reluctant to accept e.g. the membrane 
appearing naturally in 11-dim Supergravity). 

 The most appealing theory was the heterotic exceptional string, in 
part because there was only N=1 Susy (16 supercharges, down to N=1 or 
four in dim 4), and also because one hoped the E8

2 group would naturally 
give rise to some of the GUT groups, like E6, SO(10) or SU(5). 
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 3.- M- Theory. In 1995 three fairly independent advances made the 
five superstrings theory merge in a so-called “M-Theory”, living in eleven 
dimensions and including also other extended objects besides strings, in 
particular membranes: 

a) Townsend proved (in January) that 11-dim SuGra (see above particle 
content) contained a membrane (or p=2 extended object), coupled to the 
three-form C (as “old” strings were coupled to the NS 2-form B), becoming 
the fundamental string upon circle compactification to ten dimensions. 

b) Witten proved (in March) that the strong limit of the IIA theory 
developed an 11-th dimension, with particle content that of 11-dim Sugra. 

c) Polchinski proved (in October) there were some “D-p Branes” as 
endings of open strings, a kind of  “solitonic objects” he himself had 
discovered earlier. These p-Branes “radiate” (p+1)-forms, as charged 
particles (p=0) “radiate” the potential Aμ, a 1-form. One finds odd-dim 
Branes in the IIB theory, but even-dim Branes in the IIA. We elaborate on 
membranes just below. 

 The name “M- Theory” was coined by Witten; M stands for 
“Membrane”, “Mother”, “Mystery” etc., according to taste. To have some 
idea why the five theories fuse, we remark: IIA and IIB theories are the 
same from 9 dimensions down (no chirality in odd dimensions); same for 
the two heterotic strings; the responsible symmetry was called T-duality. 
From M-Theory in 11-dim one goes back to Het-Except by 
compactification in a segment D1, with the two E8 groups appearing 
miraculously to cancel anomalies in the boundary of the segment (we do 
not enter on this). Finally, Polchinski and Witten proved explicitly that in 
some “strong” / ”weak” limit of the two (open and closed) theories with the 
same group, O(32), coincide: a case of the so-called S-duality. 

 M-Theory has not lived up the expectations; 15 years after inception 
has not explained anything, nor made a precise testable prediction (we do 
overlook some black hole entropy calculations of Strominger andd Vafa). 
We shall only say some words of the physical compactification problem, 
that is, how do we get from the fantasmal 10-dim to our mundane, open, 
quasi-flat Miknlowski sapace in (apparently) four dimensions! 

 One of the lesson we do have learned, however, is that particles, 
strings, membranes, and in general p-Branes, are related to (p+1)-forms 
they suppose to radiate, that is to say, membranes are charged as particles 
are charged, but as particles emit e.m. radiation, with 1-form potentials and 
2-forms field strength, p-Branes radiate (p+1)-potentials and there are also 
(p+2) field intensities and even D-(p+2) duals, ending in 10 –p -4 “dual” or 
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magnetic Branes; this interesting interplay is quite likely there to stay! For 
example, in 11-dim Supergravity, there is a dual M5 Brane (Güven), which 
can be seen as the magnetic dual of the better known M2 Brane. 

 F- Theory. In 1996 Cumrum Vafa came up with an extension of M-
Theory to twelve dimensions, which he called F-Theory (F for Father? 
Fundamental? ); the idea is that the IIB theory, known to be self-dual under 
the strong limit (S-duality) contains a complex scalar field, z= χ + i exp(ϕ), 
where χ is the axion and ϕ the dilaton: this can be seen as a Torus fibration 
from 12 dimensions:  

   T2 → F-Theory→ IIB Theory          (III-3.1) 

as the moduli space of the Torus T2 is C, the set of complex numbers. 

 There are several other arguments in favour of F-Theory [Boya]. The 
matter content of F-Theory is unclear; another confusing feature is that, at 
face value, F-Theory works in  12 = (10, 2), with all the associated 
problems related to causality, etc., for having two times. For many people 
(including, at the beginning, Vafa himself!) F-Theory was only a way to 
“track down” the complex field varying over the “surface” of the 10-dim 
IIB theory. 

 It is amusing that one can relate the particle content of 11-dim SuGra 
(and therefore, the low-energy limit of M-Theory) to the Moufang plane 
OP2 we mentioned before: P. Ramond has shown that the three particles (h, 
Ψ and C) are related to the Euler number of OP2 being 3, and in fact some 
representations of F4 give rise to a triplet of representations of Spin(9): in 
particular, the above triplet is related to the Id irrep of F4. In fact, one of the 
putative particle contents of F-theory is related to the “complexification” 
OPC

2 = E6/[Spin(10)×U(1)], but then there is a 27-plet, as χ(OPC
2) = 27, 

and it is related to the fourth power of the primordial Susy doublet, 

   |8_v – ΔL|4   => a 27-plet of particles        (III-3.2) 

 The particles are taken as representations of O(10). 

 Recently (2008 on) [Vafa] has extended this theory considerably, 
where at the price of forgetting about gravitation one gets closer, it is 
hoped, to the standard model of particles and forces (see our IV Chapter); 
in particular GUTs, chiral matter, Yukawa couplings, not to speak of 
selecting gauge groups might appear possible, in principle. The 
development of this approach still goes on. 
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 4.- The Standard Model and its Minimal Supersymmetric extension. 

 We just remind the reader that all known forces are to-day described 
as gauge theories, in particular, the gauge group of the Standard Model 
(SM) is the product SU(3) (color) × SU(2) (weak) × U(1) (≈ 
electromagnetism). Besides the 8+3+1=12 gauge bosons (three 
“swallowed” by Higg´s), the “matter” lies in the bi-fundamental 
representations: quarks q and ⎯q and leptons, etc. Besides, there is hope-for 
God´s particle (a left-over Higgs) supposed to be discovered next year at 
the LHC at CERN (?!). 

 We think we understand the gross features of the consequent picture: 
asymptotic freedom, confinement, radiative corrections in the electroweak 
sector, etc., but have no idea, for example, why the masses are what they 
are. We know (in this XXI century) neutrino have masses, but their type 
(Majorana?) is still unclear…In fact, the factor from the neutrino masses to 
the top quark mass approaches 10-14 ≈ mν/mtop, beyond any reasonable 
calculation. 

 In spite of these shortcomings, people look beyond the SM. For 
some, Supersymmetry is irresistible, and one looks for clues as where and 
why. The most quoted argument (that I like, but it has still many 
detractors), is that the natural extrapolation of the three coupling constants 
gs, gwk and αem by the renormalization group running (the Callan-Symanzik 
equation), make them cross at very high energies , ≈ 1016 GeV. It turns out 
that the `unique´ crossing point of the three is much improved if one 
completes the SM model with the so-called Minimal Supersymmetric 
Standard Model, MSSM. 

 In this model there are supersymmetric partners for each particle, 
with funny names (gauginos: fotino, gluino, Wino and Zino) for the 
fermionic partners of gauge bosons, and s-quarks and s-leptons for the 
bosonic partners of the matter multiplets…). Of course, in a way all this is 
science-fiction: there is NO the slightest experimental evidence of none of 
these, and the threshold for Susy partners approaches the TeV regime… 

 If Supersymmetry is true, where is the scale to see the Susy partners? 
Ee do not know for sure, but they cannot be very high in energy, otherwise 
no arguments for them: most of people expect them (!) in the TeV range, 
which probably will be observed experimentally soon. Still, we would have 
to understand, not only why Susy exists in first place, but also why is it 
broken badly, at (perhaps) the TeV scale… 
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  IV.- Some issues on Compactification 

 1.- The general problem of compactification. We seem to live in 
three-plus-one dimensions (perhaps unbounded), whereas strings, M-
theory, etc., live in higher dimensions, which we are not aware of. How do 
we cope with the “fact” of extra, unseen dimensions? 

 The simplest approach is through compactification, i.e. assuming the 
extra, unseen dimensions are “curled up” in a compact manifold, with 
dimensions well below, say, the nuclear dimensions 10-15 m. In principle 
one takes the direct product of spaces, e.g. if we take flat 4-dim space time, 

  M ≈ K × (Minkowski space, M =|R3,1)               (IV-1.1) 

where K is a compact manifold with 6, 7 or 8 dimensions for strings, M- & 
F-Theories. 

 What general properties one expects of K to satisfy, besides 
dimension(s) and compactness? We shall take it oriented, as we shall have 
to perform integrations, spinable, as we do see fermions, and whatever 
restrictions will make physics back in 4-dim acceptable, either the Standard 
Model, some GUT approximation, or just MSSM; that will depend, of 
course, and what physics we start from in the higher dimension, but also, as 
we have learned lately, the new physics generated by the compactation 
process: we shall see, for example, that new gauge groups might appear 
through potential singularities of the K space, or by wrapping on it some 
extended objects appearing in the total space, M. To maintain N=1 
Supersymmetry down to four dimensions will be a very repeated condition. 

 

 2.- Compactation from strings: Calabi-Yau 3-folds. That was 
historically the first realistic (but unsuccessful) attempt to rescue the SM 
from the (closed, N =1) Heterotic Exceptional (E8

2) string (Gross-
Strominger-Candelas-Witten, 1985): the two E8 groups were very tempting 
as a starting point to get the GUT group: one E8 remained hidden, the other 
spat a SU(3) factor to become E6, one of the few possible GUT groups (two 
others were the original SU(5) (Georgi-Glashow, 1974) and SO(10) 
(Georgi; Fritz and Minkowski, 1976); E6 was proposed by F. Gürsey and P. 
Ramond, 1976. Besides, we want to preserve N =1 Susy in 4-dim 
(explained below). 
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 In ten dimensions the supercharge N =1 algebra was fixed by 

            {Q, Q} =   PM + E+        (IV-2.1)            
dim Q = 210/2-1= 16    16·17/2 = 136   =   10 + {10, 2}/2 (=126)      (IV-2.2) 
        

 We impose the constraint of only N=1 Susy in 4-dim., which 
corresponds to 4 supercharges Q; this is phenomenological: we hope that 
there is some Susy, as we expect supersymmetric breaking to occur close to 
the 1 TeV scale, and N > 1 “down to earth” means NO parity violation       
(+1/2 -1/2 -1/2 = -1/2 in helicities, so both chiralities would appear for N = 
2!); but parity violation is a conspicuous feature of nature, which we want 
to preserve, even with supersymmetry. That means we should break ¾ = 
(16ini - 4fin)/16 supercharges. How do we achieve this? 

 It turns out that N =1 Susy down to 4-dim is maintained if the 
compactifying manifold has SU(3) holonomy, so it is, by definition, a CY3, 
or Calabi-Yau 3-fold. To see this, recall the identity SU(4) = Spin(6) 
(stated above, Ch. II). Now under SU(3) ⊂ SU(4), the fundamental spinor 
splits obviouosly as 4 = 3+1. Hence, the trivial “1” survives, and 
guarantees 4 Supercharges (four Q´s) in 4-dim, so N =1, as desired, as 

 Dim Q (4-dim) = 24/2-1 = 2 complex or 1 Majorana spinor    (IV-2.3) 

 One can show directly than compactation in a CYk preserves 1/2k-1 
supersymmetries, so here we have 16/4=4: 16 means N=1 in 10d, whereas 
4 in dim 4 means also N =1. 

 The search for CY3 was an active industry in Austin, TX, during 
1986/90, led by Phil Candelas (actually he has the Penrose chair in 
Oxford). As a by-product, his group discovered the mirror symmetry! We 
shall explain this. 

 The Hodge diamond for a CY3 manifold is     
    1        
        0      0        
            h2,0 h1,1   h0,2       
                  h3,0         h2,1         h1,2 h0,3     (IV-2.4)     
    plus Poincarè dual 

 Mirror symmetry in this CY3 context is the exchange h1,1   h2,1; 
it turns out the physics in mirror is the same; the two Hodge numbers 
interchange some complex structure with some Kähler structures, and it has 
been a big advance in algebraic geometry (we do not elaborate). In an 
arbitrary CY-k-fold, it is the exchange h1,1  hk-1,1; hence e.g. the K3 
manifold is self-mirror, as h1,1 = h2-1,1; again, this has some consequences. 
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 3.- Compactation from M-Theory: Manifolds of G2 Holonomy 

 After the 1995 revolution brought about by the discovery of (still 
incompletely known) M – Theory (Witten; Townsend; Polchinski) it was 
obvious that we have to face eleven dimensions. The supercharges and 
particle content (in the low-energy limit) were 

 Dim Q: 2(11-1)/2 = 32.-   {Q, Q} =   Pμ +  M2  +  M5                 
(IV-3.1)        32·33/2 = 528  =11 +   55   +  462 

which makes even more sense than ten dimensions: besides the linear 
momentum (Pμ), the theory describe the p=2 membrane M2 (already 
alluded to; the viewpoint of Townsend and Duff vs. Witten), and a dual, the 
magnetic 5-Brane (2 3 4 11-4=7, 6 5).   

 The seven-dim compactifying manifold has to be oriented and 
spinable, of course, and should also leave a spinor covariant constant, as to 
have, again N=1 down to our mundane 4 dimensions; the natural spin 
group would be Spin(7), of course, with a real irrep of dim 8 = 2(7-1)/2. But 
happily, it has the subgroup G2, with the natural irrep of dim 7 (also 
explained above), so G2 acting in 8 dimensions splits as 8 = 7 + 1, just as 
we want! That was first emphasized (I believe) by Townsend and 
Papadopoulos, 1996. It reinforces the idea that octonions and related 
objects should play a role in our description of nature(!). 

 The search for manifolds with G2 holonomy is a hard one, as the dim 
is odd so we have no resort no complex analysis; some examples were 
worked out by [Joyce]. 

 As M-Theory is only incompletely known, there has been not much 
progress with this G2 holonomy idea; in any case, in a way M-Theory was 
superseded, I believe, by the F-theory of Cumrum Vafa, after the original 
work (ca. 1996) has being reincarnated in his 2008 version; to this one we 
now turn. 
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 4.- Compactation from F-Theory: Vafa´s Theory (1996, 2008). 

  We already talked on F-theory in (Ch. III-3). With 12 = (10, 2) 
signature, the type of spinor (or supercharge) is still real (12−2 = 0 mod 8). 
The number of supercharges is 

  # Q(12-dim) = 212/2-1 = 32, real type     (IV-4.1) 

with the superalgebra 

  {Q, Q} =    JMN       +       F±      (IV-4.2) 
          528      =    {12, 2}=66 + {12, 6}/2= 126 

 In particular, no conventional SuperGravity possible, as PM does not 
appear in the anticommutator (recall we already said 11 was the maximum 
dimension for (conventional) supergravity); however, some interpretation 
can be given. F-Theory has other worries: for example, the two times are at 
odds with conventional causality; some exit avenues have been proposed 
(e.g. I. Bars proposes to “gauge” one of the times). We shall just address 
the compactification problem, following the “reincarnation” of the theory 
by Vafa´s group since 2008 [Vafa et al., 2008]. 

 The first idea is to forget about gravitation, and try to understand 
some of the feautures of the Standard Model, like GUTs, presence of chiral 
matter, obtaining the Yukawa couplings etc., ,and leave for the future the 
connection with more conventional high-dimension theories as respect 
gravitation and a “TOE” theory; Vafa calls this the “bottom-up approach”. 

 The most promising compactification approach makes two setps, the 
first in some sense divided in another two: 

 First step: 12   to 8 dimensions, in a K3 manifold            (IV-4.3) 
 Second step: 8 to 4 dimensions, in a del Pezzo surface    (IV-4.4) 

 We explain first the new real 4-dim manifolds.  

 K3 complex surface.-The complex surface K3 is, topologically 
speaking, the only nontrivial Calabi-Yau 2-fold, i.e., with holonomy SU(2). 
K stands for the Karakorum High Sierra in the Himalayas, and “3” for 
Kummer, Kähler and Kodaira; the name is due to André Weil, 1954, at the 
time of the first Mount Everest climb (May, 1953). As a complex surface, it 
has a Hodge diamond as follows: 
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      1      
           0     0      
     1 20 1     
                          plus Poincaré dual 

 So it is simply connected, Euler number is 4·1 +20 = 24, and 
signature is: 22 = (19, 3) [Disgression: any four-dim manifold, if compact 
and oriented, has another number besides Euler´s χ: it is called 
Hirzebruch´s signature, τ, and it is the (Sylvester) signature of the quadratic 
form given by the wedge (although commutative) product of two-forms, as 
ω1

(2) ∧ ω2
(2) = (real #)·volume]. 

 Thus τ =16 = 19 – 3, and miraculously it happens, as 16 = 2 · 8, that 
two E8 groups (or more precisely, singularities given rise to groups, by the 
Thom-Arnold procedure; we do not elaborate) lurk behind K3 (K3 is easily 
obtained from the 4-torus T4 ≈ (S1)4) by “orbifolding” and blow-up, that is, 
by quotienting by some fix-point group and curing the singularities; see 
e.g. Aspinwall, arXiv hep-th 94 04 151. 

 del Pezzo surfaces. Complex projective spaces CPn is the set of 
(complex, of course!) lines in Cn+1. We have CP1 ≈ S2, and CP2 is the 
symmetric space SU(3)/U(2); it is a complex, simply-connected Kähler 
manifold, with Hodge diamond        
     1       
          0     0       
     0 1 0      
    plus Poincaré dual 

hence χ=3, and it does not admit a spin structure. It is perhaps the simplest 
4-dim real manifold, after S^4 (which is not complex).    
 del Pezzo surfaces are obtained from CP2 after blowing up up to 8 
points. 

 

 Descent from 12 to 8: Gauge goups appear! First of all, recall F-
Theory as an elliptic fibration over IIB theory by th 2-Torus 

 


