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Summary. We present an elementary introduction to compactifications with unbroken

supersymmetry. After explaining how this requirement leads to internal spaces of special

holonomy we describe Calabi-Yau manifolds in detail. We also discuss orbifolds as examples

of solvable string compactifications.

1 Introduction

The need to study string compactification is a consequence of the fact that a

quantum relativistic (super)string cannot propagate in any space-time back-

ground. The dynamics of a string propagating in a background geometry

defined by the metric GMN is governed by the Polyakov action

SP = − 1

4πα′

∫

Σ
d2σ

√
−hhαβ∂αXM∂βX

NGMN (X) . (1.1)

Here σα, α = 0, 1, are local coordinates on the string world-sheet Σ, hαβ is

a metric on Σ with h = dethαβ , and XM , M = 0, . . . ,D − 1, are functions

Σ →֒ space-time M with metric GMN (X). α′ is a constant of dimension

(length)2. SP is the action of a two-dimensional non-linear σ-model with

target space M, coupled to two-dimensional gravity (hαβ) where the D-

dimensional metric GMN appears as a coupling function (which generalizes

the notion of a coupling constant). For flat space-time with metric GMN =

ηMN the two-dimensional field theory is a free theory. The action (1.1) is

invariant under local scale (Weyl) transformations hαβ → e2ωhαβ , X
M →

XM . One of the central principles of string theory is that when we quantize

the two-dimensional field theory we must not loose this local scale invariance.

In the path-integral quantization this means that it is not sufficient if the

action is invariant because the integration measure might receive a non-trivial

Jacobian which destroys the classical symmetry. Indeed, for the Polyakov
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action anomalies occur and produce a non-vanishing beta function β
(G)
MN ≡

α′RMN +O(α′2). Requiring β
(G)
MN = 0 to maintain Weyl invariance gives the

Einstein equations for the background metric: only their solutions are viable

(perturbative) string backgrounds. But there are more restrictions.

Besides the metric, in the Polyakov action (1.1) other background fields

can appear as coupling functions: an antisymmetric tensor-field BMN (X)

and a scalar, the dilaton φ(X).1 The background value of the dilaton de-

termines the string coupling constant, i.e. the strength with which strings

interact with each other. Taking into account the fermionic partners (under

world-sheet supersymmetry) of XM and hαβ gives beta functions for BMN

and φ that vanish for constant dilaton and zero antisymmetric field only if

D = 10. This defines the critical dimension of the supersymmetric string

theories. We thus have to require that the background space-time M10 is a

ten-dimensional Ricci-flat manifold with Lorentzian signature. Here we have

ignored the O(α′2) corrections, to which we will briefly return later. The

bosonic string which has critical dimension 26 is less interesting as it has no

fermions in its excitation spectrum.

The idea of compactification arises naturally to resolve the discrepancy be-

tween the critical dimension D = 10 and the number of observed dimensions

d = 4. Since M10 is dynamical, there can be solutions, consistent with the re-

quirements imposed by local scale invariance on the world-sheet, which make

the world appear four-dimensional. The simplest possibility is to have a back-

ground metric such that space-time takes the product form M10 = M4 ×K6

where e.g. M4 is four-dimensional Minkowski space and K6 is a compact

space which admits a Ricci-flat metric. Moreover, to have escaped detection,

K6 must have dimensions of size smaller than the length scales already probed

by particle accelerators. The type of theory observed in M4 will depend on

properties of the compact space. For instance, in the classic analysis of su-

perstring compactification of [2], it was found that when K6 is a Calabi-Yau

manifold, the resulting four-dimensional theory has a minimal number of su-

1 There are other p-form fields, but their coupling to the world-sheet cannot be incorpo-

rated into the Polyakov action. The general statement is that the massless string states

in the (NS,NS) sector, which are the metric, the anti-symmetric tensor and the dilaton,

can be added to the Polyakov action. The massless p-forms in the (R,R) sector cannot.

This can only be done within the so-called Green-Schwarz formalism and its extensions

by Siegel and Berkovits; for review see [1].
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persymmetries [2]. One example of Calabi-Yau space discussed in [2] was the

Z-manifold obtained by resolving the singularities of a T6/Z3 orbifold. It was

soon noticed that string propagation on the singular orbifold was perfectly

consistent and moreover exactly solvable [3]. These lectures provide an intro-

duction to string compactifications on Calabi-Yau manifolds and orbifolds.

The outline is as follows. In section 2 we give a short review of compact-

ification à la Kaluza-Klein. Our aim is to explain how a particular choice

of compact manifold imprints itself on the four-dimensional theory. We also

discuss how the requirement of minimal supersymmetry singles out Calabi-

Yau manifolds. In section 3 we introduce some mathematical background:

complex manifolds, Kähler manifolds, cohomology on complex manifolds. We

then give a definition of Calabi-Yau manifolds and state Yau’s theorem. Next

we present the cohomology of Calabi-Yau manifolds and discuss their moduli

spaces. As an application we work out the massless content of type II super-

strings compactified on Calabi-Yau manifolds. In section 4 we study orbifolds,

first explaining some basic properties needed to describe string compactifi-

cation on such spaces. We systematically compute the spectrum of string

states starting from the partition function. The techniques are next applied

to compactify type II strings on T2n/ZN orbifolds that are shown to allow un-

broken supersymmetries. These toroidal Abelian orbifolds are in fact simple

examples of spaces of special holonomy and the resulting lower-dimensional

supersymmetric theories belong to the class obtained upon compactification

on Calabi-Yau n-folds. We end with a quick look at recent progress. In Ap-

pendix A we fix our conventions and recall a few basic notions about spinors

and Riemannian geometry. Two technical results which will be needed in the

text are derived in Appendices B and C.

In these notes we review well known principles that have been applied

in string theory for many years. There are several important developments

which build on the material presented here which will not be discussed: mirror

symmetry, D-branes and open strings, string dualities, compactification on

manifolds with G2 holonomy, etc. The lectures were intended for an audience

of beginners in the field and we hope that they will be of use as preparation

for advanced applications. We assume that the reader is already familiar with

basic concepts in string theory that are well covered in textbooks [4, 5, 6].
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But most of sections 2 and 3 do not use string theory at all. We have included

many exercises whose solutions will eventually appear on [7].

2 Kaluza-Klein fundamentals

Kaluza and Klein unified gravity and electromagnetism in four dimensions by

deriving both interactions from pure gravity in five dimensions. Generalizing

this, one might attempt to explain all known elementary particles and their

interactions from a simple higher dimensional theory. String theory naturally

lives in ten dimensions and so lends itself to the Kaluza-Klein program.

The discussion in this section is relevant for the field theory limit of string

theory, where its massive excitation modes can be neglected. The dynamics of

the massless modes is then described in terms of a low-energy effective action

whose form is fixed by the requirement that it reproduces the scattering

amplitudes as computed from string theory. However, when we compactify

a string theory rather than a field theory, there are interesting additional

features to which we return in section 4.

In the following we explain some basic results in Kaluza-Klein compact-

ifications of field theories. For a comprehensive review see for instance [8]

which cites the original literature. The basic material is well covered in [4]

which also discusses the string theory aspects.

2.1 Dimensional reduction

Given a theory in D dimensions we want to derive the theory that results

upon compactifying D − d coordinates on an internal manifold KD−d. As a

simple example consider a real massless scalar in D=5 with action

S0 = −1

2

∫
d5x ∂Mϕ∂

Mϕ , (2.1)

where ∂M = ηMN∂N with ηMN = ηMN = diag (−,+, · · · ,+), M,N =

0, · · · , 4. The flat metric is consistent with the five-dimensional space M5

having product form M5 = M4×S1, whereM4 is four-dimensional Minkowski

space and S1 is a circle of radius R. We denote xM = (xµ, y), µ = 0, · · · , 3,
so that y ∈ [0, 2πR]. The field ϕ satisfies the equation of motion

�ϕ = 0 ⇒ ∂µ∂
µϕ+ ∂2

yϕ = 0 . (2.2)
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Now, since ϕ(x, y) = ϕ(x, y + 2πR), we can write the Fourier expansion

ϕ(x, y) =
1√
2πR

∞∑

n=−∞
ϕn(x)e

iny/R . (2.3)

Notice that Yn(y) ≡ 1√
2πR

einy/R are the orthonormalized eigenfunctions of

∂2
y on S1. Substituting (2.3) in (2.2) gives

∂µ∂
µϕn −

n2

R2
ϕn = 0 . (2.4)

This clearly means that ϕn(x) are 4-dimensional scalar fields with masses

n/R. This can also be seen at the level of the action. Substituting (2.3) in

(2.1) and integrating over y (using orthonormality of the Yn) gives

S0 = −
∞∑

n=−∞

1

2

∫
d4x[∂µϕn ∂

µϕ∗
n +

n2

R2
ϕ∗
nϕn] . (2.5)

This again shows that in four dimensions there is one massless scalar ϕ0

plus an infinite tower of massive scalars ϕn with masses n/R. We are usually

interested in the limit R → 0 in which only ϕ0 remains light while the ϕn,

n 6= 0, become very heavy and are discarded. We refer to this limit in which

only the zero mode ϕ0 is kept as dimensional reduction because we could

obtain the same results demanding that ϕ(xM ) be independent of y. More

generally, dimensional reduction in this restricted sense is compactification on

a torus TD−d, discarding massive modes, i.e. all states which carry momentum

along the directions of the torus.

The important concept of zero modes generalizes to the case of curved

internal compact spaces. However, it is only in the case of torus compactifi-

cation that all zero modes are independent of the internal coordinates. This

guarantees the consistency of the procedure of discarding the heavy modes

in the sense that a solution of the lower-dimensional equations of motion is

also a solution of the full higher-dimensional ones.

In D dimensions we can have other fields transforming in various rep-

resentations of the Lorentz group SO(1,D − 1). We then need to con-

sider how they decompose under the Lorentz group in the lower dimensions.

Technically, we need to decompose the representations of SO(1,D−1) un-

der SO(1, d−1) × SO(D−d) associated to Md × KD−d. For example, for a

vector AM transforming in the fundamental representation D we have the
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branching D = (d,1) + (1,D − d). This just means that AM splits into Aµ,

µ = 0, · · · , d−1 and Am, m = d, · · · ,D− 1. Aµ is a vector under SO(1, d−1)

whereas Am, for each m, is a singlet, i.e. the Am appear as (D− d) scalars in

d dimensions. Similarly, a two-index antisymmetric tensor BMN decomposes

into Bµν , Bµm and Bmn, i.e. into an antisymmetric tensor, vectors and scalars

in d dimensions.

Exercise 2.1: Perform the dimensional reduction of:

– Maxwell electrodynamics.

S1 = −1

4

∫
d4+nxFMNF

MN , FMN = ∂MAN − ∂NAM . (2.6)

– Action for a 2-form gauge field BMN .

S2 = − 1

12

∫
d4+nxHMNPH

MNP , HMNP = ∂MBNP + cyclic . (2.7)

We also need to consider fields that transform as spinors under the Lorentz

group. Here and below we will always assume that the manifolds consid-

ered are spin manifolds, so that spinor fields can be defined. As reviewed in

Appendix A, in D dimensions, the Dirac matrices ΓM are 2[D/2] × 2[D/2]-

dimensional ([D/2] denotes the integer part of D/2). The Γ µ and Γm, used

to build the generators of SO(1, d−1) and SO(D−d), respectively, then act

on all 2[D/2] spinor components. This means that an SO(1,D− 1) spinor

transforms as a spinor under both SO(1, d−1) and SO(D−d). For example, a

Majorana spinor ψ in D=11 decomposes under SO(1, 3)×SO(7) as 32 = (4,

8), where 4 and 8 are respectively Majorana spinors of SO(1, 3) and SO(7).

Hence, dimensional reduction of ψ gives rise to eight Majorana spinors in

d = 4.

We are mainly interested in compactification of supersymmetric theories

that have a set of conserved spinorial charges QI , I = 1, · · · ,N . Fields orga-

nize into supermultiplets containing both fermions and bosons that transform

into each other by the action of the generators QI [9]. In each supermultiplet

the numbers of on-shell bosonic and fermionic degrees of freedom do match

and the masses of all fields are equal. Furthermore, the action that deter-

mines the dynamics of the fields is highly constrained by the requirement of

invariance under supersymmetry transformations. For instance, for D= 11,
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N =1, there is a unique theory, namely eleven-dimensional supergravity. For

D=10, N =2 there are two different theories, non-chiral IIA (Q1 and Q2 are

Majorana-Weyl spinors of opposite chirality) and chiral IIB supergravity (Q1

and Q2 of same chirality). For D= 10, N = 1, a supergravity multiplet can

be coupled to a non-Abelian super Yang-Mills multiplet provided that the

gauge group is E8 ×E8 or SO(32) to guarantee absence of quantum anoma-

lies. The above theories describe the dynamics of M-theory and the various

string theories at low energies.

One way to obtain four-dimensional supersymmetric theories is to start

in D= 11 or D= 10 and perform dimensional reduction, i.e. compactify on

a torus. For example, we have just explained that dimensional reduction of

a D = 11 Majorana spinor produces eight Majorana spinors in d = 4. This

means that starting with D=11, N =1, in which Q is Majorana, gives a d=4,

N = 8 theory upon dimensional reduction. As another interesting example,

consider D=10, N =1 in which Q is a Majorana-Weyl spinor. The 16 Weyl

representation of SO(1, 9) decomposes under SO(1, 3) × SO(6) as

16 = (2L, 4̄) + (2R,4) , (2.8)

where 4, 4̄ are Weyl spinors of SO(6) and 2L,R are Weyl spinors of SO(1, 3)

that are conjugate to each other. If we further impose the Majorana condition

in D=10, then dimensional reduction of Q gives rise to four Majorana spinors

in d = 4. Thus, N = 1, 2 supersymmetric theories in D = 10 yield N = 4, 8

supersymmetric theories in d=4 upon dimensional reduction.

Toroidal compactification of superstrings gives theories with too many su-

persymmetries that are unrealistic because they are non-chiral, they cannot

have the chiral gauge interactions observed in nature. Supersymmetric ex-

tensions of the Standard Model require d=4, N =1. Such models have been

extensively studied over the last 25 years (for a recent review, see [10]). One

reason is that supersymmetry, even if it is broken at low energies, can explain

why the mass of the Higgs boson does not receive large radiative corrections.

Moreover, the additional particles and particular couplings required by su-

persymmetry lead to distinct experimental signatures that could be detected

in future high energy experiments.

To obtain more interesting theories we must go beyond toroidal com-

pactification. As a guiding principle we demand that some supersymmetry



Introduction to String Compactification 8

is preserved. As we will see, this allows a more precise characterization of

the internal manifold. Supersymmetric string compactifications are moreover

stable, in contrast to non-supersymmetric vacua that can be destabilized by

tachyons or tadpoles. Now, we know that in the real world supersymmetry

must be broken since otherwise the superpartner of e.g. the electron would

have been observed. Supersymmetry breaking in string theory is still an open

problem.

2.2 Compactification, supersymmetry and Calabi-Yau manifolds

Up to now we have not included gravity. When a metric field GMN is present,

the fact that space-time MD has a product form Md × KD−d, with KD−d

compact, must follow from the dynamics. If the equations of motion have

such a solution, we say that the system admits spontaneous compactification.

The vacuum expectation value (vev) of GMN then satisfies

〈GMN (x, y)〉 =

(
ḡµν(x) 0

0 ḡmn(y)

)
, (2.9)

where xµ and ym are the coordinates of Md and KD−d respectively. Note

that with this Ansatz there are no non-zero components of the Christoffel

symbols and the Riemann tensor which carry both Latin and Greek indices.

An interesting generalization of (2.9) is to keep the product form but with

the metric components on Md replaced by e2A(y)ḡµν(x), where A(y) is a so-

called ‘warp factor’ [11]. This still allows maximal space-time symmetry in

Md. For instance 〈Gµν(x, y)〉 = e2A(y)ηµν is compatible with d-dimensional

Poincaré symmetry. In these notes we do not consider such warped product

metrics.

We are mostly interested in D-dimensional supergravity theories and we

will search for compactifications that preserve some degree of supersymme-

try. Instead of analyzing whether the equations of motion, which are highly

nonlinear, admit solutions of the form (2.9), it is then more convenient to

demand (2.9) and require unbroken supersymmetries in Md. A posteriori it

can be checked that the vevs obtained for all fields are compatible with the

equations of motion.

We thus require that the vacuum satisfies ǭQ|0〉 = 0 where ǫ(xM )

parametrizes the supersymmetry transformation which is generated by Q,
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both Q and ǫ being spinors of SO(1,D−1). This, together with δǫΦ = [ǭQ, Φ],

means that 〈δǫΦ〉 ≡ 〈0|[ǭQ, Φ]|0〉 = 0 for every field generically denoted by

Φ. Below we will be interested in the case where Md is Minkowski space.

Then, with the exception of a vev for the metric ḡµν = ηµν and a d-form

F̄µ1...µd
= ǫµ1...µd

, a non-zero background value of any field which is not a

SO(1, d − 1) scalar, would reduce the symmetries of Minkowski space. In

particular, since fermionic fields are spinors that transform non-trivially un-

der SO(1, d − 1), 〈ΦFermi〉 = 0. Hence, 〈δǫΦBose〉 ∼ 〈ΦFermi〉 = 0 and we only

need to worry about 〈δǫΦFermi〉. Now, among the ΦFermi in supergravity there

is always the gravitino ψM (or N gravitini if there are N supersymmetries

in higher dimensions) that transforms as

δǫψM = ∇M ǫ+ · · · , (2.10)

where ∇M is the covariant derivative defined in Appendix A. The . . . stand

for terms which contain other bosonic fields (dilaton, BMN and p-form fields)

whose vevs are taken to be zero. Then, 〈δǫψM 〉 = 0 gives

〈∇M ǫ〉 ≡ ∇̄M ǫ = 0 ⇒ ∇̄mǫ = 0 and ∇̄µǫ = 0 . (2.11)

Notice that in ∇̄M there appears the vev of the spin connection ω̄. Spinor

fields ǫ, which satisfy (2.11) are covariantly constant (in the vev metric); they

are also called Killing spinors.

The existence of Killing spinors, which is a necessary requirement for a

supersymmetric compactification, restricts the class of manifolds on which

we may compactify. To see this explicitly, we iterate (2.11) to obtain the

integrability condition (since the manipulations until (2.14) are completely

general, we drop the bar)

[∇m,∇n]ǫ =
1

4
Rmn

abΓabǫ =
1

4
RmnpqΓ

pqǫ = 0 , (2.12)

where Γab = 1
2 [Γa, Γb] and Rmnpq is the Riemann tensor on KD−d.

Exercise 2.2: Verify (2.12) using (A.12).

Next we multiply by Γ n and use the Γ property

Γ nΓ pq = Γ npq + gnpΓ q − gnqΓ p , (2.13)

where Γ npq is defined in (A.2). The Bianchi identity
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Rmnpq +Rmqnp +Rmpqn = 0 (2.14)

implies that Γ npqRmnpq = 0. In this way we arrive at

R̄mqΓ̄
q ǫ = 0 . (2.15)

From the linear independence of the Γ q ǫ it follows that a necessary condition

for the existence of a Killing spinor on a Riemannian manifold is the vanishing

of its Ricci tensor:

R̄mq = 0 . (2.16)

Hence, the internal KD−d is a compact Ricci-flat manifold. This is the same

condition as that obtained from the requirement of Weyl invariance at the

level of the string world-sheet and it is also the equation of motion derived

from the supergravity action if all fields except the metric are set to zero.

One allowed solution is KD−d = TD−d, i.e. a (D−d) torus that is compact

and flat. This means that dimensional reduction is always possible and, since

ǫ is constant because in this case ∇̄m ǫ = ∂mǫ = 0, it gives the maximum

number of supersymmetries in the lower dimensions. The fact that supersym-

metry requires KD−d to be Ricci-flat is a very powerful result. For example,

it is known that Ricci-flat compact manifolds do not admit Killing vectors

other than those associated with tori. Equivalently, the Betti number b1 only

gets contributions from non-trivial cycles associated to tori factors in KD−d.

The fact that the internal manifold must have Killing spinors encodes much

more information. To analyze this in more detail below we specialize to a

six-dimensional internal K6 which is the case of interest for string compacti-

fications from D=10 to d=4.

Before doing this we need to introduce the concept of holonomy group H
[12, 13]. Upon parallel transport along a closed curve on an m-dimensional

manifold, a vector v is rotated into Uv. The set of matrices obtained in this

way forms H. The U ’s are necessarily matrices in O(m) which is the tangent

group of the Riemannian Km. Hence H ⊆ O(m). For manifolds with an orien-

tation the stronger condition H ⊆ SO(m) holds. Now, from (A.14) it follows

that for a simply-connected manifold to have non-trivial holonomy it has to

have curvature. Indeed, the Riemann tensor (and its covariant derivatives),

when viewed as a Lie-algebra valued two-form, generate H. If the manifold

is not simply connected, the Riemann tensor and its covariant derivatives



Introduction to String Compactification 11

only generate the identity component of the holonomy group, called the re-

stricted holonomy group H0 for which H0 ⊆ SO(m). Non-simply connected

manifolds can have non-trivial H without curvature, as exemplified in the

following exercise.

Exercise 2.3: Consider the manifold S1 ⊗ R
n endowed with the metric

ds2 = R2dθ2 + (dxi +Ωi
jx
jdθ)2 , (2.17)

where Ωi
j is a constant anti-symmetric matrix, i.e. a generator of the rotation

group SO(n) and R is the radius of S1. Show that this metric has vanishing

curvature but that nevertheless a vector, when parallel transported around

the circle, is rotated by an element of SO(n).

Under parallel transport along a loop in K6, spinors are also rotated by

elements of H. But a covariantly constant spinor such as ǫ remains unchanged.

This means that ǫ is a singlet under H. But ǫ is an SO(6) spinor and hence it

has right- and left-chirality pieces that transform respectively as 4 and 4̄ of

SO(6) ≃ SU(4). How can ǫ be an H-singlet? Suppose that H = SU(3). Under

SU(3) the 4 decomposes into a triplet and a singlet: 4SU(4) = (3 + 1)SU(3).

Thus, if H = SU(3) there is one covariantly constant spinor of positive and

one of negative chirality, which we denote ǫ±. If H were SU(2) there would

be two right-handed and two left-handed covariantly constant spinors since

under SU(2) the 4 decomposes into a doublet and two singlets. There could

be as many as four covariantly constant spinors of each chirality as occurs

when K6 = T6 and H0 is trivial since the torus is flat.

Let us now pause to show that if K6 has SU(3) holonomy, the resulting

theory in d = 4 has precisely N = 1 supersymmetry if it had N = 1 in

D = 10. Taking into account the decomposition (2.8) and the discussion in

the previous paragraph, we see that the allowed supersymmetry parameter

takes the form

ǫ = ǫR ⊗ ǫ+ + ǫL ⊗ ǫ− . (2.18)

Since ǫ is also Majorana it must be that ǫR = ǫ∗L and hence ǫR and ǫL

form just a single Majorana spinor, associated to a single supersymmetry

generator. Similarly, if K6 has SU(2) holonomy the resulting d = 4 theory

will have N =2 supersymmetry. Obviously, the number of supersymmetries

in d=4 is doubled if we start from N =2 in D=10.
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2n-dimensional compact Riemannian manifolds with SU(n) ⊂ SO(2n)

holonomy are Calabi-Yau manifolds CYn. We have just seen that they admit

covariantly constant spinors and that they are Ricci-flat. We will learn much

more about Calabi-Yau manifolds in the course of these lectures and we will

also make the definition more precise. For n = 1 there is only one CY1,

namely the torus T2. The only CY2 is the K3 manifold. For n ≥ 3 there is a

huge number. We will give simple examples of CY3 in section 3. Many more

can be found in [14]. We want to remark that except for the trivial case n = 1

no metric with SU(n) holonomy on any CYn is known explicitly. Existence

and uniqueness have, however, been shown (cf. section 3).

Calabi-Yau manifolds are a class of manifolds with special holonomy.

Generically on an oriented manifold one has H ≃ SO(m). Then the following

question arises: which subgroups G ⊂ SO(m) do occur as holonomy groups

of Riemannian manifolds? For the case of simply connected manifolds which

are neither symmetric nor locally a product of lower dimensional manifolds,

this question was answered by Berger. His classification along with many of

the properties of the manifolds is discussed at length in [12, 13]. All types of

manifolds with special holonomy do occur in the context of string compacti-

fication, either as the manifold on which we compactify or as moduli spaces

(cf. section 3.6).

Exercise 2.4: Use simple group theory to work out the condition on the

holonomy group of seven- and eight-dimensional manifolds which gives the

minimal amount of supersymmetry if one compactifies eleven-dimensional

supergravity to four or three dimensions or ten-dimensional supergravity to

d = 3 and d = 2, respectively.

Going back to the important case, N =1, D=10, d=4, and the require-

ment of unbroken supersymmetry we find the following possibilities. The

internal K6 can be a torus T6 with trivial holonomy and hence ǫ leads to

d=4, N =4 supersymmetry. K6 can also be a product K3 × T2 with SU(2)

holonomy and ǫ leads to N = 2 in d = 4. Finally, K6 can be a CY3 that

has SU(3) holonomy so that ǫ gives d=4, N =1 supersymmetry. These are

the results for heterotic and type I strings. For type II strings the number

of supersymmetries in the lower dimensions is doubled since we start from

N =2 in D=10.
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Let us also consider compactifications from N = 1, D = 10 to d = 6. In

this case unbroken supersymmetry requires K4 to be the flat torus T4 or

the K3 manifold with SU(2) holonomy. Toroidal compactification does not

reduce the number of real supercharges (16 in N = 1, D = 10), thus when

the internal manifold is T4 the theory in d = 6 has N = 2, or rather (1,1),

supersymmetry. Here the notation indicates that one supercharge is a left-

handed and the other a right-handed Weyl spinor. The SO(1, 5) Weyl spinors

are complex since a Majorana-Weyl condition cannot be imposed in d= 6.

Compactification on K3 gives d= 6, N = 1, or rather (1,0), supersymmetry.

This can be understood from the decomposition of the 16 Weyl representation

of SO(1, 9) under SO(1, 5) × SO(4),

16 = (4L,2) + (4R,2
′) , (2.19)

where 4L,R and 2, 2′ are Weyl spinors of SO(1, 5) and SO(4). In both groups

each Weyl representation is its own conjugate. Since the supersymmetry pa-

rameter ǫ in D= 10 is Majorana-Weyl, its (4L,2) piece has only eight real

components which form only one complex 4L and likewise for (4R,2
′). Then,

if the holonomy is trivial, ǫ gives one 4L plus one 4R supersymmetry in

d= 6. Instead, if the holonomy is SU(2) ⊂ SO(4) ≃ SU(2) × SU(2), only

one SO(4) spinor, say 2, is covariantly constant and then ǫ gives only one

4L supersymmetry. Starting from N = 2 in D = 10 there are the following

possibilities. Compactification on T4 gives (2,2) supersymmetry for both the

non-chiral IIA and the chiral IIB superstrings. However, compactification on

K3 gives (1,1) supersymmetry for IIA but (2,0) supersymmetry for IIB.

From the number of unbroken supersymmetries in the lower dimensions

we can already observe hints of string dualities, i.e. equivalences of the com-

pactifications of various string theories. For example, in d= 6, the type IIA

string on K3 is dual to the heterotic string on T4 and in d = 4, type IIA

on CY3 is dual to heterotic on K3 × T2. On the heterotic side non-Abelian

gauge groups are perturbative but on the type IIA side they arise from non-

perturbative effects, namely D-branes wrapping homology cycles inside the

K3 surface. We will not discuss string dualities in these lectures. For a ped-

agogical introduction, see [6].
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2.3 Zero modes

We now wish to discuss Kaluza-Klein reduction when compactifying on

curved internal spaces. Our aim is to determine the resulting theory in d di-

mensions. To begin we expand all D-dimensional fields, generically denoted

Φmn···µν··· (x, y), around their vacuum expectation values

Φmn···µν··· (x, y) = 〈Φmn···µν··· (x, y)〉 + ϕmn···µν··· (x, y) . (2.20)

We next substitute in the D-dimensional equations of motion and use the

splitting (2.9) of the metric. Keeping only linear terms, and possibly fixing

gauge, gives generic equations

Odϕ
mn···
µν··· + Ointϕ

mn···
µν··· = 0 , (2.21)

where Od, Oint are differential operators of order p (p = 2 for bosons and

p = 1 for fermions) that depend on the specific field.

We next expand ϕmn···µν··· in terms of eigenfunctions Y mn···
a (y) of Oint in

KD−d. This is

ϕmn···µν··· (x, y) =
∑

a

ϕaµν···(x) Y
mn···
a (y) . (2.22)

Since OintY
mn···
a (y) = λaY

mn···
a (y), from (2.21) we see that the eigenvalues λa

determine the masses of the d-dimensional fields ϕaµν···(x). With R a typical

dimension of KD−d, λa ∼ 1/Rp. We again find that in the limit R → 0 only

the zero modes of Oint correspond to massless fields ϕ0µν···(x).

To obtain the effective d-dimensional action for the massless fields ϕ0 in

general it is not consistent to simply set the massive fields, i.e. the coefficients

of the higher harmonics, to zero [8]. The problem with such a truncation is

that the heavy fields, denoted ϕh, might induce interactions of the ϕ0 that are

not suppressed by inverse powers of the heavy mass. This occurs for instance

when there are cubic couplings ϕ0 ϕ0 ϕh. When the zero modes Y0(y) are

constant or covariantly constant a product of them is also a zero mode and

then by orthogonality of the Ya(y) terms linear in ϕh cannot appear after

integrating over the extra dimensions, otherwise they might be present and

generate corrections to quartic and higher order couplings of the ϕ0. Even

when the heavy fields cannot be discarded it might be possible to consistently

determine the effective action for the massless fields [15].
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We have already seen that for scalar fields Oint is the Laplacian ∆. On

a compact manifold ∆ has only one scalar zero mode, namely a constant

and hence a scalar in D dimensions produces just one massless scalar in

d dimensions. An important and interesting case is that of Dirac fields in

which both Od and Oint are Dirac operators Γ · ∇. The number of zero

modes of ∇/ ≡ Γm∇m happen to depend only on topological properties of

the internal manifold KD−d and can be determined using index theorems [4].

When the internal manifold is Calabi-Yau we can also exploit the existence

of covariantly constant spinors. For instance, from the formula ∇/ 2 = ∇m∇m,

which is valid on a Ricci-flat manifold, it follows that when K6 is a CY3, the

Dirac operator has only two zero modes, namely the covariantly constant ǫ+

and ǫ−.

Among the massless higher dimensional fields there are usually p-form

gauge fields A(p) with field strength F (p+1) = dA(p) and action

Sp = − 1

2(p+ 1)!

∫

MD

F (p+1) ∧ ∗F (p+1) . (2.23)

After fixing the gauge freedom A(p) → A(p)+dΛ(p−1) by imposing d∗A(p) = 0,

the equations of motion are

∆DA
(p) = 0 , ∆D = dd∗ + d∗d . (2.24)

If the metric splits into a d-dimensional and a (D − d)-dimensional part, as

in (2.9), the Laplacian ∆D also splits ∆D = ∆d + ∆D−d. Then, Oint is the

Laplacian ∆D−d. The number of massless d-dimensional fields is thus given

by the number of zero modes of the internal Laplacian. This is a cohomology

problem, as we will see in detail in section 3. In particular, the numbers of

zero modes are given by Betti numbers br. For example, there is a 2-form that

decomposes BMN → Bµν ⊕Bµm⊕Bmn. Each term is an n-form with respect

to the internal manifold, where n is easily read from the decomposition. Thus,

from Bµν we obtain only one zero mode since b0 = 1, from Bµm we obtain b1

modes that are vectors in d dimensions and from Bmn we obtain b2 modes

that are scalars in d dimensions. In general, from a p-form in D dimensions

we obtain bn massless fields, n = 0, · · · , p, that correspond to (p − n)-forms

in d dimensions.

Let us now consider zero modes of the metric that decomposes gMN →
gµν ⊕ gµm ⊕ gmn. From gµν there is only one zero mode, namely the lower
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dimensional graviton. Massless modes coming from gµm, that would behave

as gauge bosons in d dimensions, can appear only when b1 6= 0 and the

internal manifold has continuous isometries. Massless modes arising from

gmn correspond to scalars in d dimensions. To analyze these modes we write

gmn = ḡmn + hmn. We know that a necessary condition for the fluctuations

hmn not to break supersymmetry is Rmn(ḡ+h) = 0 just as Rmn(ḡ) = 0. Thus,

the hmn are degeneracies of the vacuum, they preserve the Ricci-flatness.

The hmn are usually called moduli. They are free parameters in the com-

pactification which change the size and shape of the manifold but not its

topology. For instance, a circle S1 has one modulus, namely its radius R.

The fact that any value of R is allowed manifests itself in the space-time

theory as a massless scalar field with vanishing potential. The 2-torus, that

has one Kähler modulus and one complex structure modulus, is another in-

structive example. To explain its moduli we define T2 by identifications in a

lattice Λ. This means T2 = R
2/Λ. We denote the lattice vectors e1, e2 and

define a metric Gmn = em · en. The Kähler modulus is just the area
√

detG.

If there is an antisymmetric field Bmn then it is natural to introduce the

complex Kähler modulus T via

T =
√

detG+ iB12 . (2.25)

The complex structure modulus, denoted U , is

U = −i |e2|
|e1|

eiϕ(e1,e2) =
1

G11
(
√

detG− iG12) . (2.26)

U is related to the usual modular parameter by τ = iU . τ can be writ-

ten as a ratio of periods of the holomorphic 1-form Ω = dz. Specifically,

τ =
∫
γ2
dz/

∫
γ1
dz, where γ1, γ2 are the two non-trivial one-cycles (associ-

ated to e1, e2). While all tori are diffeomorphic as real manifolds, there is no

holomorphic map between two tori with complex structures τ and τ ′ unless

they are related by a SL(2,Z) modular transformation, cf. (4.28). This is

a consequence of the geometric freedom to make integral changes of lattice

basis, as long as the volume of the unit cell does not change (see e.g. [16]).

Furthermore, in string theory compactification there is a T -duality symme-

try, absent in field theory, that in circle compactification identifies R and

R′ = α′/R, whereas in T2 compactification identifies all values of T related

by an SL(2,Z)T transformation (for review, see e.g. [17]). Compactification
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on a torus will thus lead to two massless fields, also denoted U and T , with

completely arbitrary vevs but whose couplings to other fields are restricted by

invariance of the low-energy effective action under SL(2,Z)U and SL(2,Z)T .

The metric moduli of CY 3-folds are also divided into Kähler moduli and

complex structure moduli. This will be explained in section 3.6.

Our discussion of compactification so far has been almost entirely in terms

of field theory, rather than string theory. Of course, what we have learned

about compactification is also relevant for string theory, since at low energies,

where the excitation of massive string modes can be ignored, the dynamics of

the massless modes is described by a supergravity theory in ten dimensions

(for type II strings) coupled to supersymmetric Yang-Mills theory (for type

I and heterotic strings).

But there are striking differences between compactifications of field the-

ories and string theories. When dealing with strings, it is not the classical

geometry (or even topology) of the space-time manifold M which is relevant.

One dimensional objects, such as strings, probe M differently from point

particles. Much of the attraction of string theory relies on the hope that the

modification of the concept of classical geometry to ‘string geometry’ at dis-

tances smaller than the string scale ls =
√
α′ (which is of the order of the

Planck length2, i.e. ∼ 10−33cm) will lead to interesting effects and eventu-

ally to an understanding of physics in this distance range. At distances large

compared to ls a description in terms of point particles should be valid and

one should recover classical geometry.

One particular property of string compactification as compared to point

particles is that there might be more than one manifold Km which leads to

identical theories. This resembles the situation of point particles on so-called

isospectral manifolds. However, in string theory the invariance is more fun-

damental, as no experiment can be performed to distinguish between the

manifolds. This is an example of a duality, of which many are known. T -

duality of the torus compactification is one simple example which was al-

ready mentioned. A particularly interesting example which arose from the

2 This is fixed by the identification of one of the massless excitation modes of the closed

string with the graviton and comparing its self-interactions, as computed from string

theory, with general relativity. This leads to a relation between Newton’s constant and

α′.
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study of Calabi-Yau compactifications is mirror symmetry . It states that

for any Calabi-Yau manifold X there exists a mirror manifold X̂ , such that

IIA(X) = IIB(X̂). Here the notation IIA(X) means the full type IIA string

theory, including all perturbative and non-perturbative effects, compactified

on X. For the heterotic string with standard embedding of the spin connec-

tion in the gauge connection [2] mirror symmetry means het(X) = het(X̂).

The manifolds comprising a mirror pair are very different, e.g. in terms of

their Euler numbers χ(X) = −χ(X̂). The two-dimensional torus, which we

discussed above, is its own mirror manifold, but mirror symmetry exchanges

the two types of moduli: U ↔ T . In compactifications on Calabi-Yau 3-folds,

mirror symmetry also exchanges complex structure and Kähler moduli be-

tween X and X̂.

Mirror symmetry in string compactification is a rather trivial consequence

of its formulation in the language of two-dimensional conformal field theory.

However, when cast in the geometric language, it becomes highly non-trivial

and has lead to surprising predictions in algebraic geometry. Except for a

few additional comments at the end of section 3.6 we will not discuss mirror

symmetry in these lectures. An up-to-date extensive coverage of most mathe-

matical and physical aspects of mirror symmetry has recently appeared [18].

3 Complex manifolds, Kähler manifolds, Calabi-Yau

manifolds

3.1 Complex manifolds

In the previous chapter we have seen how string compactifications which pre-

serve supersymmetry directly lead to manifolds with SU(3) holonomy. These

manifolds have very special properties which we will discuss in this chapter. In

particular they can be shown to be complex manifolds. We begin this chapter

with a review of complex manifolds and of some of the mathematics necessary

for the discussion of CY manifolds. Throughout we assume some familiarity

with real manifolds and Riemannian geometry. None of the results collected

in this chapter are new, but some of the details we present are not readily

available in the (physics) literature. Useful references are [19, 4, 20, 21, 22]

(physics), [23, 24, 25, 26, 12, 27] (mathematics) and, in particular, [28]. In
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this section we use Greek indices for the (real) coordinates on the compacti-

fication manifold, which we will generically call M .

A complex manifold M is a differentiable manifold admitting an open

cover {Ua}a∈A and coordinate maps za : Ua → C
n such that za ◦ z−1

b is

holomorphic on zb(Ua ∩Ub) ⊂ C
n for all a, b. za = (z1

a, . . . , z
n
a ) are local holo-

morphic coordinates and on overlaps Ua ∩ Ub, zia = f iab(zb) are holomorphic

functions, i.e. they do not depend on z̄ib. (When considering local coordi-

nates we will often drop the subscript which refers to a particular patch.) A
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Fig. 1. Coordinate maps on complex manifolds

complex manifold thus looks locally like C
n. Transition functions from one

coordinate patch to another are holomorphic functions. An atlas {Ua, za}a∈A
with the above properties defines a complex structure on M . If the union of

two such atlases has again the same properties, they are said to define the

same complex structure; cf. differential structure in the real case, which is

defined by (equivalence classes) of C∞ atlases. n is called the complex dimen-

sion of M : n = dimC(M). Clearly, a complex manifold can be viewed as a

real manifold with even (real) dimension, i.e. m = 2n. Not all real manifolds

of even dimension can be endowed with a complex structure. For instance,

among the even-dimensional spheres S2n, only S2 admits a complex struc-

ture. However, direct products of odd-dimensional spheres always admit a

complex structure ([24], p.4).

Example 3.1: C
n is a complex manifold which requires only one single

coordinate patch. We can consider C
n as a real manifold if we identify it

with R
2n in the usual way by decomposing the complex coordinates into

their real and imaginary parts (i =
√
−1):
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zj = xj + iyj , z̄j = xj − iyj , j = 1 . . . , n . (3.1)

We will sometimes use the notation xn+j ≡ yj. For later use we give the

decomposition of the partial derivatives

∂j ≡
∂

∂zj
=

1

2

(
∂

∂xj
− i

∂

∂yj

)
, ∂̄j ≡

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
. (3.2)

and the differentials

dzj = dxj + idyj , dz̄j = dxj − idyj . (3.3)

Locally, on any complex manifold, we can always choose real coordinates as

the real and imaginary parts of the holomorphic coordinates. A complex man-

ifold is thus also a real analytic manifold. Moreover, since det ∂(x1
a,...,x

2n
a )

∂(x1
b ,...,x

2n
b )

=
∣∣∣det ∂(zi

a,...,z
n
a )

∂(z1b ,...,∂z
n
b )

∣∣∣
2
> 0 on Ua ∩ Ub, any complex manifold is orientable.

Example 3.2: A very important example, for reasons we will learn mo-

mentarily, is n-dimensional complex projective space CP
n, or, simply, P

n.

P
n is defined as the set of (complex) lines through the origin of C

n+1. A

line through the origin can be specified by a single point and two points

z and w define the same line iff there exists λ ∈ C
∗ ≡ C − {0} such that

z = (z0, z1 . . . , zn) = (λw0, λw1, . . . , λwn) ≡ λ · w. We thus have

P
n =

C
n+1 − {0}

C∗ (3.4)

The coordinates z0, . . . , zn are called homogeneous coordinates on P
n. Often

we write [z] = [z0 : z1 : · · · : zn]. P
n can be covered by n+1 coordinate patches

Ui = {[z] : zi 6= 0}, i.e. Ui consists of those lines through the origin which do

not lie in the hyperplane zi = 0. (Hyperplanes in P
n are n − 1-dimensional

submanifolds, or, more generally, codimension-one submanifolds.) In Ui we

can choose local coordinates as ξki = zk

zi . They are well defined on Ui and

satisfy

ξki =
zk

zi
=
zk

zj

/ zi
zj

=
ξkj

ξij
(3.5)

which is holomorphic on Ui ∩ Uj where ξij 6= 0. P
n is thus a complex mani-

fold. The coordinates ξi = (ξ1i , . . . , ξ
n
i ) are called inhomogeneous coordinates.

Alternatively to (3.4) we can also define P
n as P

n = S2n+1/U(1), where U(1)

acts as z → eiφz. This shows that P
n is compact.
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Exercise 3.1: Show that P
1 ≃ S2 by examining transition functions between

the two coordinate patches that one obtains after stereographically projecting

the sphere onto C ∪ {∞}.

A complex submanifold X of a complex manifold Mn is a set X ⊂ Mn

which is given locally as the zeroes of a collection f1, . . . , fk of holomorphic

functions such that rank(J) ≡ rank
(
∂(f1,...,fk)
∂(z1,...,zn)

)
= k. X is a complex mani-

fold of dimension n − k, or, equivalently, X has codimension k in Mn. The

easiest way to show that X is indeed a complex manifold is to choose local

coordinates on M such that X is given by z1 = z2 = · · · = zk = 0. It is then

clear that if M is a complex manifold so is X. More generally, if we drop the

condition on the rank, we get the definition of an analytic subvariety. A point

p ∈ X is a smooth point if rank(J(p)) = k. Otherwise p is called a singular

point. For instance, for k = 1, at a smooth point there is no simultaneous

solution of p = 0 and dp = 0.

The importance of projective space, or more generally, of weighted projec-

tive space which we will encounter later, lies in the following result: there are

no compact complex submanifolds of C
n. This is an immediate consequence

of the fact that any global holomorphic function on a compact complex man-

ifold is constant, applied to the coordinate functions (for details, see [25],

p.10). This is strikingly different from the real analytic case: any real ana-

lytic compact or non-compact manifold can be embedded, by a real analytic

embedding, into R
N for sufficiently large N (Grauert-Morrey theorem).

An algebraic variety X ⊂ P
n is the zero locus in P

n of a collection of

homogeneous polynomials {pα(z0, . . . , zn)}. (A function f(z) is homogeneous

of degree d if it satisfies f(λz) = λdf(z). Taking the derivative w.r.t. λ and

setting λ = 1 at the end, leads to the Euler relation
∑
zi∂if(z) = d · f(z).)

More generally one would consider analytic varieties, which are defined

in terms of holomorphic functions rather than polynomials. However by the

theorem of Chow every analytic subvariety of P
n is in fact algebraic. In more

sophisticated mathematical language this means that every analytic subva-

riety of P
n is the zero section of some positive power of the universal line

bundle over P
n, cf. e.g. [23].

An example of an algebraic submanifold of P
4 is the quintic hypersurface

which is defined as the zero of the polynomial p(z) =
∑4

i=0(z
i)5 in P

4. We

will see later that this is a three-dimensional Calabi-Yau manifold, and in fact
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(essentially) the only one that can be written as a hypersurface in P
4, i.e. X =

{[z0 : · · · : z4] ∈ P
4|p(z) = 0}. We can get others by looking at hypersurfaces

in products of projective spaces or as complete intersections of more than

one hypersurface in higher-dimensional projective spaces and/or products of

several projective spaces (here we need several polynomials, homogeneous

w.r.t. each P
n). The more interesting generalization is however to enlarge the

class of ambient spaces and look at weighted projective spaces.

A weighted projective space is defined much in the same way as a projec-

tive space, but with the generalized C
∗ action on the homogeneous coordi-

nates

λ · z = λ · (z0, . . . , zn) = (λw0z0, . . . , λwnzn) (3.6)

where, as before, λ ∈ C
∗ and the non-zero integer wi is called the weight of

the homogeneous coordinate zi. We will consider cases where all weights are

positive. However, when one is interested in non-compact situations, one also

allows for negative weights. We write Pn[w0, . . . , wn] ≡ Pn[w].

Different sets of weights may give isomorphic spaces. A simple example

is P
n[kw] ≃ P

n[w]. One may show that one covers all isomorphism classes if

one restricts to so-called well-formed spaces [29]. Among the n+1 weights of

a well-formed space no set of n weights has a common factor. E.g. P
2[1, 2, 2]

is not well formed whereas P
2[1, 1, 2] is.

Weighted projective spaces are singular, which is most easily demon-

strated by means of an example. Consider P
2[1, 1, 2], i.e. (z0, z1, z2) and

(λz0, λz2, λ2z2) denote the same point. For λ = −1 the point [0 : 0 : z2] ≡
[0 : 0 : 1] is fixed but λ acts non-trivially on its neighborhood: we have a Z2

orbifold singularity at this point. This singularity has locally the form C
2/Z2,

where Z2 acts on the coordinates (x1, x2) of C
2 as Z2 : (x1, x2) 7→ −(x1, x2).

In general there is a fixed point for every weight greater than one, a fixed

curve for every pair of weights with a common factor greater than one and

so on.

A hypersurface Xd[w] in weighted projective space is defined as the van-

ishing locus of a quasi-homogeneous polynomial, p(λ · z) = λdp(z), where d is

the degree of p(z), i.e.

Xd[w] =
{
[z0 : · · · : zb] ∈ P

n[w]
∣∣∣ p(z) = 0

}
(3.7)

In this case the Euler relation generalizes to
∑
wiz

i∂ip(z) = d · p(z).
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Exercise 3.2: Of how many points consist the following ‘hypersurfaces’? (1):

(z0)2 + (z1)2 = 0 in P
1; (2): (z0)3 + (z1)2 = 0 in P

1[2, 3]. The number of

points is equal to the Euler number (the Euler number of a smooth point

is one, as can be seen from the Euler formula χ = #vertices − #edges +

#two dimensional faces ∓ . . . of a triangulated space. This also follows from

the familiar fact that after removing two points from a sphere with Euler

number two one obtains a cylinder whose Euler number is zero).

It can happen that the hypersurface does not pass through the singular-

ities of the ambient space. Take again the example P
2[1, 1, 2] and consider

the quartic hypersurface. At the fixed point [0 : 0 : z2] only the monomial

(z2)2 survives and the hypersurface constraint would require that z2 = 0.

But the point z0 = z1 = z2 = 0 is not in P
2[1, 1, 2]. As a second example

consider P
3[1, 1, 2, 2]. We now find a singular curve rather than a singular

point, namely z0 = z1 = 0 and a generic hypersurface will intersect this

curve in isolated points. To obtain a smooth manifold one has to resolve the

singularity, which in this example is a Z2 singularity. We will not discuss the

process of resolution of the singularities but it is mathematically well defined

and under control and most efficiently described within the language of toric

geometry [30, 31].

Weighted projective spaces are still not the most general ambient spaces

one considers in actual string compactifications, in particular when one con-

siders mirror symmetry (see below). The more general concept is that of a

toric variety. Toric varieties have some very simple features which allow one

to reduce many calculations to combinatorics. Weighted projective spaces are

a small subclass of toric varieties. For details we refer to Chapter 7 of [18]

and to [31, 32].

We have seen that any complex manifold M can be viewed as a real

(analytic) manifold. The tangent space at a point p is denoted by Tp(M)

and the tangent bundle by T (M). The complexified tangent bundle TC(M) =

T (M)⊗C consists of all tangent vectors of M with complex coefficients, i.e.

v =
∑2n

j=1 v
j ∂
∂xj with vi ∈ C. With the help of (3.2) we can write this as

v =
2n∑

j=1

vj
∂

∂xj
=

n∑

j=1

(vj + ivn+j)∂j +
n∑

j=1

(vj − ivn+j)∂̄j

≡ v1,0 + v0,1 (3.8)
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We have thus a decomposition

TC(M) = T 1,0(M) ⊕ T 0,1(M) (3.9)

into vectors of type (1, 0) and of type (0, 1): T 1,0(M) is spanned by {∂i} and

T 0,1(M) by {∂̄i}. Note that T 0,1
p (M) = T 1,0

p (M) and that the splitting into

the two subspaces is preserved under holomorphic coordinate changes. The

transition functions of T 1,0(M) are holomorphic, and we therefore call it the

holomorphic tangent bundle. A holomorphic section of T 1,0(M) is called a

holomorphic vector field; its component functions are holomorphic.

T 1,0(M) is just one particular example of a holomorphic vector bundle

E
π−→M . Holomorphic vector bundles of rank k are characterized by their

holomorphic transition functions which are elements of Gl(k,C) (rather than

Gl(n,R) as in the real case) with holomorphic matrix elements.

In the same way as in (3.9) we decompose the dual space, the space of

one-forms:

T ∗
C(M) = T ∗1,0(M) ⊕ T ∗0,1(M) . (3.10)

T ∗1,0(M) and T ∗0,1(M) are spanned by {dzi} and {dz̄i}, respectively. By tak-

ing tensor products we can define differential forms of type (p, q) as sections

of
p
∧T ∗1,0(M)

q
∧T ∗0,1(M). The space of (p, q)-forms will be denoted by Ap,q.

Clearly Ap,q = Aq,p. If we denote the space of sections of
r∧T ∗

C
(M) by Ar, we

have the decomposition

Ar =
⊕

p+q=r

Ap,q . (3.11)

This decomposition is independent of the choice of local coordinate system.

Using the underlying real analytic structure we can define the exterior

derivative d. If ω ∈ Ap,q, then

dω ∈ Ap+1,q ⊕Ap,q+1 . (3.12)

We write dω = ∂ω + ∂̄ω with ∂ω ∈ Ap+1,q and ∂̄ω ∈ Ap,q+1. This defines the

two operators

∂ : Ap,q → Ap+1,q , ∂̄ : Ap,q → Ap,q+1 , (3.13)

and

d = ∂ + ∂̄ . (3.14)
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The following results are easy to verify:

d2 = (∂ + ∂̄)2 ≡ 0 ⇒ ∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0 . (3.15)

Here we used that ∂2 : Ap,q → Ap+2,q, ∂̄2 : Ap,q → Ap,q+2, (∂∂̄+ ∂̄∂) : Ap,q →
Ap+1,q+1, i.e. that the three operators map to three different spaces. They

must thus vanish separately.

Eq. (3.14) is not true on an almost complex manifold. Alternative to the

way we have defined complex structures we could have started with an almost

complex structure – a differentiable isomorphism J : T (M) → T (M) with

J2 = −1 – such that the splitting (3.9) of T (M) is into eigenspaces of J

with eigenvalues +i and −i, respectively. Then (3.12) would be replaced by

dω ∈ Ap+2,q−1 ⊕ Ap+1,q ⊕ Ap,q+1 ⊕ Ap−1,q+2 and (3.14) by d = ∂ + ∂̄ + . . . .

Only if the almost complex structure satisfies an integrability condition – the

vanishing of the Nijenhuis tensor – do (3.12) and (3.14) hold. A theorem of

Newlander and Nierenberg then guarantees that we can construct on M an

atlas of holomorphic charts and M is a complex manifold in the sense of the

definition that we have given, see e.g. [13, 25].

ω is called a holomorphic p-form if it is of type (p, 0) and ∂̄ω = 0, i.e. if it

has holomorphic coefficient functions. Likewise ω̄ of type (0, q) with ∂̄ω̄ = 0

is called anti-holomorphic. Ωp(M) denotes the vector-space of holomorphic

p-forms. We leave it as an exercise to write down the explicit expressions, in

terms of coefficients, of ∂ω, etc.

3.2 Kähler manifolds

The next step is to introduce additional structures on a complex manifold: a

hermitian metric and a hermitian connection.

A hermitian metric is a covariant tensor field of the form
∑n

i,j=1 gi̄dz
i ⊗

dz̄j , where gi̄ = gi̄(z) (here the notation is not to indicate that the compo-

nents are holomorphic functions; they are not!) such that gjı̄(z) = gi̄(z) and

gi̄(z) is a positive definite matrix, that is, for any {vi} ∈ C
n, vigi̄v̄

̄ ≥ 0 with

equality only if all vi = 0. To any hermitian metric we associate a (1, 1)-form

ω = i

n∑

i,j=1

gi̄dz
i ∧ dz̄j . (3.16)

ω is called the fundamental form associated with the hermitian metric g.
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Exercise 3.3: Show that ω is a real (1, 1)-form, i.e. that ω = ω̄.

One can introduce a hermitian metric on any complex manifold (see e.g. [26],

p. 145).

Exercise 3.4: Show that

ωn

n!
= (i)ng(z)dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

= (i)n(−1)n(n−1)/2g(z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

= 2ng(z)dx1 ∧ · · · ∧ dx2n (3.17)

where ωn = ω ∧ · · · ∧ ω︸ ︷︷ ︸
n factors

and g = det(gi̄) > 0. ωn is thus a good volume

form on M . This shows once more that complex manifolds always possess an

orientation.

The inverse of the hermitian metric is gi̄ which satisfies gjı̄gjk̄ = δı̄
k̄

and

gi̄g
k̄ = δki (summation convention used). We use the metric to raise and

lower indices, whereby they change their type. Note that under holomorphic

coordinate changes, the index structure of the metric is preserved, as is that

of any other tensor field.

A hermitian metric g whose associated fundamental form ω is closed,

i.e. dω = 0, is called a Kähler metric. A complex manifold endowed with a

Kähler metric is called a Kähler manifold. ω is the Kähler form. An immediate

consequence of dω = 0 ⇒ ∂ω = ∂̄ω = 0 is

∂igjk̄ = ∂jgik̄ , ∂̄igjk̄ = ∂̄kgjı̄ (Kähler condition) . (3.18)

From this one finds immediately that the only non-zero coefficients of the

Riemannian connection are

Γ kij = gkl̄∂igjl̄ , Γ k̄ı̄̄ = glk̄∂̄ı̄gl̄ . (3.19)

The vanishing of the connection coefficients with mixed indices is a necessary

and sufficient condition that under parallel transport the holomorphic and

the anti-holomorphic tangent spaces do not mix (see below).

Note that while all complex manifolds admit a hermitian metric, this does

not hold for Kähler metrics. Counterexamples are quaternionic manifolds

which appear as moduli spaces of type II compactifications on Calabi-Yau
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manifolds. Another example is S2p+1⊗S2q+1, q > 1. A complex submanifold

X of a Kähler manifold M is again a Kähler manifold, with the induced

Kähler metric. This follows easily if one goes to local coordinates on M

where X is given by z1 = · · · = zk = 0.

From (3.18) we also infer the local existence of a real Kähler potential K

in terms of which the Kähler metric can be written as

gi̄ = ∂i∂̄jK (3.20)

or, equivalently, ω = i∂∂̄K. The Kähler potential is not uniquely defined:

K(z, z̄) and K(z, z̄) + f(z) + f̄(z̄) lead to the same metric if f and f̄ are

holomorphic and anti-holomorphic functions (on the patch on which K is

defined), respectively.

From now on, unless stated otherwise, we will restrict ourselves to Kähler

manifolds; some of the results are, however, true for arbitrary complex man-

ifolds. Also, if in doubt, assume that the manifold is compact.

Exercise 3.5: Determine a hermitian connection by the two requirements: (1)

The only non-vanishing coefficients are Γ ijk and Γ ı̄
̄k̄

and (2) ∇igjk̄ = 0. Show

that the connection is torsionfree, i.e. T kij ≡ Γ kij − Γ kji = 0 if g is a Kähler

metric. Check that the connection so obtained is precisely the Riemannian

connection, i.e. the hermitian and the Riemannian structures on a Kähler

manifold are compatible.

Exercise 3.6: Derive the components of the Riemann tensor on a Kähler man-

ifold. Show that the only non-vanishing components of the Riemann tensor

are those with the index structure Ri̄kl̄ and those related by symmetries. In

particular the components of the type Rij∗∗ are zero. Show that the non-

vanishing components are

Ri̄kl̄ = −∂i∂̄̄gkl̄ + gmn̄(∂igkn̄)(∂̄̄gml̄) . (3.21)

Here the sign conventions are such that [∇i,∇̄]Vk = −Ri̄klVl.

Exercise 3.7: The Ricci tensor is defined as Ri̄ ≡ gkl̄Ri̄kl̄. Prove that

Ri̄ = −∂i∂̄̄(log det g) . (3.22)

Show that this is the same (up to a sign) as Riµ̄
µ = Riµ̄νg

µν , µ = (k, k̄).
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One also defines the Ricci-form (of type (1, 1)) as

R = iRjk̄dz
j ∧ dz̄k = −i∂∂̄ log(det g) (3.23)

which satisfies dR = 0. Note that log(det g) is not a globally defined function

since det g transforms as a density under change of coordinates. R is however

globally defined (why?).

We learn from (3.23) that the Ricci form depends only on the volume

form of the Kähler metric and on the complex structure (through ∂ and ∂̄).

Under a change of metric, g → g′, the Ricci form changes as

R(g′) = R(g) − i∂∂̄ log

(
det(g′

kl̄
)

det(gkl̄)

)
, (3.24)

where the ratio of the two determinants is a globally defined non-vanishing

function on M .

Example 3.3: Complex projective space. To demonstrate that it is a Kähler

manifold we give an explicit metric, the so called Fubini-Study metric. Recall

that P
n = {[z0 : · · · : zn]; 0 6= (z0 : · · · : zn) ∈ C

n+1} and U0 = {[1, z1 : · · · :

zn]} ≃ C
n is an open subset of P

n. Set

gi̄ = ∂i∂̄ log(1 + |z1|2 + · · · + |zn|2) ≡ ∂i∂̄ ln(1 + |z|2) (3.25)

or, equivalently,

ω = i∂∂̄ log(1 + |z|2) = i

(
dzi ∧ dz̄i
1 + |z|2 − z̄idzi ∧ zjdz̄j

(1 + |z|2)2
)

(3.26)

Closure of ω is obvious if one uses (3.15). From (3.25) we also immediately

read off the Kähler potential of the Fubini-Study metric (cf. (3.20)) on U0.

Clearly this is only defined locally.

Exercise 3.8: Show that for any non-zero vector u, uigi̄ū
̄ ≥ 0 to prove

positive definiteness of the Fubini-Study metric.

On the other hand, ω is globally defined on P
n. To see this, let U1 =

{(w0, 1, w2, . . . , wn)} ⊂ P
n and check what happens to ω on the overlap

U0 ∩ U1 = {[1 : z1 : · · · : zn] = [w0 : 1 : w2 : · · · : wn]}, where zi = wi

w0 , for all

i 6= 1 and z1 = 1
w0 . Then
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ω = i∂∂̄ log(1 + |z1|2 + · · · + |zn|2) = i∂∂̄ log

(
1 +

1

|w0|2 +

n∑

i=2

|wi|2
|w0|2

)

= i
(
∂∂̄ log(1 + |w|2) − ∂∂̄ log(|w0|2)

)
= i∂∂̄ log(1 + |w|2) (3.27)

since w0 is holomorphic on U0∩U1. So ω and the corresponding Kähler metric

are globally defined. Complex projective space is thus a Kähler manifold and

so is every complex submanifold. With3

det(gi̄) =
1

(1 + |z|2)n+1
(3.28)

one finds

Ri̄ = −∂i∂̄̄ log
(

1

(1 + |z|2)n+1

)
= (n+ 1)gi̄ (3.29)

which shows that the Fubini-Study metric is a Kähler-Einstein metric and

P
n a Kähler-Einstein manifold.

3.3 Holonomy group of Kähler manifolds

The next topic we want to discuss is the holonomy group of Kähler man-

ifolds. Recall that the holonomy group of a Riemannian manifold of (real)

dimension m is a subgroup of O(m). It follows immediately from the index

structure of the connection coefficients of a Kähler manifold that under par-

allel transport elements of T 1,0(M) and T 0,1(M) do not mix. Since the length

of a vector does not change under parallel transport, the holonomy group of

a Kähler manifold is a subgroup of U(n) where n is the complex dimension

of the manifold. 4 In particular, elements of T 1,0(M) transform as n and el-

ements of T 0,1(M) as n of U(n). Consider now parallel transport around an

infinitesimal loop in the (µ, ν)-plane with area δaµν = −δaνµ. Under parallel

transport around this loop a vector V changes by an amount δV given in

(A.14). In complex coordinates this is δV i = −δakl̄Rkl̄ijV j. From what we

said above it follows that on a Kähler manifold the matrix −δakl̄Rkl̄ij must

be an element of the Lie algebra u(n). The trace of this matrix, which is pro-

portional to the Ricci tensor, generates the u(1) part in the decomposition

3 To show this, use det(δij − viv̄) = exp (tr log(δij − viv̄)) = exp
`

log(1 − |v|2)
´

= (1 −

|v|2).
4 The unitary group U(n) is the set of all complex n × n matrices which leave invariant

a hermitian metric gi̄ = gjı̄, i.e. UgU† = g. For the choice gi̄ = δij one obtains the

familiar condition UU† = 1.
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u(n) ≃ su(n) ⊕ u(1). We thus learn that the holonomy group of a Ricci-

flat Kähler manifold is a subgroup of SU(n). Conversely, one can show that

any 2n-dimensional manifold with U(n) holonomy admits a Kähler metric

and if it has SU(n) holonomy it admits a Ricci-flat Kähler metric. This uses

the fact that holomorphic and anti-holomorphic indices do not mix, which

implies that all connection coefficients with mixed indices must vanish. One

then proceeds with the explicitly construction of an almost complex structure

with vanishing Nijenhuis tensor. Details can be found in [4, 28].

We should mention that strictly speaking the last argument is only valid

for the restricted holonomy group H0 (which is generated by parallel trans-

port around contractible loops). Also, in general only the holonomy around

infinitesimal loops is generated by the Riemann tensor. For finite (but still

contractible) loops, derivatives of the Riemann tensor of arbitrary order will

appear [12]. For Kähler manifolds we do however have the U(n) invariant split

of the indices µ = (i, ı̄) and U(n) is a maximal compact subgroup of SO(2n).

Thus the restricted holonomy group is not bigger than U(n) For simply con-

nected manifolds the restricted holonomy group is already the full holonomy

group. For non-simply connected manifolds the full holonomy group and the

restricted holonomy group may differ. Their quotient is countable and the

restricted holonomy group is the identity component of the full holonomy

group, i.e. for a generic Riemannian manifold it is SO(m) (cf. [12]).

3.4 Cohomology of Kähler manifolds

Before turning to the next subject, homology and cohomology on complex

manifolds, we will give a very brief and incomplete summary of these concepts

in the real situation, which, of course, also applies to complex manifolds, if

they are viewed as real analytic manifolds.

On a smooth, connected manifold M one defines p-chains ap as formal

sums ap =
∑

i ciNi of p-dimensional oriented submanifolds on M . If the co-

efficients ci are real (complex, integer), one speaks of real (complex, integral)

chains. Define ∂ as the operation of taking the boundary with the induced

orientation. ∂a ≡ ∑ ci∂Ni is then a p − 1-chain. Let Zp = {ap|∂ap = ∅} be

the set of cycles, i.e. the set of chains without boundary and let Bp = {∂ap+1}
be the set of boundaries. Since ∂∂ap = ∅, Bp ⊂ Zp. The p-th homology group

of M is defined as
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Hp = Zp/Bp . (3.30)

Depending on the coefficient group one gets Hp(M,R), Hp(M,C), Hp(M,Z),

etc. Elements of Hp are equivalence classes of cycles zp ≃ zp + ∂ap+1, called

homology classes and denoted by [zp].

One version of Poincaré duality is the following isomorphism between

homology groups, valid on orientable connected smooth manifolds of real

dimension m:

Hr(M,R) ≃ Hm−r(M,R) . (3.31)

One defines the r-th Betti number br as

br = dim(Hr(M,R)) . (3.32)

They are toplogical invariants of M . As a consequence of Poincaré duality,

br(M) = bm−r(M) . (3.33)

We now turn to de Rham cohomology, which is defined with the exterior

derivative operator d : Ar → Ar+1. Let Zp be the set of closed p-forms, i.e.

Zp = {ωp|dωp = 0} and let Bp be the set of exact p-forms Bp = {dωp−1}.
The de Rham cohomology groups Hp are defined as the quotients

Hp
D.R. = Zp/Bp . (3.34)

Elements ofHp are equivalence classes of closed forms ωp ≃ ωp+dαp−1, called

cohomology classes and denoted by [ωp]. Each equivalence class possesses one

harmonic representative, i.e. a zero mode of the Laplacian ∆ = dd∗ + d∗d.

The action of ∆ on p-forms is

∆ωµ1···µp = −∇ν∇νωµ1···µp − pRν[µ1
ωνµ2···µp] −

1

2
p(p− 1)Rνρ[µ1µ2

ωνρµ3···µp] .

(3.35)

Since the number of (normalizable) harmonic forms on a compact manifold

is finite, the Betti numbers are all finite.

Exercise 3.9: Derive (3.35).

Given both the homology and the cohomology classes, we can define an

inner product

π(zp, ωp) =

∫

zp

ωp , (3.36)
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where π(zp, ωp) is called a period (of ωp). We speak of an integral cohomology

class [ωp] ∈ HD.R.(M,Z) if the period over any integral cycle is integer.

Exercise 3.10: Prove, using Stoke’s theorem, that the integral does not depend

on which representatives of the two classes are chosen.

A theorem of de Rham ensures that the above inner product between

homology and cohomology classes is bilinear and non-degenerate, thus estab-

lishing an isomorphism between homology and cohomology. The following

two facts are consequences of de Rham’s theorem:

(1) Given a basis {zi} for Hp and any set of periods νi, i = 1, . . . , bp, there

exists a closed p-from ω such that π(zi, ω) = νi.

(2) If all periods of a p-form vanish, ω is exact.

Another consequence of de Rham’s theorem is the following important result:

Given any p-cycle z there exists a closed (m− p)-form α, called the Poincaré

dual of z such that for any closed p-form ω

∫

z
ω =

∫

M
α ∧ ω . (3.37)

Since ω is closed, α is only defined up to an exact form. In terms of their

Poincaré duals α and β we can define the intersection number A ·B between

a p-cycle A and an (m− p)-cycle B as

A · B =

∫

M
α ∧ β . (3.38)

This notion is familiar from Riemann surfaces.

So much for the collection of some facts about homology and cohomology

on real manifolds. They are also valid on complex manifolds if one views

them as real analytic manifolds. However one can use the complex structure

to define (among several others) the so-called Dolbeault cohomology or ∂̄-

cohomology. As the (second) name already indicates, it is defined w.r.t. the

operator ∂̄ : Ap,q(M) → Ap,q+1(M). A (p, q)-form α is ∂̄-closed if ∂̄α = 0. The

space of ∂̄-closed (p, q)-forms is denoted by Zp,q
∂̄

. A (p, q)-form β is ∂̄-exact if it

is of the form β = ∂̄γ for γ ∈ Ap,q−1. Since ∂̄2 = 0, ∂̄(Ap,q(M)) ⊂ Zp,q+1
∂̄

(M).

The Dolbeault cohomology groups are then defined as

Hp,q
∂̄

(M) =
Zp,q
∂̄

(M)

∂̄(Ap,q−1(M))
. (3.39)
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There is a lemma (by Dolbeault) analogous to the Poincaré-lemma, which

ensures that the Dolbeault cohomology groups (for q ≥ 1) are locally5 trivial.

This is also referred to as the ∂̄-Poincaré lemma.

The dimensions of the (p, q) cohomology groups are called Hodge numbers

hp,q(M) = dimC(Hp,q
∂̄

(M)) . (3.40)

They are finite for compact, complex manifolds [23]. The Hodge numbers of

a Kähler manifold are often arranged in the Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

(3.41)

which we have displayed here for a three complex dimensional Kähler mani-

fold. We will later show that for a Calabi-Yau manifold of the same dimension

the only independent Hodge numbers are h1,1 and h2,1.

We can now define a scalar product between two forms, ϕ and ψ, of type

(p, q):6

ψ =
1

p!q!
ψi1...ip ̄1...̄q(z)dz

i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq (3.42)

and likewise for ϕ. First define

(ϕ,ψ)(z) =
1

p!q!
ϕi1...ip ̄1...̄q(z)ψ̄

i1...ip ̄1...̄q(z) (3.43)

where

ψ̄i1...ip ̄1...̄q(z) = gi1 k̄1 · · · gipk̄pgl1 ̄1 · · · glq ̄qψk1...kp l̄1...l̄q(z) . (3.44)

Later we will also need the definition

5 More precisely, on polydiscs Pr = {z ∈ C
n|zi| < r, for all i = 1, . . . , n}.

6 A good and detailed reference for the following discussion is the third chapter of [26].
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ψ̄ =
1

p!q!
ψi1...ip ̄1...̄qdz

i1 ∧ · · · ∧ dz̄jq =
1

p!q!
ψ̄ji...jq ı̄1...̄ıpdz

j1∧· · ·∧dz̄ip , (3.45)

where

ψk1...kp l̄1...l̄q
= (−1)pqψ̄l1...lq k̄1...k̄p

. (3.46)

The inner product ( , ) : Ap,q ×Ap,q → C is then

(ϕ,ψ) =

∫

M
(ϕ,ψ)(z)

ωn

n!
. (3.47)

The following two properties are easy to verify:

(ψ,ϕ) = (ϕ,ψ) ,

(ϕ,ϕ) ≥ 0 with equality only for ϕ = 0 . (3.48)

We define the Hodge-∗ operator ∗ : Ap,q → An−q,n−p, ψ 7→ ∗ψ by requiring7

(ϕ,ψ)(z)
ωn

n!
= ϕ(z) ∧ ∗ψ̄(z) . (3.49)

Exercise 3.11: Show that for ψ ∈ Ap,q,

∗ψ = (i)n(−1)n(n−1)/2+np

p!q!(n−p)!(n−q)!
gǫm1...mp

̄1...̄n−pǫ
n̄1...n̄q

l1...ln−q (3.50)

·ψm1...mpn̄1...n̄qdz
l1 ∧ · · · ∧ dzln−q ∧ dz̄j1 ∧ · · · ∧ dz̄jn−p ∈ An−q,n−p .

Here we defined ǫi1...in = ±1 and its indices are raised with the metric, as

usual; i.e. ǫ̄1...̄n = ±g−1.

Exercise 3.12: Prove the following properties of the ∗-operator:

∗ψ̄ = ∗ψ ,

∗∗ψ = (−1)p+q ψ , ψ ∈ Ap,q . (3.51)

Exercise 3.13: For ω the fundamental form and α an arbitrary real (1, 1)-

form, derive the following two identities, valid on a three-dimensional Kähler

manifold:

∗ α =
1

2
(ω,α)(z)ω ∧ ω − α ∧ ω ,

7 Note that there are several differing notations in the literature; e.g. Griffiths and Harris

define an operator ∗
GH

: Ap,q → An−p,n−q . What they call ∗
GH

ψ we have called ∗ψ̄.
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∗ ω =
1

2
ω ∧ ω . (3.52)

Exercise 3.14: Show that on a three-dimensional complex manifold for Ω ∈
A3,0 and α ∈ A2,1,

∗Ω = −iΩ ,

∗ α = iα . (3.53)

Given the scalar product (3.47), we can define the adjoint of the ∂̄ oper-

ator, ∂̄∗ : Ap,q(M) → Ap,q−1(M) via

(∂̄∗ψ,ϕ) = (ψ, ∂̄ϕ) , ∀ϕ ∈ Ap,q−1(M) . (3.54)

Exercise 3.15: Show that on M compact,

∂̄∗ = − ∗ ∂ ∗ . (3.55)

Exercise 3.16: Show that, given a (p, q)-form ψ,

(∂̄∗ψ)i1...ip ̄2...̄q = (−1)p+1∇̄1ψi1...ip ̄1...̄q . (3.56)

We now define the ∂̄-Laplacian as

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ , ∆∂̄ : Ap,q(M) → Ap,q(M) (3.57)

and call ψ a (∂̄−)harmonic form if it satisfies

∆∂̄ψ = 0 . (3.58)

The space of harmonic (p, q)-forms on M is denoted by Hp,q(M).

Exercise 3.17: Show that on a compact manifold, ψ is harmonic iff ∂̄ψ =

∂̄∗ψ = 0, i.e. a harmonic form has zero curl and zero divergence with respect

to its anti-holomorphic indices. Show furthermore that a harmonic form is

orthogonal to any exact form and is therefore never exact.

In analogy to de Rham cohomology, one has the (complex version of the)

Hodge Theorem: Ap,q has a unique orthogonal decomposition
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Ap,q = Hp,q ⊕ ∂̄Ap,q−1 ⊕ ∂̄∗Ap,q+1 . (3.59)

In other words, every ϕ ∈ Ap,q has a unique decomposition

ϕ = h+ ∂̄ψ + ∂̄∗η (3.60)

where h ∈ Hp,q, ψ ∈ Ap,q−1 and η ∈ Ap,q+1. If ∂̄ϕ = 0 then ∂̄∗η = 0,8 i.e. we

have the unique decomposition of ∂̄-closed forms

Zp,q
∂̄

= Hp,q ⊕ ∂̄Ap,q−1 (3.61)

With reference to (3.39) we have thus shown that

Hp,q
∂̄

(M) ≃ Hp,q(M) (3.62)

or, in words, every ∂̄-cohomology class of (p, q)-forms has a unique harmonic

representative ∈ Hp,q. Conversely, every harmonic form defines a cohomology

class.

The Kähler class of a Kähler form ω is the set of Kähler forms belonging

to the cohomology class [ω] of ω.

Exercise 3.18: Prove that the Kähler form is harmonic.

In addition to the ∂̄-Laplacian ∆∂̄ , one defines two further Laplacians on a

complex manifold: ∆∂ = ∂∂∗ + ∂∗∂ and the familiar ∆d = dd∗ + d∗d. The

importance of the Kähler condition is manifest in the following result which

is valid on Kähler manifolds but not generally on complex manifolds:

∆∂̄ = ∆∂ =
1

2
∆d (3.63)

i.e. the ∂̄−, ∂− and d−harmonic forms coincide. An elementary proof of

(3.63) proceeds by working out the three Laplacians in terms of covariant

derivatives and Riemann tensors on a Kähler manifold. For other proofs, see

e.g. [23].

One immediate consequence of (3.63) is that ∆d does not change the index

type of a form. Another important consequence is that on Kähler manifolds

every holomorphic p-form is harmonic and vice-versa, every harmonic (p, 0)

form is holomorphic. Indeed, if α ∈ Ωp ⊂ Ap,0, ∂̄α = 0 and ∂̄∗α = 0. The

8 From ∂̄ϕ = ∂̄∂̄∗η it follows that (∂̄ϕ, η) = (∂̄∂̄∗η, η) = (∂̄∗η, ∂̄∗η).
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latter is true since ∂̄∗ : Ap,q → Ap,q−1 and can also be seen directly from

(3.56). Conversely, ∆α = 0 implies ∂̄α = 0 which, for α ∈ Hp,0, means

α ∈ Ωp.

It follows from (3.63) that on Kähler manifolds

∑

p+q=r

hp,q = br ,

∑

p,q

(−1)p+qhp,q =
∑

r

(−1)rbr = χ(M) , (3.64)

where χ(M) is the Euler number of M . The decomposition of the Betti num-

bers into Hodge numbers corresponds to the U(n) invariant decomposition

µ = (i, ı̄). The second relation also holds in the non-Kähler case where the

first relation is replaced by an inequality (≥); i.e. the decomposition of forms

(3.11) does not generally carry over to cohomology. Note that (3.64) relates

real and complex dimensions.

In general, the Hodge numbers depend on the complex structure. On com-

pact manifolds which admit a Kähler metric, these numbers do however not

change under continuous deformations of the complex structure. They also

do not depend on the metric. What does depend on the metric is the har-

monic representative of each class, but the difference between such harmonic

representatives is always an exact form.

The Hodge numbers of Kähler manifolds are not all independent. From

Ap,q = Aq,p we learn

hp,q = hq,p . (3.65)

This symmetry ensures that all odd Betti numbers of Kähler manifolds are

even (possibly zero). Furthermore, since [∆d, ∗] = 0 and since ∗ : Ap,q →
An−q,n−p we conclude

hp,q = hn−q,n−p
(3.65)
= hn−p,n−q . (3.66)

The existence of a closed (1, 1)-form, the Kähler form ω (which is in fact

harmonic, cf. Exercise 3.18), ensures that

hp,p > 0 for p = 0, . . . , n . (3.67)

Indeed, ωp ∈ Hp,p(M) is obviously closed. If it were exact for some p, then

ωn were also exact. But this is impossible since ωn is a volume form. h0,0 = 1
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if the manifold is connected. The elements of H0,0(M,C) are the complex

constants. One can show that on P
n the Kähler form generates the whole

cohomology, i.e. hp,p(Pn) = 1 for p = 0, . . . n, with all other Hodge numbers

vanishing.

For instance, on a connected three-dimensional Kähler manifold, these

symmetries leave only five independent Hodge numbers, e.g. h1,0, h2,0, h1,1,

h2,1 and h3,0. For Ricci-flat Kähler manifolds, which we will consider in detail

below, we will establish three additional restrictions on its Hodge numbers.

We have already encountered one important cohomology class on Kähler

manifolds: from (3.23) we learn that R ∈ H1,1(M,C) and from (3.24) that

under change of metric R varies within a given cohomology class. In fact,

one can show that, if properly normalized, the Ricci form defines an element

on H1,1(M,Z). This leads us directly to a discussion of Chern classes.

Given a Kähler metric, we can define a matrix valued 2-form Θ of type

(1, 1) by

Θji = gjp̄Rip̄kl̄dzk ∧ dz̄l . (3.68)

One defines the Chern form

c(M) = 1 +
∑

i

ci(M) = det(1+
it

2π
Θ)|t=1 = (1 + tφ1(g) + t2φ2(g) + . . . )|t=1

(3.69)

which has the following properties (cf. e.g. [27, 12]):

• dφi(g) = 0 and [φi] ∈ H i,i(M,C) ∩H2i(M,R),

• [φi(g)] is independent of g,

• ci(M) is represented by φi(g).

ci(M) is the ith Chern class of the manifold M . In these lectures we only

need c1(M) which is expressed in terms of the Ricci form:

φ1(g) =
i

2π
Θii =

i

2π
Rkl̄dz

k ∧ dz̄l =
1

2π
R = − i

2π
∂∂̄ log det(gkl̄) .

For c1(M), the first two properties have been proven in (3.23) and (3.24).

Moreover, if

dv = vdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

is any volume form on M , we can represent c1(M) by

c1(M) = −
[
i

2π
∂∂̄ log(v)

]
. (3.70)
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This is so since v = f det(g) for a non-vanishing positive function f on M .

Example 3.4: Let M = P
n, endowed with the Fubini-Study metric. We then

have (cf. (3.29)) R = (n+ 1)ω, i.e. c1(P
n) = 1

2π (n+ 1)[ω].

We say that c1(M) > 0 (< 0) if c1(M) can be represented by a positive

(negative) form. In local coordinates this means

φ1 = iφkl̄dz
k ∧ dz̄l , (3.71)

where φkl̄ is a positive (negative) definite matrix. We say that c1(M) = 0 if

the first Chern class is cohomologous to zero. Clearly c1(P
n) > 0. Note that,

e.g. a c1(M) > 0 means that
∫
C c1 > 0 for any curve C in M .

3.5 Calabi-Yau manifolds

We are now prepared to give a definition of a Calabi-Yau manifold:

A Calabi-Yau manifold is a compact Kähler manifold with vanishing first

Chern class.

While it is obvious that any Ricci-flat Kähler manifold has vanishing first

Chern class, the opposite is far from trivial. This problem was first considered

by Calabi in a more general context. He asked the question whether any

representative of c1(M) is the Ricci-form of some Kähler metric. (One can

show that any two such representatives differ by a term of the form ∂∂̄f where

f ∈ C∞(M,R). This is the content of the ∂∂̄-Lemma, cf. [12], 2.110.) Calabi

also showed that if such a Kähler metric exists, then it must be unique. Yau

provided the proof that such a metric always exists if M is compact.

The precise statement of Yau’s theorem is: let M be a compact Kähler

manifold, ω its Kähler form, c1(M) its first Chern class. Any closed real two-

form of type (1,1) belonging to 2πc1(M) is the Ricci form of one and only

one Kähler metric in the class of ω.

For vanishing first Chern class, which is the case we are interested in,

this means that given any Kähler metric g with associated Kähler form ω,

one can always find a unique Ricci-flat Kähler metric g′ with Kähler form ω′

such that [ω] = [ω′], i.e. a Kähler manifold with c1(M) = 0 admits a unique

Ricci-flat Kähler form in each Kähler class.

Since the first Chern class is represented by the Ricci form and since

the latter changes under change of metric by an exact form, i.e. R(g′) =
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R(g) + dα (cf. (3.24)), vanishing of the first Chern class is necessary for

having a Ricci-flat metric. This is the easy part of the theorem. To prove

that this is also sufficient is the hard part. Yau’s proof is an existence proof.

In fact no Calabi-Yau metric has ever been constructed explicitly. In the

non-compact case the situation in this respect is better; examples are the

Eguchi-Hanson metrics, see e.g. [28], and the metric on the deformed and

the resolved conifold [33]. They play a rôle in the resolution of singularities

(orbifold and conifold singularities, respectively) which can occur in compact

CY manifolds at special points in their moduli space.

The compact Kähler manifolds with zero first Chern class are thus pre-

cisely those which admit a Kähler metric with zero Ricci curvature, or

equivalently, with restricted holonomy group contained in SU(n). Follow-

ing common practice we will talk about Calabi-Yau manifolds if the holon-

omy group is precisely SU(n). This excludes tori and direct product spaces.

We want to mention in passing that any compact Kähler manifold with

c1(M) = c2(M) = 0 is flat, i.e. M = C
n/Γ . This shows that while Ricci-

flatness is characterized by the first Chern class, flatness is characterized by

the second Chern class.

We should mention that the analysis that we sketched in the introduction,

which led to considering Ricci-flat manifolds, was based on a perturbative

string theory analysis which was further restricted to lowest order in α′. If

one includes α′-corrections, both the beta-function equations and the super-

symmetry transformations will be corrected and the Ricci-flatness condition

is also modified. One finds the requirement Ri̄ + α′3(R4)i̄ = 0, where (R4)

is a certain tensor composed of four powers of the curvature. It has been

shown that the α′-corrections to the Ricci-flat metric, which one has at low-

est order, do not change the cohomology class. They are always of the form

∂∂̄(...) and are thus cohomologically trivial [34]. In other words, supersym-

metry preserving string compactifications require manifolds which admit a

Ricci-flat Kähler metric but the actual background configuration might have

a metric with non-vanishing Ricci tensor.

One often defines Calabi-Yau manifolds as those compact complex Kähler

manifolds with trivial canonical bundle. We now want to digress to explain

the meaning of this statement and to demonstrate that it is equivalent to the

definition given above. Chern classes can be defined for any complex vector
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bundle over M . By ci(M) as defined above we mean the Chern classes of the

tangent bundle. Given a connection on the vector bundle, the Chern classes

can be expressed by the curvature of the connection in the same way as for

the tangent bundle with the hermitian connection.

Exercise 3.19: Show that c1(T
∗M) = −c1(TM).

A central property of Chern classes is that they do not depend on the

choice of connection. They are topological cohomology classes in the base

space of the vector bundle (see e.g. [25], p.90). An important class of vector

bundles over a complex manifold are those with fibers of (complex) dimension

one, the so called line bundles with fiber C (complex vector bundles of rank

one). Holomorphic line bundles have holomorphic transition functions and a

holomorphic section is given in terms of local holomorphic functions. Each

holomorphic section defines a local holomorphic frame (which is, of course,

one-dimensional for a line-bundle). One important and canonically defined

line bundle is the canonical line bundle K(M) =
n∧T ∗1,0(M) whose sections

are forms of type (n, 0), where n = dimC(M). It is straightforward to verify

that [∇i,∇̄]ωi1...,in = −Ri̄ωi1...in , i.e. its curvature form is the negative of

the Ricci form of the Kähler metric. This shows that c1(M) = −c1(K(M))

and if c1(M) = 0 the first Chern class of the canonical bundle also vanishes.

For a line bundle this means that it is trivial. Consequently there must exist

a globally defined nowhere vanishing section, i.e. globally defined nowhere

vanishing holomorphic n-form on M . One finds from (3.35) that on a compact

Ricci-flat Kähler manifold any holomorphic p-form is covariantly constant.

This means that the holonomy group H of a Calabi-Yau manifold is contained

in SU(n).

Example 3.5: In this example we consider complex hypersurfaces in P
n

which are expressed as the zero set of a homogeneous polynomial. We already

know that they are Kähler. We want to compute c1 of the hypersurface as a

function of the degree d of the polynomial and of n. From this we can read

off the condition for the hypersurface to be a Calabi-Yau manifold. This can

be done with the tools we have developed so far, even though more advanced

and shorter derivations of the result can be found in the literature, see e.g.

[23] or [12]. Later we will encounter another way to see that d = n+1 means

c1(X) = 0 by explicitly constructing the unique holomorphic n-form which,
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as we will see, must exist on a Calabi-Yau n-fold. The calculation is presented

in Appendix C. The result we find there is

2πc1(X) = (n+ 1 − d)[ω]. (3.72)

It follows that the first Chern class c1(X) is positive, zero or negative accord-

ing to d < n+ 1, d = n+ 1 and d > n+ 1, respectively.

We have thus found an easy way to construct Calabi-Yau manifolds. For

one-folds, a cubic hypersurface in P
2 is a 2-torus and for two-folds, a quartic

hypersurface in P
3 is a K3. If we are interested in three-folds, we have to

choose the quintic hypersurface in P
4. This is in fact the simplest example,

which we will study further below.

The Calabi-Yau condition on the degree generalizes to the case of hy-

persurfaces in weighted projective spaces. Given a weighted projective space

P
n[w] and a hypersurface X specified by the vanishing locus of a quasi-

homogeneous polynomial of degree d, we find

c1(X) = 0 ⇔ d =
n∑

i=1

wi . (3.73)

The condition on the degrees and weights can also be easily written down for

complete intersections in products of weighted projective spaces.

As we have discussed before, in the generic case the hypersurface will

be singular. To get a smooth Calabi-Yau manifold one has to resolve the

singularities in such a way that the canonical bundle remains trivial.

Example 3.6: An example of a CY3 hypersurface in weighted projective

space where no resolution is necessary is the sextic in P
4[1, 1, 1, 1, 2]. The em-

bedding space has only isolated singular points which are avoided by a generic

hypersurface. On the other hand, the octic hypersurface in P
4[1, 1, 2, 2, 2] can-

not avoid the singular Z2 surface of the embedding space and has thus itself

a singular Z2 curve which must be ‘repaired’ in order to obtain a smooth CY

manifold.

We should mention that the construction of the first Chern class that we

present in Appendix C does not provide the Ricci-flat metric. In fact, the

Ricci-flat metric is never the induced metric. As we have mentioned once be-

fore, a Ricci-flat Kähler metric on a compact Kähler manifold has never been
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constructed explicitly. Interesting examples of non-compact Ricci-flat Kähler

manifolds, which are of potential interest for M -theory and the AdS/CFT

correspondence, are the cotangent bundles of spheres of any dimension and

the complex cotangent bundle on P
n for any n. The latter are hyper-Kähler

manifolds, which are always Ricci-flat. For these manifolds Ricci-flat metrics

are known explicitly. For instance, T ∗S3 is the deformed conifold.

Let us come back to the fact that a compact Kähler manifold with SU(n)

holonomy always possesses a nowhere vanishing covariantly constant (n, 0)-

form Ω, called a complex volume form which is in fact unique (up to multi-

plication by a constant). Locally it can always be written as

Ωi1...in = f(z)ǫi1...in (3.74)

with f a non-vanishing holomorphic function in a given coordinate patch and

ǫi1...in = ±1. Before proving this we want to derive two simple corollaries:

(1) Ω is holomorphic. Indeed, ∂̄ı̄Ωj1...jn = ∇ı̄Ωj1...jn = 0, because Ω is covari-

antly constant.

(2) Ω is harmonic. To show this we still have to demonstrate ∂̄∗Ω = 0. But

this obvious since ∂̄∗ = − ∗ ∂∗ and ∗ : An,0 → An,0 and ∂An,0 = 0.

A simple argument that Ω always exists is the following [35, 12]. Start

at any point p in M and define Ωp = dz1 ∧ · · · ∧ dzn, where {zi} are local

coordinates. Then parallel transport Ω to every other point on M . This

is independent of the path taken, since when transported around a closed

path (starting and ending at p), Ω is a singlet under SU(n) and is thus

unchanged. This defines Ω everywhere on M . Ω can also be constructed

explicitly with the help of the covariantly constant spinor: Ωijk = ǫTγijkǫ.

Here γijk is the antisymmetrized product of three γ-matrices which satisfy

{γi, γj} = {γı̄, γ̄} = 0, {γi, γ̄} = 2gi̄. The proof that Ω thus defined satisfies

all the necessary properties is not difficult. It can be found in [28, 4].

We now show that Ω is essentially unique. Assume that given Ω there were

a Ω′ with the same properties. Then, since Ω is a form of the top degree,

we must have Ω′ = fΩ where f is a non-singular function. Since we require

∂̄Ω′ = 0, f must in fact be holomorphic. On a compact manifold this implies

that f is constant.

Conversely, the existence of Ω implies c1 = 0. Indeed, with (3.74), we can

write the Ricci form as
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R = i∂∂̄ log det(gkl̄) = −i∂∂̄ log
(
Ωi1...inΩ̄̄1...̄ng

i1 ̄1 · · · gin ̄n
)
. (3.75)

The argument of the logarithm is a globally defined function and the Ricci

form is thus trivial in cohomology, implying c1 = 0.

For hypersurfaces in weighted projective spaces one can explicitly con-

struct Ω by extending the construction of holomorphic differentials on a Rie-

mann surface (see e.g. [23]). Once constructed we know that Ω is essentially

unique (up to a multiplicative constant on the hypersurface).

Consider first the torus defined as a hypersurface in P
2 specified by the

vanishing locus of a cubic polynomial, f(x, y, z) = 0. This satisfies (3.72).

The unique holomorphic differential (written in a patch with z = 1) is ω =

−dy/(∂f/∂x) = dx/(∂f/∂y) = dx/(2y). The first equality follows from df =

0 along the hypersurface and the second equality if the hypersurface is defined

by an equation of the form f = zy2−p(x, z), e.g. the Weierstrass and Legendre

normal forms. An interesting observation is that ω can be represented as a

residue: ω = 1
2πi

∫
γ
dx∧dy
f(x,y) . The integrand is a two-form in the embedding

space with a first order pole on the hypersurface f = 0 and the contour γ

surrounds the hypersurface. Changing coordinates (x, y) → (x, f) and using
1

2πi

∫
γ
df
f = 1 we arrive at ω as given above.

The above construction of the holomorphic differential for a cubic hyper-

surface in P
2 can be generalized to obtain the holomorphic three-form on

a Calabi-Yau manifold realized as a hypersurface p = 0 in weighted P
4[w]

[36, 37]. Concretely,

Ω =

∫

γ

µ

p
, (3.76)

where

µ =

4∑

i=0

(−1)iwiz
idz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dz5 , (3.77)

and the term under the ̂ is omitted. The contour γ now surrounds the

hypersurface p = 0 inside the weighted projective space. Note that the nu-

merator and the denominator in µ/p scale in the same way under (3.6). In

the patch Ui where zi = const, only one term in the sum survives. One can

perform the integration by replacing one of the coordinates, say zj , by p and

using
∫
γ
dp
p = 2πi. In this way one gets an expression for Ω directly on the

embedded hypersurface. For instance in the patch U0 one finds (no sum on

(i, j, k) implied)
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Ω =
w0z

0dzi ∧ dzj ∧ dzk
∆ijk

0

, (3.78)

where ∆ijk
0 = ∂(zi,zj,zk,p)

∂(z1,z2,z3,z4)
. From our derivation it is clear that this repre-

sentation of Ω is independent of the choice of {i, j, k} ⊂ {1, 2, 3, 4} and of

the choice of coordinate patch. Furthermore, it is everywhere non-vanishing

and well defined at every non-singular point of the hypersurface. A direct

verification of these properties can be found in [38, 4].

The existence of a holomorphic n-form then means that the holonomy

group H (and not just H0) is contained in SU(n).

Let us now complete the discussion of Hodge numbers of Calabi-Yau mani-

folds. We have just established the existence of a unique harmonic (n, 0)-form,

Ω, and thus

hn,0 = h0,n = 1 . (3.79)

With the help of Ω we can establish one further relation between the Hodge

numbers. Given a holomorphic and hence harmonic (p, 0)-form, we can, via

contraction with Ω, construct a (0, n − p)-form, which can be shown to be

again harmonic, as follows. Given

α = αi1...ipdz
i1 ∧ · · · ∧ dzip , ∂̄α = 0 , (3.80)

α being (∆∂)-harmonic means

∂ α = 0 ⇔ ∇[jiαj2...jp+1] = 0 ,

∂∗α = 0 ⇔ ∇i1αi1...ip = 0 . (3.81)

We then define the (0, n − p)-form

β̄p+1...̄n =
1

p!
Ω̄̄1...̄nα

̄1...̄p . (3.82)

This can be inverted to give (use (3.74))

α̄1...̄p =
1

||Ω||2Ω
̄1...̄p̄p+1...̄nβ̄p+1...̄n , (3.83)

where we have defined

||Ω||2 =
1

n!
Ωi1...inΩ

i1...in . (3.84)

From this we derive
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∇̄p+1β̄p+1...̄n =
1

p!
Ω̄̄1...̄n∇̄p+1α̄1...̄p = 0 , (3.85)

using (3.81)1. Similarly

∇j̄1α
̄1...̄p =

1

||Ω||2Ω
̄1...̄p ̄p+1...̄n∇̄1β̄p+1...̄n = 0 (3.86)

by virtue of (3.81)2. It follows that β is also harmonic.

We have thus shown the following relation between Hodge numbers

hp,0 = h0,n−p = hn−p,0 . (3.87)

Let us finally look at hp,0. For this we need the Laplacian on p-forms. Speci-

fying (3.35) for a harmonic (p, 0) form on a Ricci-flat Kähler manifold where

Ri̄ = Rijk̄l̄ ≡ 0, we find ∇ν∇νωi1···ip = 0. On a compact manifold this means

that ω is parallel, i.e. ∇jωi1···ip = 0, ∂̄̄ωi1···ip = 0, the latter equality already

being a consequence of harmonicity. But this means that ω transforms as a

singlet under the holonomy group. We now assume that the holonomy group

is exactly SU(n), i.e. not a proper subgroup of it.9 Since ωi1···ip transforms

in the ∧pn of SU(n), the singlet only appears in the decomposition if p = 0

or p = n. We thus learn that on Calabi-Yau manifolds with holonomy group

SU(n)

hp,0 = 0 for 0 < p < n . (3.88)

Exercise 3.20: Show that h1,0(M) = 0 implies that there are no continuous

isometries on M .

If we collect the results on the Hodge numbers of Calabi-Yau manifolds

for the case n = 3, we find that the only independent Hodge numbers are

h1,1 ≥ 1 and h2,1 ≥ 0 and the Hodge diamond for Calabi-Yau three-folds is

9 In Chapter 4 we discuss orbifolds with discrete holonomy groups. There the condition

will be that it is not contained in any continuous subgroup of SU(n).
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h30 = 1 h21 h12 = h21 h03 = 1

X

X

Hodge ∗
duality

h20 = 0 h11

h22 = h11

h02 = 0

h31 = 0 h13 = 0

h10 = 0 h01 = 0

h32 = 0 h23 = 0

h00 = 1

h33 = 1

X

X̂

mirror
symmetry

X X
complex conjugation

(3.89)

The Euler number of a Calabi-Yau three-fold is then (cf. (3.64))

χ(M3) = 2(h1,1 − h1,2) . (3.90)

In higher dimensions there are more independent Hodge numbers, but this

will not be covered here. For the case of CY four-folds, see [39]. The signif-

icance of h1,1 and h2,1 for Calabi-Yau three-folds will be explained in sect.

3.6.

In (3.89) we have indicated operations which relate Hodge numbers to each

other. In addition to complex conjugation (3.65) and the Hodge ∗-operation

(3.66), which act on the Hodge numbers of a given CY manifold, we have

also shown the action of mirror symmetry: given a CY manifold X, there

exists a mirror manifold X̂ such that hp,q(X) = h3−p,q(X̂). This in particular

means that the two non-trivial Hodge numbers h1,1 and h2,1 are interchanged

between X and X̂ and that χ(X) = −χ(X̂). Within the class of Calabi-Yau

manifolds constructed as hypersurfaces in toric varieties (which we have not

discussed) they manifestly come in mirror pairs [40]. So-called rigid manifolds,

for which h2,1(X) = 0, and consequently h1,1(X̂) = 0, are discussed in [41].

The Z-manifold described in example 4.4 is rigid.

As we have already mentioned at the end of Chapter 2, mirror symmetry

is a much stronger statement than the mere existence of mirror pairs of CY

manifolds. Its far-reaching consequences for both string theory and algebraic

geometry are thoroughly covered in [18].
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3.6 Calabi-Yau moduli space

In this section we will only treat three dimensional Calabi-Yau manifolds.

References are [4, 38, 42, 21, 43]. The generalization to higher dimensions of

most the issues discussed here is straightforward. The two-dimensional case

(K3) is described in [44] in great detail.

In view of Yau’s theorem, the parameter space of CY manifolds is that

of Ricci-flat Kähler metrics. We thus ask the following question: given a

Ricci-flat Riemannian metric gµν on a manifold M , what are the allowed

infinitesimal variations gµν + δgµν such that

Rµν(g) = 0 ⇒ Rµν(g + δg) = 0 ? (3.91)

Clearly, if g is a Ricci-flat metric, then so is any metric which is related to g by

a diffeomorphism (coordinate transformation). We are not interested in those

δg which are generated by a change of coordinates. To eliminate them we

have to fix the diffeomorphism invariance and impose a coordinate condition.

This is analogous to fixing a gauge in electromagnetism. The appropriate

choice is to demand that ∇µδgµν = 0 (see e.g. [12], 4.62). Any δgµν which

satisfies this condition also satisfies
∫
M

√
gδgµν(∇µξν + ∇νξµ)d

dx = 0, and

is thus orthogonal to any change of the metric induced by a diffeomorphism

generated by the vector field ξµ. Then, expanding (3.91) to first order in δg

and using Rµν(g) = 0 and the coordinate condition, one finds

∇ρ∇ρδgµν − 2Rµ
ρ
ν
σδgρσ = 0 . (3.92)

Exercise 3.21: Derive (3.92). Useful expansions of the curvature can be found

in [45]. One needs to use that M is compact to eliminate a term ∇µ∇νtr(δg).

We now want to analyze (3.92) if (M,g) is a Kähler manifold. Given the

index structure of the metric and the Riemann tensor on Kähler manifolds,

one immediately finds that the conditions imposed on the components δgi̄

and δgij decouple and can thus be studied separately. This is what we now

do in turn.

(1) δgi̄ : With the help of (3.35) it is easy to see that the condition

(3.92), which now reads ∇µ∇µδgi̄ − 2Ri
k
̄
l̄δgkl̄ = 0, µ=(k, k̄), is equivalent

to (∆δg)i̄ = 0. Here we view δgi̄ as the components of a (1, 1)-form. We see
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that harmonic (1, 1)-forms correspond to the metric variations of the form

δgi̄ and to cohomologically non-trivial changes of the Kähler form. Of course,

we already knew from Yau’s theorem that for any [ω + δω] there is again a

Ricci-flat Kähler metric. Expanding δgi̄ in a basis of real (1, 1)-forms, which

we will denote by bα, α = 1, . . . , h1,1, we obtain the following general form of

the deformations of the Kähler structure of the Ricci flat metric:

δgi̄ =

h1,1∑

α=1

t̃αbαi̄ , t̃α ∈ R . (3.93)

Using (3.56) one may check that these δg satisfy the coordinate condition.

For g+ δg to be a Kähler metric, the Kähler moduli t̃α have to be chosen

such that the deformed metric is still positive definite. Positive definiteness

of a metric g with associated Kähler form ω is equivalent to the condition
∫

C
ω > 0 ,

∫

S
ω2 > 0 ,

∫

M
ω3 > 0 (3.94)

for all curves C and surfaces S on the Calabi-Yau manifold M . The subset

in R
h1,1 spanned by the parameters t̃α such that (3.94) is satisfied, is called

the Kähler cone.

Exercise 3.22: Verify that this is indeed a cone.

(2) δgij : Now (3.92) reads ∇µ∇µδgij − 2Ri
k
j
lδgkl = 0. With little work

this can be shown to be equivalent to

∆∂̄δg
i = (∂̄∂̄∗ + ∂̄∗∂̄)δgi = 0 (3.95)

where

δgi = δgi̄dz̄
̄ , δgi̄ = gik̄δgk̄̄ (3.96)

is a (0, 1)-form with values in T 1,0(M). We conclude that (3.95) implies that

δgi ∈ H
(0,1)

∂̄
(M,T 1,0). Again one may verify that these deformations of the

metric satisfy the coordinate condition.

Exercise 3.23: Fill in the steps of the above argument.

What is the significance of these metric deformations? For the new met-

ric to be again Kähler, there must be a coordinate system in which it has

only mixed components. Since holomorphic coordinate transformations do

not change the type of index, it is clear that δgij can only be removed by
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a non-holomorphic transformation. But this means that the new metric is

Kähler with respect to a different complex structure compared to the origi-

nal metric. (Of course, this new metric cannot be obtained from the original

undeformed metric by a diffeomorphism as they have been fixed by the co-

ordinate condition. So while removing δgij , the non-holomorphic change of

coordinates generates a δgi̄).

With the help of the unique holomorphic (3, 0) form we can now define an

isomorphism between H0,1
∂̄

(M,T 1,0) and H2,1
∂̄

(M) by defining the complex

(2,1)-forms

Ωijkδg
k
l̄ dz

i ∧ dzj ∧ z̄ l̄ . (3.97)

which are harmonic if (3.92) is satisfied. These complex structure deforma-

tions can be expanded in a basis ba
ijk̄
, a = 1, . . . , h2,1, of harmonic (2, 1)-forms:

Ωijkδg
k
l̄ =

h2,1∑

a=1

tabaijl̄ (3.98)

where the complex parameters ta are called complex structure moduli. 10

If we were geometers we would only be interested in the deformations of

the metric and the number of real deformation parameters (moduli) would

be h1,1 + 2h1,2. However, in string theory compactified on Calabi-Yau mani-

folds we have additional massless scalar degrees of freedom from the internal

components of the antisymmetric tensor field in the (NS,NS) sector of the

type II string. Its equations of motion in the gauge d∗B = 0 are ∆B = 0,

i.e. excitations of the B-field above the background where it vanishes are

harmonic two-forms on the Calabi-Yau manifold. We can now combine these

with the Kähler deformations of the metric and form

(iδgi̄ + δBi̄)dz
i ∧ dz̄̄ =

h1,1∑

α=1

t̃αbα (3.99)

where the parameters t̃α are now complex, their imaginary part still restricted

by the condition discussed before. This is referred to as the complexification

of the Kähler cone.

10 Our discussion of complex structure moduli is not complete. We have only considered the

linearized deformation equation. It still needs to be shown that they can be integrated

to finite deformations. That this is indeed the case for Calabi-Yau manifolds has been

proven by Tian [46] and by Todorov [47]. For a general complex manifold the number of

complex structure deformations is less than h2,1.
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To summarize, there is a moduli space associated with the different Kähler

and complex structures which are compatible with the Calabi-Yau condition.

The former are parametrized byH1,1
∂̄

(M) and the latter by ofH0,1
∂̄

(M,T 1,0) ≃
H2,1
∂̄

(M). The moduli space of Ricci-flat Kähler metrics is parametrized by

the harmonic representatives of these cohomology groups.

Let us now exemplify this discussion by the quintic in P
4. Here we have

h1,1 = 1: this is simply the Kähler form induced from the ambient space P
4.

(The metric induced from the Fubini-study metric is not the Ricci-flat one.)

As shown in [26] and by more elementary means in [38], the complex structure

parameters appear as coefficients in the most general quintic polynomial.

One easily finds that there are 126 coefficients. However, polynomials which

are related by a linear change of the homogeneous coordinates of P
4 should

not be counted as different. These are parametrized by dimC(GL(5,C)) =

25 coefficients. We therefore conclude that there are 101 complex structure

moduli on the quintic hypersurface, i.e. h2,1 = 101. For special values of these

coefficients the hypersurface is singular, i.e. there are solutions of p = dp = 0.

With (3.90) we find that the Euler number of the quintic is −200.

The situation for hypersurfaces in weighted projective spaces is more com-

plicated. If the hypersurface passes through the singular loci of the embed-

ding space, they have to be ‘repaired’. Care has to be taken that in doing this

the Calabi-Yau condition c1 = 0 is maintained. This introduces additional

elements in the cohomology, so that in general h1,1 > 1. Also h2,1 can no

longer be counted as the number of coefficients in the defining polynomial:

this counting falls short of the actual number of complex structure moduli.

There are methods to compute the Hodge numbers of these manifolds. The

most systematic and general one is by viewing them as hypersurfaces in toric

varieties [40].

We will not address questions of global properties of the moduli space of

string compactifications on Calabi-Yau manifolds, except for mentioning a

few aspects. Mirror symmetry, which connects topologically distinct mani-

folds, is certainly relevant. Another issue is that of transitions among topo-

logically different manifolds, the prime example being the conifold transition

[33]. While one encounters singular geometries in the process, string theory is

well behaved and the transition is smooth. Indeed, it has been speculated that
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the moduli space of all Calabi-Yau compactifications is smoothly connected

[48].

3.7 Compactification of Type II supergravities on a CY three-fold

Now that we know the meaning of the Hodge numbers h1,1 and h2,1, we can,

following our general discussion in sect. 2.3, examine the relevance of the ex-

istence of harmonic forms on Calabi-Yau manifolds for the massless spectrum

of the compactified theory. We will consider the two ten-dimensional type II

supergravities that are the field theory limits of type II strings. The discussion

is thus also relevant for string compactification, as long as the restriction to

the massless modes is justified, i.e. for energies E2α′ ≪ 1. However, there are

string effects which are absent in field theory compactifications, such as topo-

logical non-trivial embeddings of the string world-sheet into the CY manifold.

These stringy effects (world-sheet instantons) which are non-perturbative in

α′, have an action which scales as R2/α′, where R is the typical size of the

manifold. They are suppressed as e−Sinst ∼ e−R
2/α′

and are small for a large

internal manifold but relevant for R ∼
√
α′.

Type IIA supergravity is a non-chiral N = 2 theory with just a gravity

multiplet whose field content is:

GIIA(10) = {GMN , ψ
(+)
M , ψ

(−)
M , ψ(+), ψ(−), BMN , AMNP , VM , φ}. (3.100)

These fields correspond to the massless states of the type IIA string. The

fermionic fields arise in the two Neveu-Schwarz-Ramond sectors, i.e. (NS,R)

plus (R,NS), they are the two Majorana-Weyl gravitini of opposite chirality

ψ
(±)
M , M,N = 0, · · · , 9, and the two Majorana-Weyl dilatini ψ(±). The met-

ric GMN , the antisymmetric tensor BMN and the dilaton φ come from the

(NS,NS) sector. The remaining bosonic fields, the vector VM and the 3-index

antisymmetric tensor AMNP , appear in the (R,R) sector.

Exercise 3.24: Show that (3.100) results upon circle compactification of the

fields {GMN , ψM , AMNP }, with ψM Majorana. This is the field content of

D=11 supergravity which is the low-energy limit of M-theory.

Type IIB supergravity has also N =2 supersymmetry but it is chiral, i.e.

the two gravitini have the same chirality. The gravity multiplet has content:

GIIB(10) = {GMN , ψ
(+)
M , ψ̃

(+)
M , ψ(+), ψ̃(+)BMN , B̃MN , AMNPQ, φ, a}. (3.101)
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Now the bosonic fields from the (R,R) sector are the axion a, B̃MN and

AMNPQ which is completely antisymmetric and has self-dual field strength.

It is known that type IIA and type IIB strings compactified on a circle are

related by T -duality [49]. Therefore, whenever the internal manifold contains

a circle, type IIA and type IIB give T -dual theories that clearly must have

the same supersymmetric structure. In particular, compactification on T4

gives maximal (2,2) supersymmetry in d = 6, compactification on T6 gives

maximal N = 8 supersymmetry in d = 4 and compactification on K3 × T2

gives d = 4, N = 4 supersymmetry with 22 U(1) vector multiplets. Below

we examine compactification on CY3 in some more detail. Our purpose is to

determine the resulting massless fields by looking at the zero modes of the ten-

dimensional multiplets given above. In the lower dimensions we will obtain

a theory with a number of supersymmetries that depends on the internal

manifold. Clearly, the zero modes must organize into appropriate multiplets

whose structure is known beforehand.

Compactification of type IIA supergravity on a CY3 was considered first

in [50] and to greater extent in [51]. The resulting theory in d=4 has N =2

supersymmetry. The massless fields belong to the gravity multiplet plus hy-

permultiplets and vector multiplets, which are the three possible irreducible

representations with spins less or equal to two, cf. (4.65). To describe how the

massless fields arise we split the ten-dimensional indices in a SU(3) covariant

way, M = (µ, i, ı̄)11 and then use the known results for the number of har-

monic (p, q) forms on the Calabi-Yau manifold. The zero modes of Gµν , ψ
(+)
µ ,

ψ
(−)
µ and the graviphoton Vµ form the gravity multiplet. Both ψ

(±)
µ have an

expansion of the form (2.18) so that we obtain two Majorana gravitini in four

dimensions. For the remaining fields and components it is simpler to analyze

the bosonic states. The fermions are most easily determined via N =2 space-

time supersymmetry and the known field content of the various multiplets.

Of course they can also be obtained by a zero mode analysis. Altogether one

finds for the bosons, in addition to those in the gravity multiplet,

Aαµ, t
a, t̃α, Ca, S, C , (3.102)

11 From now on we only use indices (i, j, . . . , ı̄, ̄, . . . ) for the internal space and µ for the

four uncompactified space-time dimensions.
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where Aαµ arises from Aµi̄ and the remaining fields are all complex scalars

as follows. The t̃α correspond to Gi̄ and Bi̄
12, the ta to Gij , C

a to the Aijk̄
modes, S to φ and Bµν (which can be dualized to a pseudoscalar) and C to

the Aijk mode. We now group these fields into supermultiplets. Aαµ and t̃α

combine to h1,1 vector multiplets, whereas ta and Ca to h2,1 hypermultiplets.

The two complex scalars S and C form an additional hypermultiplet, so there

are (h2,1 + 1) hypermultiplets.

In the type IIB compactification the gravity multiplet is formed by the

zero modes of Gµν , ψ
(+)
µ , ψ̃

(+)
µ and Aµijk. From the rest of the fields we obtain

Aaµ, t
a, t̃α, Cα, S, C . (3.103)

Here the fields Aaµ arise from Aµijk̄ and ta from Gij ; (t̃α, Cα) correspond to

Gi̄, Bi̄, B̃i̄ and Aµνi̄; (S,C) to φ, a, Bµν and B̃µν . The fields arising from

the four-form are real, due to the self-duality constraint of its field-strength.

Altogether the fields combine to (h1,1 + 1) hypermultiplets and h2,1 vector

multiplets. Notice that this is the same result as in the type IIA case upon

exchanging h1,1 and h1,2. Indeed, it has been shown that compactification of

type IIB strings on a CY three-fold X gives the same 4-dimensional theory

that appears upon compactification of type IIA strings on the mirror X̂

[50, 52].

The moduli of the Calabi-Yau manifold give rise to neutral massless scalars

that will appear in the low-energy effective action of the string theory. Super-

symmetry imposes stringent restrictions on the action and consequently on

the geometry of the moduli spaces. In particular, the moduli fields have no

potential and hence their vevs are free parameters. Moreover, in the kinetic

terms scalars in vector multiplets do not mix with scalars in hypermultiplets.

In fact, the interaction of vector multiplets and hypermultiplets consistent

with N =2 supergravity is a non-linear σ-model with a target-space geometry

which is locally of the form [53, 54, 55]

MSK ×Q (3.104)

where MSK is a (special) Kähler manifold (to be defined later) for the vector

multiplets [53] and Q a quaternionic manifold for the hypermultiplets [53,

12 Supersymmetry thus requires the complexification of the Kähler cone.
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54, 55].13 The manifolds MSK and Q are parametrized by the scalar fields

inside the vector and hypermultiplets, respectively. The product structure is

only respected for the gauge-neutral part of the theory. Nonabelian gauge

symmetries and charged fields appear if we take non-perturbative effects into

account, e.g. by wrapping branes around appropriate cycles. But this will not

be considered in these lectures.

For the perturbative type IIA and IIB theories we thus have

MA = MA
h1,1 ×QA

h2,1+1 ,

MB = MB
h2,1 ×QB

h1,1+1 . (3.105)

The indices give the complex and quaternionic dimensions, respectively. It is

worth mentioning that while MSK contains only moduli fields, Q is obtained

by combining moduli scalars with non-moduli scalars which, in string theory,

come from the (R,R) sector of the left-right superconformal algebra.

The quaternionic dimension of the hypermultiplet moduli spaces is always

≥ 1. In both type II theories, there is at least the universal hypermultiplet

with scalars (S,C). Its component fields are not related to the cohomology

of a Calabi-Yau manifold. Most importantly, it contains the dilaton φ which

organizes the string perturbation theory. This means that the hypermultiplet

moduli space receives (perturbative and non-perturbative) stringy corrections

in type IIA and IIB. In contrast to this, the vector multiplet moduli space

is exact at string tree level. In types IIB and IIA this concerns the complex

structure moduli and Kähler moduli, respectively. The metric of the Kähler

moduli space of type IIA receives a perturbative correction at order (α′/R2)3

[56] and non-perturbative corrections, powers of e−R
2/α′

, from world-sheet

instantons, i.e. topologically non-trivial embeddings of the world-sheet into

the Calabi-Yau manifold. In contrast, the metric of the complex structure

moduli space of type IIB is exact at both, string and world-sheet σ-model,

tree level. It is thus determined by classical geometry. The vector multiplet

moduli space of the type IIA theory, on the other hand, is not determined

by classical geometry, but rather by ‘string geometry’. The string effects are

suppressed at large distances, i.e. when the Calabi-Yau manifold on which

13 A quaternionic manifold is a complex manifold of real dimension 4m and holonomy

group Sp(1) × Sp(m).
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we compactify becomes large. At small distances, of the order of the string

scale ls = 1/
√
α′, the intuition derived from classical geometry fails.

It thus looks hopeless to compute the vector multiplet moduli space of the

type IIA theory. Here mirror symmetry comes to rescue as was first shown,

for the case of the quintic in P
4, in [56]. It relates, via the mirror map, the

vector multiplet moduli space of the type IIA theory on X to the vector

multiplet moduli space of the type IIB theory on the mirror X̂. Thus, with

the help of mirror symmetry the structure of the vector multiplet moduli

space of both type II theories is understood, as long as the conditions which

lead to (3.104) are met. Due to lack of space we have to refer to the literature

for any details [21, 32, 18].

One obtains the moduli space of the heterotic string by setting the (R,R)

fields to zero. This gives

Mhet =
SU(1, 1)

U(1)
×Mh1,1 ×Mh2,1 (3.106)

where the second and third factors are special-Kähler manifolds. (3.106),

which was derived in [55, 50, 48, 57, 58], is only valid at string tree level. The

loop corrections which destroy the product structure have been computed in

[59].

We will now briefly explain the notion of a special Kähler manifold which

arises in the construction of N = 2 supersymmetric couplings of vector mul-

tiplets to supergravity. It was found that the entire Lagrangian can be locally

encoded in a holomorphic function F (t), where ta are (so-called special) coor-

dinates on the space spanned by the scalar fields inside the vector multiplets.

For instance, in type IIB compactification on a CY3, this is the complex

structure moduli space and a = 1, . . . , h2,1. Supersymmetry requires that this

space is Kähler and furthermore, that its Kähler potential can be expressed

through F via

K = − lnY

Y = 2(F − F ) − (ta − t̄a)(Fa + F̄a) (3.107)

where Fa = ∂aF . For this reason F is called the (holomorphic) prepotential.

If we introduce projective coordinates z via ta = za/z0 and define F(z) =

(z0)2F (t) we find that the Kähler potential (3.107) can be written, up to a

Kähler transformation, as
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K = ln
(
z̄aFa − zaF̄a

)
(3.108)

where now a = 0, . . . , h2,1, and Fa = ∂F
∂za . Supersymmetry requires further-

more that F is a homogeneous function of degree two.

We will now show how these features are encoded in the CY geometry.

We begin by introducing a basis of H3(X,Z) with generators αa and βb

(a, b = 0, . . . , h2,1(X)) which are (Poincaré) dual to a canonical homology

basis (Ba, A
b) of H3(X,Z) with intersection numbers Aa · Ab = Ba · Bb =

0, Aa ·Bb = δab . Then

∫

Ab

αa =

∫

X
αa ∧ βb = −

∫

Ba

βb = δba . (3.109)

All other pairings vanish. This basis is unique up to Sp(2h2,1 + 2,Z) trans-

formations.

Following [60, 61], one can show that the A-periods of the holomorphic

(3,0)-form Ω, i.e. za =
∫
Aa Ω are local projective coordinates on the complex

structure moduli space. We then have for the B-periods Fa =
∫
Ba
Ω = Fa(z).

Note that Ω = zaαa−Faβa. Furthermore, under a change of complex struc-

ture Ω, which was pure (3, 0) to start with, becomes a mixture of (3, 0) and

(2, 1) (because dz in the old complex structure becomes a linear combination

of dz and dz̄ w.r.t. to the new complex structure): ∂
∂zaΩ ∈ H(3,0) ⊕H(2,1). In

fact [27, 38, 42] ∂Ω
∂za = kaΩ + ba where ba ∈ H(2,1)(X) and ka is a function of

the moduli but independent of the coordinates on X (since Ω is unique). One

immediate consequence is that
∫
Ω ∧ ∂Ω

∂za = 0. Inserting the expansion for Ω

in the αa, β
a basis into this equation, one finds Fa = 1

2
∂
∂za (zbFb), or Fa = ∂F

∂za

with F = 1
2z
aFa, F(λz) = λ2F(z). We thus identify za with the special coor-

dinates of supergravity and F with the prepotential. It is easy to verify that

the Kähler potential in the form (3.108) can be written as K = − ln
∫
Ω∧ Ω̄.

In fact, F can be explicitly computed for the complex structure moduli space

of type IIB theory in terms of the periods of the holomorphic three-form. This

is a calculation in classical geometry. The Kähler moduli space of type IIA

theory is also characterized by a prepotential. However its direct calculation is

very difficult since it receives contributions from world-sheet instantons. Mir-

ror symmetry relates FKahler(X) to the prepotential of the complex structure

moduli space on the mirror manifold Fcomplex(X̂) which can be computed and

mapped, via the mirror map, to FKahler(X) (see e.g. [21] for a review). In
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any case, it follows from this discussion that the metric on the Kähler part of

the moduli space of type II Calabi-Yau compactifications can be computed

explicitly.

In supergravity and superstring compactifications many other properties

of special Kähler manifolds are relevant e.g. in the explicit construction of

the mirror map, the computation of Yukawa couplings in heterotic compact-

ifications, etc. All these details can be found in the cited references. Ref.[62]

discusses some subtle issues involving the existence of a prepotential (but see

also [63] for their irrelevance in string compactification on CY manifolds once

world-sheet instanton effects are included).

While, as we have seen, a great deal is known about the (local) geometry

of the vector multiplet moduli space, the question about the structure of the

hypermultiplet moduli space, except that it is a quaternionic manifold, is still

largely unanswered and a subject of ongoing research. The difficulty comes,

of course, from the fact that it receives perturbative and non-perturbative

quantum corrections. Some partial results have been obtained e.g. in [64, 65].

4 Strings on orbifolds

We now want to consider string compactifications in which the internal space

belongs to a class of toroidal orbifolds that are analogous to Calabi-Yau

spaces in that their holonomy group is contained in SU(n) and therefore the

theory in the lower dimensions has unbroken supersymmetry. Even though

these orbifolds are singular, we will see that string propagation is perfectly

consistent provided that twisted sectors are included. Moreover, since toroidal

orbifolds are flat except at fixed points, the theory is exactly solvable. Indeed,

the fields on the world-sheet satisfy free equations of motion with appropriate

boundary conditions.

In this section we will first discuss some basic properties of orbifolds.

We next describe in some detail the compactification of strings on orbifolds,

introducing in the process the important concepts of partition function and

modular invariance. Finally the general results are applied to type II theories.

In appendix C we collect some useful results about the partition function of

T6/ZN orbifolds.
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The standard references for strings on orbifolds are the original papers [3].

A concise review that also discusses conformal field theory aspects is [66].

4.1 Orbifold geometry

In general, an orbifold O is obtained by taking the quotient of a manifold

M by the action of a discrete group G that preserves the metric of M. This

means:

O = M/G . (4.1)

For g ∈ G and x ∈ M, the points x and gx are equivalent in the quotient.

Each point is identified with its orbit under G, hence the name orbifold. The

fixed points of M under G are singular points of O.

Perhaps the simplest example of an orbifold is the torus TD defined as

TD = R
D/Λ , (4.2)

where Λ is a D-dimensional lattice. Hence, in TD the points x and x + V ,

V ∈ Λ, are identified. In the following we denote the basis of the torus

lattice by ea, a = 1, · · · ,D. Fig. 2 shows the case of T2. Since the group of

translations by lattice vectors acts freely, the torus has no singular points.

However, when the discrete group leaves fixed points, the orbifold has singular

points. A simple example is the cone obtained by taking the quotient of

C ≃ R
2 by ZN generated by multiplication by e2iπ/N . This is shown in Fig.

3. Notice that the origin, left fixed by ZN , is a singular point at which there

is a deficit angle 2π(N − 1)/N .

e

e1

2

Fig. 2. T2 = R
2/Λ

Since we want compact spaces we are led to consider toroidal orbifolds

TD/GP , where the so called point group GP ⊂ SO(D) is a discrete group

that acts crystallographically on the torus lattice Λ. The elements of GP are
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2π/N

Fig. 3. C/ZN

rotations denoted generically θ. Alternatively, toroidal orbifolds can be ex-

pressed as R
D/S, where S is the so-called space group that contains rotations

and translations in Λ.

The point group is the holonomy group of the toroidal orbifold [3]. To

show this, take two points x and y, distinct on the torus but such that

y = θx + V . Then, x and y are identified on the orbifold and moreover the

tangent vectors at x are identified with the tangent vectors at y rotated by θ.

Next parallel-transport some vector along a path from x to y which is closed

on the orbifold. The torus is flat and hence this vector remains constant

but since the tangent basis is rotated by θ, the final vector is rotated by θ

with respect to the initial vector. The loop from x to y necessarily encloses

a singular point since otherwise there would be no curvature to cause the

non-trivial holonomy.

In the following we will mostly consider point groups GP = ZN . Then

θN = 1 and θ has eigenvalues e±2iπvi , where vi = ki/N for some integers

ki, i = 1, · · · ,D/2 (we take D even). As we mentioned before, GP must act

crystallographically on the torus lattice. This means that for V ∈ Λ and

θ ∈ GP , θV ∈ Λ. Now, since V = naea, with integer coefficients na, in the

lattice basis θ must be a matrix of integers. Hence, the quantities

Tr θ =

D/2∑

i=1

2 cos 2πvi

χ(θ) = det(1 − θ) =

D/2∏

i=1

4 sin2 πvi (4.3)

must be integers. Indeed, from Lefschetz fixed point theorem, χ(θ) is the

number of fixed points of θ. The upshot is that the requirement of crystal-

lographic action is very restrictive. For instance, it is easy to find that for

D = 2 only N = 2, 3, 4, 6 are allowed. In Table 1 we collect the irreducible

possibilities for the vi’s when D = 2, 4, 6 [67]. By irreducible we mean that
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the corresponding θ cannot be written in a block form. Notice that the case

D = 2, v1 = 1
2 is reducible since already in a one dimensional lattice a Z2

(only) is allowed.

D = 2 D = 4 D = 6

(v1) (v1, v2) (v1, v2, v3)

1
3
(1) 1

5
(1, 2) 1

7
(1, 2, 3)

1
4
(1) 1

8
(1, 3) 1

9
(1, 2, 4)

1
6
(1) 1

10
(1, 3) 1

14
(1, 3, 5)

1
12

(1, 5) 1
18

(1, 5, 7)

Table 1. Irreducible crystallographic actions.

Given the vi’s there remains the question of finding a concrete lattice Λ

that has θn, n = 1, · · · , N , as automorphisms. We refer the reader to [68, 67]

for a discussion of these issues. Here we will mostly consider products of two-

dimensional sub-lattices and for order two and order four rotations we take

the SO(4) root lattice whereas for order three and order six rotations we take

the SU(3) root lattice.

Let us now consider some examples.

Example 4.1: T2(SO(4))/Z2. Here Z2 has elements {1, θ}, where θ is a

rotation by π. As Λ we take the root lattice of SO(4) with basis e1 = (1, 0)

and e2 = (0, 1). In T2, Z2 has four fixed points:

f0 = (0, 0) ; f1 = (
1

2
, 0) ; f2 = (0,

1

2
) ; f3 = (

1

2
,
1

2
) . (4.4)

It is convenient to use a complex coordinate z = x+iy so that f0 = 0, f1 = 1
2 ,

f2 = i
2 , f3 = 1+i

2 .

The steps to construct the orbifold are shown in Fig. 4. To start, we take

a fundamental cell defined by vertices (0, 0), (1, 0), (0, 1), (1, 1). Given the

identification x ≡ θnx + V , we observe that it is actually enough to retain

half of the fundamental cell, for instance the rectangle with vertices at f0,

f1, i and 1
2 + i. Furthermore, since the edges are identified as indicated in

Fig. 4 we must fold by the line joining f2 and f3. The resulting orbifold has

singular points precisely at the fi, each with a deficit angle of π.
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1

i

i/2

1/2

1 2

2 1

Fig. 4. T2/Z2

Example 4.2: T2(SU(3))/Z3. Here Z3 has elements {1, θ, θ2}, where θ is a

rotation by 2π/3. As Λ we take the root lattice of SU(3) with basis e1 = (1, 0)

and e2 = (−1
2 ,

√
3

2 ). The fixed points of θ are

f0 = (0, 0) ; f1 = (
1

2
,

1

2
√

3
) ; f2 = (0,

1√
3
) . (4.5)

In terms of the complex coordinate z, θ acts by multiplication by e2iπ/3 and

the fixed points are located at 0, 1√
3
eiπ/6, i√

3
. The element θ2 = θ−1 obviously

has the same fixed points. In this case the resulting orbifold has singularities

at the three fixed points, each with deficit angle 4π/3.

In examples 4.1 and 4.2 the total deficit angle is 4π, i.e. the orbifold is topo-

logically an S2, as it is also clear from Fig. 4.

Example 4.3: T4(SO(4)2)/Z2. We take T4 = T2×T2 and Λ the product of

two 2-dimensional square SO(4) root lattices. The Z2 action is just a rotation

by π degrees in each square sub-lattice. In terms of zj = xj + iyj this means

Z2 : (z1, z2) → (−z1,−z2) . (4.6)

In each sub-lattice there are four fixed points with complex coordinates

0, 1
2 ,

i
2 ,

1+i
2 . Altogether the orbifold has then sixteen singular points.

Notice that there are no Z2 invariant (1, 0) harmonic forms and only one

invariant (2, 0) harmonic form, namely dz1 ∧ dz2. This is an indication that

the holonomy group of the orbifold is a subgroup of SU(2). It turns out that

the orbifold singularities at the fixed points can be ‘repaired’ or ‘blown up’

to produce a smooth manifold of SU(2) holonomy, namely a smooth K3 [69].

Roughly, the idea is to excise the singular points and replace them by plugs

that patch the holes smoothly. More precisely, the plugs are asymptotically

Euclidean spaces (ALE) with metrics of SU(2) holonomy that happen to be

Eguchi-Hanson spaces. The claim that the resulting space is a smooth K3

manifold can be supported by a computation of the Hodge numbers of K3
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in the orbifold picture. Firstly, the orbifold inherits the forms of T4 that are

invariant under Z2. Thus, the following are also harmonic forms on T4/Z2:

1 , dzi∧dz̄j , dz1∧dz2 , dz̄1∧dz̄2 , dz1∧dz2∧dz̄1∧dz̄2 . (4.7)

Secondly, the blowing up process gives a contribution of sixteen to h1,1, one

from the Eguchi-Hanson Kähler form at each fixed point. Then, altogether

h0,0 = h2,0 = h0,2 = h2,2 = 1 and h1,1 = 20.

Example 4.4: T6(SU(3)3)/Z3. We take T6 = T2 × T2 × T2 and Λ the

product of three SU(3) root lattices. The Z3 group is generated by an order

three rotation in each sub-lattice. In terms of complex coordinates the Z3

action is

(z1, z2, z3) → (e2iπ/3z1, e2iπ/3z2, e−4iπ/3z3) . (4.8)

In each sub-lattice there are three fixed points located at 0, 1√
3
eiπ/6, i√

3
. The

full orbifold has thus 27 singular points.

The singular points can be repaired to obtain a smooth manifold, the so-

called Z-manifold that is a CY3 [2]. The (3,0) harmonic form that must exist

in every CY3 is simply dz1 ∧ dz2 ∧ dz3 that is Z3 invariant. The interesting

Hodge numbers are computed as follows. Clearly, the nine dzi ∧ dz̄j forms

are Z3 invariant. There are no (1,2) invariant forms on T6. The blowing up

process adds 27 (1,1) harmonic forms. Then, h1,1 = 9 + 27, h1,2 = 0 and

χ = 72.

To end this section we would like to address the question whether string

compactification on a given orbifold can give a supersymmetric theory in

the lower dimensions. We consider D = 6, the results for D = 2, 4 come

as by-products. According to our discussion in section 2.2, supersymmetry

requires the existence of covariantly constant spinors. This means that there

must exist spinors ǫ such that θǫ = ǫ. In our case θ is an SO(6) rotation

with eigenvalues e±2iπvi acting on the vector representation that has weights

(±1, 0, 0), (0,±1, 0) and (0, 0,±1). In fact, we can write θ as

θ = exp(2πi(v1J12 + v2J34 + v3J56)) , (4.9)

where the J2i−1,2i are the generators of the Cartan subalgebra. Now, since

spinor weights of SO(6) are (±1
2 ,±1

2 ,±1
2), in this representation θ has eigen-

values eiπ(±v1±v2±v3). Hence, to have invariant spinors we need
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±v1 ± v2 ± v3 = 0mod 2 (4.10)

for some choice of signs. This condition guarantees that the holonomy group

is contained in SU(3). The additional condition N(v1 + v2 + v3) = 0 mod

2, which follows from modular invariance, is derived in Appendix C. When

v3 = 0, from Table 1 we find that the only solutions are v1 = −v2 = 1/N ,

N = 2, 3, 4, 6. The case N = 2 is example 4.3 above, for other N ’s the

corresponding orbifolds of T4 are also singular limits of K3. For orbifolds of

T6, we can again use the data in Table 1 together with (4.10) to obtain all the

allowed inequivalent solutions shown in Table 2 that were first found in [3].

The resulting T6/ZN orbifolds are generalizations of Calabi-Yau three-folds.

In all cases it can be proved that the singular points can be resolved to obtain

smooth manifolds of SU(3) holonomy [68, 71].

Z3
1
3
(1, 1,−2) Z

′
6

1
6
(1,−3, 2) Z

′
8

1
8
(1,−3, 2)

Z4
1
4
(1, 1,−2) Z7

1
7
(1, 2,−3) Z12

1
12

(1,−5, 4)

Z6
1
6
(1, 1,−2) Z8

1
8
(1, 3,−4) Z

′
12

1
12

(1, 5,−6)

Table 2. Supersymmetric ZN actions.

4.2 Orbifold Hilbert space

In this section we wish to discuss some general aspects of the propagation of

closed strings on orbifolds [3]. We will explain how to determine the states

belonging to the physical Hilbert space, taking into account a projection on

states invariant under the orbifold group, as well as including twisted sectors.

Let Xm(σ0, σ1), m = 1, · · · D, be bosonic coordinates depending on the

world-sheet time and space coordinates σ0 and σ1. Since the string is closed,

σ1 is periodic, we take its length to be 2π. We assume that M is flat so that

before taking the quotient to obtain the orbifold, Xm satisfies the free wave

equation

(∂2
0 − ∂2

1)Xm = 0 . (4.11)

Furthermore, there are boundary conditions

Xm(σ0, σ1 + 2π) = Xm(σ0, σ1) . (4.12)
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The equations of motion follow from the action

S =

∫
d2σL = − 1

4πα′

∫
d2σηαβ∂αX

m∂βXm . (4.13)

This is the Polyakov action (1.1) in flat space-time and in conformal gauge

hαβ = ηαβ = diag(−1, 1). The canonical conjugate momentum is Πm =

∂L/∂(∂0X
m). In the following we will drop the index m to simplify notation.

The generator of translations in X is P =
∫ 2π
0 dσ1Π.

Now, in the orbifold we know that each point is identified with its orbit

under g ∈ G. Hence, as physical states we should consider only the sub-space

invariant under the action of g. The appropriate projection operator is

P =
1

|G|
∑

g∈G
ḡ , (4.14)

where ḡ is the realization of g on the string states.

Exercise 4.1: Show that P2 = P.

For example, consider the quotient of R
D by translations in a lattice Λ to

obtain TD. Since the generator of space-time translations is the momentum

P , to each W ∈ Λ the operator acting on states is e2πiP ·W (the factor of

2π is for convenience). Then, the sub-space of invariant states contains only

strings whose center of mass momentum (the eigenvalue of P ) belongs to the

dual lattice Λ∗. Indeed, notice that
∑

W∈Λ e
2πiP ·W vanishes unless P ∈ Λ∗.

Recall that Λ∗ is the set of all vectors that have integer scalar product with

any vector in Λ. In this case |G| is equal to the volume Vol(Λ) of the unit

cell of Λ. It can be shown that Vol(Λ)Vol(Λ∗) = 1.

In the orbifoldized theory there appear naturally twisted sectors in which

X closes up to a transformation h ∈ G. This is:

X(σ0, σ1 + 2π) = hX(σ0, σ1) . (4.15)

The untwisted sector has h = 1. In the example of TD, the twisted sectors

have boundary conditions

X(σ0, σ1 + 2π) = X(σ0, σ1) + 2πW, , W ∈ Λ . (4.16)

Thus, the twisted sectors are just the winding sectors in which the string

wraps around the torus cycles.
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The twisted states must be included in order to ensure modular invariance.

It is instructive to see this in the TD compactification. To begin, consider the

solution to (4.11) together with (4.16). Left and right moving modes are

independent so that X = XL +XR, with expansions

XL(σ0, σ1) = xL + PL(σ0 + σ1) + i
∑

n 6=0

αn
n
e−in(σ0+σ1)

XR(σ0, σ1) = xR + PR(σ0 − σ1) + i
∑

n 6=0

α̃n
n
e−in(σ0−σ1) , (4.17)

where

(PL, PR) = (P +
W

2
, P − W

2
) , P ∈ Λ∗ , W ∈ Λ . (4.18)

For simplicity we are setting α′ = 2 everywhere. The Fourier coefficients

αn and α̃n are commonly called oscillator modes. Quantization proceeds in

the standard way by promoting the expansion coefficients to operators and

imposing equal time canonical commutation relations that imply [αm, αn] =

mδm,−n, [α̃m, α̃n] = mδm,−n. Furthermore, [xL, PL] = i and [xR, PR] = i. It

is convenient to introduce the occupation number operators

NL =
∞∑

n=1

α−n αn , NR =
∞∑

n=1

α̃−n α̃n . (4.19)

The vacuum state |0, 0, kL, kR〉 is defined to be annihilated by αn, α̃n,

n > 0, and to be an eigenvector of the momenta (PL, PR) with eigenval-

ues (kL, kR) of the form (4.18). Acting on the vacuum with creation op-

erators α−n, α̃−n, n > 0, gives states |NL, NR, kL, kR〉 that have generic

eigenvalues NL and NR of the occupation number operators. For instance,

(α−n1)
ℓ1 (α̃−n2)

ℓ2 |0, 0, kL, kR〉 has NL = n1ℓ1 and NR = n2ℓ2.

The Hamiltonian is

H =

∫ 2π

0
dσ1(Π · ∂0X − L) =

1

8π

∫ 2π

0
dσ1

[
(∂0X)2 + (∂1X)2

]
. (4.20)

Substituting the expansions (4.17) then gives

H =
P 2
L

2
+
P 2
R

2
+ NL + NR − D

12
. (4.21)

The constant term comes from normal ordering all annihilation operators

to the right and using the analytical continuation of the zeta function to
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regularize the sum
∑∞

n=1 n = ζ(−1) = −1/12. The Hamiltonian is the gen-

erator of translations in σ0, meaning that [H,X] = −i∂0X. The generator of

translations in σ1 is

Pσ =

∫ 2π

0
dσ1Π · ∂1X =

P 2
L

2
− P 2

R

2
+ NL −NR . (4.22)

Both H and Pσ can be written in terms of left and right moving Virasoro

generators as

H = L0 + L̃0 , Pσ = L0 − L̃0 . (4.23)

Then,

L0 =
P 2
L

2
+ NL − D

24
; L̃0 =

P 2
R

2
+ NR − D

24
. (4.24)

Since D free bosons have central charge c = D, the constant term is the

expected −c/24. The eigenvalue of L0 (L̃0) is the squared mass m2
L (m2

R) of

the given state. Invariance under translations along the closed string requires

that Pσ vanishes acting on states. This implies the level-matching condition

m2
R = m2

L.

We next consider the partition function defined as

Z(τ, τ̄ ) = Tr qL0 q̄L̃0 ; q ≡ e2iπτ ; τ ∈ C , (4.25)

where the trace is taken over the states |NL, NR, kL, kR〉. Knowing the spec-

trum we can simply compute Z(τ, τ̄ ) by counting the number of states at

each level of L0, L̃0. For the toroidal compactification one finds

Z(τ, τ̄ ) =
1

|η(τ)|2D
∑

P∈Λ∗

∑

W∈Λ
q

1
2
(P+ W

2
)2 q̄

1
2
(P−W

2
)2 . (4.26)

The Dedekind eta function,

η(τ) = q
1
24

∞∏

k=1

(1 − qk) , (4.27)

arises from the contribution of the oscillator modes.

Exercise 4.2: Show (4.26).

The partition function (4.26) has the remarkable property of being invari-

ant under the modular transformations

τ → aτ + b

cτ + d
; a, b, c, d ∈ Z ; ad− bc = 1 . (4.28)
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The SL(2,Z) modular group is generated by the transformations T : τ →
τ +1 and S : τ → −1/τ . Invariance of (4.26) under T follows simply because

2P ·W = even. Invariance under S arises only because the partition function

includes a sum over windings.

Exercise 4.3: Prove invariance of (4.26) under S using the property η(−1/τ) =√
−iτη(τ) and the Poisson resummation formula

∑

W∈Λ
e−πa(W+U)2 e2iπY ·(W+U) =

1

Vol(Λ) aD/2

∑

P∈Λ∗

e−
π
a
(P+Y )2 e−2iπP ·U ,

(4.29)

where U and Y are arbitrary vectors and a is a positive constant.

Physically, the partition function Z(τ, τ̄ ) corresponds to the vacuum to

vacuum string amplitude at one-loop. In this case the world-sheet surface

is a torus T2 that has precisely τ as modular parameter. From the brief

discussion after (2.26) recall that T2 with modular parameter τ = τ1+iτ2 can

be defined by identifications in a lattice with basis e1 = (1, 0), e2 = (τ1, τ2).

We can picture the T2 as formed by a cylinder of length τ2 in which we

identify the string at the initial end with the string at the final end after

translating by τ1. Indeed, using (4.23) we find

Z(τ, τ̄ ) = Tr e−2πτ2H e2iπτ1Pσ . (4.30)

The first term in the trace is precisely what we expect of a partition function

for a system propagating for Euclidean time 2πτ2. The second term reflects a

translation by 2πτ1 in the coordinate σ1 along the string. Now, the modular

transformations (4.28) just correspond to an integral change of basis in the

T2 lattice. For example, Fig. 5 shows three equivalent lattices for T2. All tori

with τ ’s related by modular transformations are conformally equivalent and

the partition function must therefore remain invariant.

τ

1 1

τ+1 τ τ+1

Fig. 5. Three equivalent T2 lattices
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In the example of toroidal compactification, the partition function is mod-

ular invariant only because the winding sectors are included. Indeed, S basi-

cally exchanges σ0 and σ1 so it transforms quantized momenta into windings.

In general, the partition function for orbifold compactification is modular in-

variant only if twisted sectors are included. To see this, we start with the

untwisted sector and implement the projection on invariant states according

to (4.14). The partition function in the untwisted sector then becomes

Z1(τ, τ̄ ) = Tr (P qL0(1) q̄L̃0(1)) =
1

|G|
∑

g∈G
Tr (ḡ qL0(1) q̄L̃0(1)) . (4.31)

Due to the insertion of ḡ, the traces in the sum above are over states that

satisfy not only the untwisted boundary condition (4.12) but also

X(σ0 + 2πτ2, σ
1 + 2πτ1) = gX(σ0, σ1) . (4.32)

We can then write schematically

Z1(τ, τ̄ ) =
1

|G|
∑

g∈G
Z(1, g) , (4.33)

where Z(h, g) means partition function with boundary conditions (4.15) in

σ1 and (4.32) in σ0. Now, under modular transformations the boundary con-

ditions do change. For instance, under T : τ → τ + 1, (h, g) → (h, gh), and

under T ST : τ → τ/(τ + 1), (h, g) → (gh, g), as implied by the change of

basis depicted in Fig. 5. Then, under S : τ → −1/τ , (h, g) → (g, h−1) and

in particular S transforms the untwisted sector into a twisted sector. To ob-

tain a modular invariant partition function we must include all sectors. More

precisely, for Abelian G the full partition function has the form

Z(τ, τ̄ ) =
1

|G|
∑

h∈G

∑

g∈G
Z(h, g)

=
∑

h∈G



 1

|G|
∑

g∈G
Tr (ḡ qL0(h) q̄L̃0(h))



 . (4.34)

The sum over h is a sum over twisted sectors while the sum over g implements

the orbifold projection in each sector. For non-Abelian G we only sum over h

and g such that [h, g] = 0 since otherwise (4.15) and (4.32) are incompatible.
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4.3 Bosons on TD/ZN

We now wish to derive the partition function for bosonic coordinates com-

pactified on TD/ZN , with ZN generated by θ as described in section 4.1,

and torus lattice Λ. We consider symmetric orbifolds in which θ acts equally

on left and right movers. As we have explained, we need to include sectors

twisted by θk, k = 0, · · · , N − 1, in which the boundary conditions are

X(σ0, σ1 + 2π) = θkX(σ0, σ1) + 2πV ; V ∈ Λ . (4.35)

The X’s still satisfy the free equations of motion (4.11) so they have mode

expansions of the form

X(σ0, σ1) = X0 + 2Pσ0 +Wσ1 + oscillators . (4.36)

To simplify the analysis we will assume that θk leaves no invariant directions

so that the boundary conditions generically do not allow quantized momenta

nor windings in the expansion. For the center of mass coordinate X0 we find

that it must satisfy (1 − θk)X0 = 0 modulo 2πΛ which just means that X0

is a fixed point of θk.

To find out the effect on the oscillator modes it is useful to define complex

coordinates zj = 1√
2
(X2j−1 + iX2j), j = 1, · · · ,D/2, such that θzj = e2iπvjzj

as we have seen in section 4.1. Next write the zj expansion as

zj(σ0, σ1) = zj0 + i
∑

t

αjt
t
e−it(σ

0+σ1) + i
∑

s

α̃js
s
e−is(σ

0−σ1) , (4.37)

where the frequencies t and s are to be determined by imposing the boundary

condition (4.35). In this way we obtain e−2iπt = e2iπkvj and then t = n−kvj,
with n integer. Likewise, s = n+kvj. For the complex conjugate z̄j there is an

analogous expansion with coefficients ᾱjn+kvj
and ¯̃αjn−kvj

. Let us focus on the

left-movers. After quantization, [ᾱim+kvi
, αjn−kvj

] = (m + kvj)δ
i,jδm,−n, with

other commutators vanishing. There are now several Fock vacua |f, 0〉k, where

f = 1, · · · , χ(θk), is the fixed point label. Each vacuum is annihilated by all

positive-frequency modes. The creation operators are thus αj−kvj
, αj−1−kvj

, · · ·
and ᾱj−1+kvj

, ᾱj−2+kvj
, · · · (assuming 0 < kvj < 1). The occupation number

operator is

NL =

∞∑

n=−∞
: αj−n−kvj

ᾱjn+kvj
: , (4.38)
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where :: means normal ordering, i.e. all positive-frequency modes to the right.

For right-movers the results are analogous.

We now construct the partition function that according to (4.34) has the

form

Z =
1

N

N−1∑

k=0

N−1∑

ℓ=0

Z(θk, θℓ) ,

Z(θk, θℓ) = Tr (θℓ qL0(θk) q̄L̃0(θk)) . (4.39)

The strategy is to start with the untwisted sector (k = 0) in which the

Virasoro operators L0(1) and L̃0(1) are those given in (4.24). In particular,

Z(1,1) is just (4.26). For ℓ 6= 0 we need to evaluate the trace with the

θℓ insertion. Since we are assuming that θℓ leaves no unrotated directions,

neither quantized momenta nor windings survive the trace. We only need

to consider states obtained from the Fock vacuum by acting with creation

operators which for the complex coordinates are eigenvectors of θℓ. The Fock

vacuum, denoted |0〉0, is defined to be invariant under θ. Then, for instance,

for the left movers in zj we find the contribution

Tr (θℓ qL
j
0(1)) = q−1/12(1 + qe2iπℓvj + qe−2iπℓvj + · · · ) . (4.40)

The first term comes from |0〉0, the next two from states with αj−1 and ᾱj−1

acting on |0〉0, and so on. In fact, the whole expansion can be cast as

Tr (θℓ qL
j
0(1)) = q−1/12

∞∏

n=1

(1 − qne2iπℓvj )−1 (1 − qne−2iπℓvj )−1 . (4.41)

This result can be conveniently written by using Jacobi ϑ functions that have

the product representation

ϑ[ δϕ ](τ)

η(τ)
= e2iπδϕ q

1
2
δ2− 1

24

∞∏

n=1

(1 + qn+δ− 1
2 e2iπϕ) (1 + qn−δ−

1
2 e−2iπϕ) . (4.42)

Then,

Tr (θℓ qL
j
0(1)) = −2 sin ℓπvj

η(τ)

ϑ[
1
2

1
2
+ℓvj

](τ)
. (4.43)

Notice that for ℓ = 0, (4.41) becomes 1/η2, as it should. Taking into account

left and right movers for all coordinates we obtain
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Z(1, θℓ) = χ(θℓ)

∣∣∣∣∣∣∣

D/2∏

j=1

η

ϑ[
1
2

1
2
+ℓvj

]

∣∣∣∣∣∣∣

2

, (4.44)

where χ(θℓ) =
∏D/2
j=1 4 sin2 πℓvj is the number of fixed points of θℓ, cf. (4.3).

We remark, as it is clear from (4.41), that the coefficient of the first term in

the expansion in (4.44) is actually one. This means that in the full untwisted

sector, i.e. fixing k = 0 and summing over ℓ, the untwisted vacuum appears

with the correct multiplicity one.

To obtain other pieces Z(θk, θℓ) we take advantage of modular invariance.

For example, Z(θk,1) simply follows applying τ → −1/τ to (4.44). Using the

modular properties of ϑ functions given in (C.4) gives

Z(θk,1) = χ(θk)

∣∣∣∣∣∣∣

D/2∏

j=1

η

ϑ[
1
2
+kvj
1
2

]

∣∣∣∣∣∣∣

2

(4.45)

= χ(θk) (qq̄)−
D
24

+Ek

∣∣∣∣∣∣

D/2∏

j=1

∞∏

n=1

(1 − qn−1+kvj)−1 (1 − qn−kvj)−1

∣∣∣∣∣∣

2

,

where Ek is the twisted oscillator contribution to the zero point energy given

by

Ek =

D/2∑

j=1

1

2
kvj(1 − kvj) . (4.46)

When kvj > 1 we must substitute kvj → (kvj − 1) in (4.46).

Exercise 4.4: Derive (4.45).

The lowest order term in the expansion (4.45) does have coefficient χ(θk)

in agreement with the fact that in the θk sector the center of mass coordinate

can be any fixed point. The q expansion also shows the contribution of the

states created by operators αj−kvj
, αj−1−kvj

, · · · and ᾱj−1+kvj
, ᾱj−2+kvj

, · · · . In

fact, from the exponents of q we can read off the eigenvalues of L0(θ
k), i.e.

the squared masses m2
L(θk). The general result can be written as

m2
L(θk) = NL + Ek −

D
24

. (4.47)

Here NL is the occupation number of the left-moving oscillators. For example,

αj−kvj
|0〉k and ᾱj−1+kvj

|0〉k have NL = kvj and NL = 1 − kvj , respectively.
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In the untwisted sector, or more generically in sectors in which quantized

momenta or windings are allowed, m2
L also includes a term of the form 1

2P
2
L.

For particular shapes of the torus, 1
2P

2
L can precisely lead to extra massless

states that signal enhanced symmetries as in the well known example of

circle compactification at the self-dual radius. In these notes we will assume

a generic point in the torus moduli space so that 1
2P

2
L does not produce new

massless states. For right movers, m2
R(θk) is completely analogous to (4.47).

Notice that the level-matching condition becomes NL = NR.

We can continue generating pieces of the partition function by employing

modular transformations. For example, applying τ → τ + 1 to (4.45) gives

Z(θk, θk). The general result can be written as

Z(θk, θℓ) = χ(θk, θℓ)

∣∣∣∣∣∣∣

D/2∏

j=1

η

ϑ[
1
2
+kvj

1
2
+ℓvj

]

∣∣∣∣∣∣∣

2

, (4.48)

where χ(θk, θℓ) is the number of simultaneous fixed points of θk and θℓ. This

formula is valid when θk leaves no fixed directions, otherwise a sum over

momenta and windings could appear. This is important when determining

the ZN -invariant states [67]. The correct result can be found by carefully

determining the untwisted sector pieces and then performing modular trans-

formations.

Exercise 4.5: Use (C.4) to show that (4.48) has the correct modular trans-

formations, i.e. Z(θk, θℓ) transforms into Z(θk, θk+ℓ) under T and into

Z(θℓ, θ−k) under S.

Let us now describe the spectrum in a θk twisted sector. States are chains

of left and right moving creation operators acting on the vacuum. Schemati-

cally this is

α · · · ᾱ · · · α̃ · · · ¯̃α · · · |f, 0〉k . (4.49)

Level-matching NL = NR must be satisfied. States are further characterized

by their transformation under a ZN element, say θℓ. The oscillator piece is

just multiplied by an overall phase e2iπℓρ, where ρ = ρL+ρR. In turn ρL (ρR)

is found by adding the phases of all left (right) modes in (4.49). Concretely,

each left-moving oscillator αj−kvj
, αj−1−kvj

, · · · (coming from zj) adds vj to

ρL, whereas each ᾱj−1+kvj
, ᾱj−2+kvj

, · · · (coming from z̄j) contributes −vj to
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ρL. For right-movers, each mode ¯̃α
j
−kvj

, ¯̃α
j
−1−kvj

, · · · , contributes −vj to ρR

and each α̃j−1+kvj
, α̃j−2+kvj

, · · · adds vj to ρR. Finally, the action on the fixed

points must be θℓ|f, 0〉k = |f ′, 0〉k, where f ′ is also a fixed point of θk.

Only states invariant under the full ZN action survive in the spectrum. For

example, in the untwisted sector (k = 0), both α1
−1α̃

1
−1|0〉0 and ᾱ1

−1α̃
1
−1|0〉0

have NL = NR = 1 but the first is not invariant because it picks up a phase

e4iπv1 under θ. For k 6= 0 there is a richer structure because states sit at

fixed points. In the θ sector, χ(θ, θℓ) = χ(θ), i.e. all θℓ leave the fixed points

of θ invariant. Hence, |f, 0〉1 and chain states (4.49) with ρL + ρR = 0 are

invariant ∀f , meaning that there is one such state at each fixed point of θ.

For N odd, χ(θk, θℓ) = χ(θk) = χ(θ), so that all twisted sectors are like the

θ sector.

For N even, in general χ(θk, θℓ), k 6= 1, N −1, depends on ℓ. For example,

take a T2/Z4 with square SO(4) lattice (cf. Example 4.1) and θ a π/2 rotation

(v1 = 1/4). Then, θ2 has the four fixed points in (4.4): f0 and f3 that are also

fixed by θ, plus f1 and f2 that are exchanged by θ. Thus, in the θ2 sector,

there are three invariant vacua, namely |f0, 0〉2, |f3, 0〉2 and [|f1, 0〉2+|f2, 0〉2].
Likewise, any level-matched chain, e.g. ᾱ− 1

2
α̃− 1

2
, with ρL + ρR = 0, acting

on the three vacua gives states that also survive in the spectrum. There are

also invariant states of the form α− 1
2
α̃− 1

2
[|f1, 0〉2 − |f2, 0〉2].

Conventionally, we drop the fixed point dependence and speak of states

labeled by (NL, ρL;NR, ρR), with NL = NR determining the mass level, and

having a degeneracy factor Fk(NL, ρL;NR, ρR) that might be zero when the

state is not invariant. In the T2/Z4 example above, there are e.g. states

|0〉2 and ᾱ− 1
2
α̃− 1

2
|0〉2 with F2 = 3, α− 1

2
α̃− 1

2
|0〉2 with F2 = 1, and so on.

A systematic way to determine the degeneracy factor is to implement the

orbifold projection by performing the sum 1
N

∑N−1
ℓ=1 Z(θk, θℓ). Using (4.48)

and (4.42) we obtain

Fk(NL, ρL;NR, ρR) =
1

N

N−1∑

ℓ=0

χ̃(θk, θℓ) e2iπℓ(ρL+ρR) . (4.50)

Here χ̃(θk, θℓ) is a numerical factor that counts the fixed point multiplicity.

More concretely, χ̃(1, θℓ) = 1, so that in the untwisted sector F0 projects

out precisely the states non-invariant under θ that have ρL + ρR not integer.

In twisted sectors χ̃(θk, θℓ) is the number of simultaneous fixed points of
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θk and θℓ in the sub-lattice effectively rotated by θk. χ̃(θk, θℓ) differs from

χ(θk, θl) because when kvj = integer, the expansion of ϑ[
1
2
+kvj

1
2
+ℓvj

]/η has a

prefactor (−2 sinπℓvj), as follows using (4.42). Thus, the actual coefficient in

the expansion of (4.48) is χ̃(θk, θl) = χ(θk, θl)/
∏
j,kvj∈Z

4 sin2 πℓvj.

4.4 Type II strings on toroidal ZN symmetric orbifolds

The new ingredient is the presence of world-sheet fermions with boundary

conditions

Ψ(σ0, σ1 + 2π) = −e2πiαθkΨ(σ0, σ1) ,

Ψ(σ0 + 2πτ2, σ
1 + 2πτ1) = −e2πiβθℓΨ(σ0, σ1) , (4.51)

where α, β = 0, 1
2 are the spin structures. The full partition function has the

form (4.39). Each contribution to the sum is explicitly evaluated as

Z(θk, θℓ) = Tr (NS⊕R)(NS⊕R){PGSO θ
ℓ qL0(θk) q̄L̃0(θk)} . (4.52)

The trace is over left and right Neveu-Schwarz (NS) and Ramond (R) sectors

for the fermions. This is equivalent to summing over α = 0, 1
2 . Similarly, the

GSO (Gliozzi-Scherk-Olive) projection is equivalent to summing over β = 0, 1
2

[4, 5, 6].

To find Z(θk, θℓ) we again start from the untwisted sector in which the

Virasoro operators are known and then use modular invariance. The explicit

form of Z(θk, θℓ) can be found in [70] and will be presented in Appendix C.

It follows that the eigenvalues of L0(θ
k) are

m2
L(θk) = NL +

1

2
(r + k v)2 + Ek −

1

2
. (4.53)

Most terms in this formula arise as in the purely bosonic case of last section.

In particular, Ek is given in (4.46). Notice that NL and NR also receive

(integer) contributions from the fermionic degrees of freedom. The vector r

is an SO(8) weight as explained in Appendix C. The vector v is (0, v1, v2, v3),

with the vi specifying the ZN action. When r belongs to the scalar or vector

class, r takes the form (n0, n1, n2, n3), with na integer. This is the Neveu-

Schwarz sector in which left-movers are space-time bosons. When r belongs

to a spinorial class it takes the form (n0+ 1
2 , n1+ 1

2 , n2+ 1
2 , n3+ 1

2 ). This is the
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Ramond sector in which left-movers are space-time fermions. For example,

the weights of the fundamental vector and spinor representations are:

8v = (±1, 0, 0, 0) ; 8s = ±(−1

2
,
1

2
,
1

2
,
1

2
) ,

8c = {(1
2
,
1

2
,−1

2
,−1

2
),±(

1

2
,
1

2
,
1

2
,
1

2
)} , (4.54)

where underlining means permutations. As explained in Appendix C, the

GSO projection turns out to be
∑
ra = odd. Thus, in the untwisted sector,

massless states must have r2 = 1 and the possible solutions are 8v and 8s.

For type II strings the mass formula for right-movers is completely anal-

ogous to (4.53):

m2
R(θk) = NR +

1

2
(p+ k v)2 + Ek −

1

2
, (4.55)

where p is an SO(8) weight as well. In type IIB the GSO projection is also
∑
pa = odd in both NS and R sectors. In type IIA one has instead

∑
pa =

even in the R sector. In the untwisted sector the spinor weights are then those

of 8c. Notice that upon combining left and right movers, states in (NS,NS)

and (R,R) are space-time bosons, whereas states in (NS,R) and (R,NR) are

space-time fermions.

States in a θk-twisted sector are characterized by (NL, ρL, r;NR, ρR, p)

such that the level-matching condition m2
L = m2

R is satisfied. Here ρL and ρR

are due only to the internal bosonic oscillators as we explained in the previ-

ous section. The degeneracy factor of these states follows from the orbifold

projection. Using the results in section 4.3 and Appendix C we find

F(NL, ρL, r;NR, ρR, p) =
1

N

N−1∑

ℓ=0

χ̃(θk, θℓ)∆(k, ℓ) , (4.56)

where the phase ∆ is

∆(k, ℓ) = exp{2π i[(r + kv) · ℓv − (p+ kv) · ℓv + ℓ(ρL + ρR)]} . (4.57)

The factor χ̃(θk, θℓ) that takes into account the fixed point multiplicity was

already introduced in (4.50).

Below we will consider examples of compactifications to six and four di-

mensions. We will find that, as expected, one obtains results similar to those

found in K3 and CY3 compactifications.
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Six dimensions

We first consider type IIA on T4/Z3. As torus lattice we take the product of

two SU(3) root lattices. The Z3 action has v = (0, 0, 1
3 ,−1

3). The resulting

theory in six dimensions has (1,1) supersymmetry that has gravity and vector

multiplets with structure

G11(6) = {gµν , ψ(+)
µ , ψ(−)

µ , ψ(+), ψ(−), Bµν , V
a
µ , φ} ; a = 1, · · · 4 ,

V11(6) = {Aµ, λ(+), λ(−), ϕa} , (4.58)

where λ(±) are Weyl spinors and the ϕa real scalars. Below we will see how

the orbifold massless states fit into (1,1) supermultiplets.

In the untwisted sector, candidate massless states allowed by the orbifold

projection (4.56) must have r ·v = p ·v = 0,±1/3. With r ·v = p ·v = 0 there

are
r p

(±1, 0, 0, 0) (±1, 0, 0, 0)

±(−1
2 ,

1
2 ,

1
2 ,

1
2 ) ±(1

2 ,
1
2 ,

1
2 ,

1
2)

±(1
2 ,

1
2 ,−1

2 ,−1
2)

. (4.59)

The first two entries in r and p, corresponding to the non-compact coordi-

nates, indicate the Lorentz representation under the little group SO(4) ≃
SU(2) × SU(2). The vector (±1, 0) of SO(4) is the (1

2 ,
1
2) representation of

SU(2) × SU(2), whereas the spinors (1
2 ,−1

2 ) and ±(1
2 ,

1
2) are the (1

2 , 0) and

(0, 1
2) representations respectively. In (4.59) we thus have the product

[
(
1

2
,
1

2
) ⊕ 2(

1

2
, 0)
]
left

⊗
[
(
1

2
,
1

2
) ⊕ 2(0,

1

2
)
]
right

. (4.60)

It is simple to check that the product gives rise to the representations that

make up the gravity supermultiplet G11(6) in (4.58).

In the untwisted sector with r · v = p · v = 1/3 we find

r p

(0, 0, 1, 0) (0, 0, 1, 0)

(0, 0, 0,−1) (0, 0, 0,−1)

(−1
2 ,−1

2 ,
1
2 ,−1

2) (−1
2 ,

1
2 ,

1
2 ,−1

2)

(1
2 ,

1
2 ,

1
2 ,−1

2 ) (1
2 ,−1

2 ,
1
2 ,−1

2)

. (4.61)

In terms of little group representations we have the product
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[
2(0, 0) ⊕ (0,

1

2
)
]
left

⊗
[
2(0, 0) ⊕ (

1

2
, 0)
]
right

. (4.62)

In this way we obtain the representations that fill a vector multiplet V11(6).

For r · v = p · v = −1/3 one also obtains a vector multiplet. In both cases the

group is U(1).

Let us now turn to the θ-twisted sector. Plugging v and E1 = 2/9 we find

that m2
R = m2

L = 0 implies the same r, p given in (4.61). Taking into account

the fixed point multiplicity gives then 9 vector multiplets. In the θ2 sector

we find the same result.

In conclusion, type IIA compactification on T4/Z3 yields a (1,1) super-

symmetric theory in six dimensions with one gravity multiplet and twenty

vector multiplets. Other T4/ZN orbifolds give exactly the same result which

is also obtained in type IIA compactification on a smooth K3 manifold.

Compactification of type IIB on T4/ZN follows in a similar way. We can

obtain the results from the type IIA case noting that the different GSO

projection for left-moving spinors simply amounts to changing the little group

representation. For example, in the untwisted sector instead of (4.60) we have

[
(
1

2
,
1

2
) ⊕ 2(

1

2
, 0)
]
left

⊗
[
(
1

2
,
1

2
) ⊕ 2(

1

2
, 0)
]
right

. (4.63)

In the product there are now two gravitini of the same chirality so that the

resulting theory in six dimensions has (2, 0) supersymmetry with gravity and

tensor multiplets having the field content

G20(6) = {gµν , ψa(+)
µ , BI(+)

µν } ; a = 1, 2 ; I = 1, · · · 5 ,
T20(6) = {B(−)

µν , ψ
a(−), ϕI} , (4.64)

where the superscript (+) or (−) on the antisymmetric tensors indicates

whether they have self-dual or anti-self-dual field strength. Altogether the

product (4.63) gives a gravity multiplet G20(6) together with a tensor mul-

tiplet T20(6). Other states from the untwisted sector and the twisted sectors

give rise to 20 tensor multiplets. In conclusion, compactification of type IIB

on T4/ZN gives (2, 0) supergravity with 21 tensor multiplets, exactly what

is found in the compactification on K3 [72].

Four dimensions

The resulting theory has N = 2 supersymmetry. The massless fields must

belong to the gravity multiplet or to hypermultiplets and vector multiplets.
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Schematically, the content of these multiplets is

G2(4) = {gµν , ψaµ, Vµ} ; a, b = 1, 2 ,

H2(4) = {ψa, ϕab} , (4.65)

V2(4) = {Aµ, λa, ϕa} .

Note that G2(4) contains the so-called graviphoton Vµ. Below we will group

the orbifold massless states into these supermultiplets. We study type IIB on

T6/Z3. The torus lattice is the product of three SU(3) root lattices. The Z3

action has v = (0, 1
3 ,

1
3 ,−2

3 ).

Now the massless states are classified by the little group SO(2), i.e. by

helicity λ. For a given state, λ = λr − λp where λr can be read from the

first component of the SO(8) weight r, and likewise for λp. In the untwisted

sector, candidate massless states allowed by the orbifold projection must have

r · v = p · v = 0,±1/3. With r · v = p · v = 0 we find

r p

(±1, 0, 0, 0) (±1, 0, 0, 0)

±(−1
2 ,

1
2 ,

1
2 ,

1
2) ±(−1

2 ,
1
2 ,

1
2 ,

1
2)

. (4.66)

Considering all possible combinations in (4.66) we find the helicities

{±2, 2 × (±3

2
),±1} ⊕ {2 × (±1

2
), 4 × (0)} . (4.67)

Comparing with the structure of the N = 2 supersymmetric multiplets in

four dimensions, cf. (4.65), we observe that (4.67) includes a gravity multiplet

G2(4) plus a hypermultiplet H2(4). The four real scalars in the hypermultiplet

are the dilaton, the axion dual to Bµν , both arising from (NS,NS) (both r, p

vectorial), plus a 0-form and another axion dual to B̃µν , both arising from

(R,R) (both r, p spinorial).

In the untwisted sector with r · v = p · v = ±1/3 we have

r p

r · v = 1
3 (0, 1, 0, 0) (0, 1, 0, 0)

(−1
2 ,

1
2 ,−1

2 ,−1
2) (−1

2 ,
1
2 ,−1

2 ,−1
2)

r · v = −1
3 (0,−1, 0, 0) (0,−1, 0, 0)

(1
2 ,

1
2 ,−1

2 ,
1
2 ) (1

2 ,
1
2 ,−1

2 ,
1
2)

. (4.68)
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Evaluating the helicities of all allowed combinations we find precisely nine

hypermultiplets.

Consider now the θ-twisted sector. Plugging v and E1 = 1/3 we find that

m2
R = m2

L = 0 has solutions r, p = (0, 0, 0, 1), (−1
2 ,−1

2 ,−1
2 ,

1
2). In the θ−1

sector the solutions are r, p = (0, 0, 0,−1), (1
2 ,

1
2 ,

1
2 ,−1

2). According to the

orbifold projection we can then combine the following

r p

θ (0, 0, 0, 1) (0, , 0, 0, 1)

(−1
2 ,−1

2 ,−1
2 ,

1
2) (−1

2 ,−1
2 ,−1

2 ,
1
2)

θ−1 (0, 0, 0,−1) (0, 0, 0,−1)

(1
2 ,

1
2 ,

1
2 ,−1

2 ) (1
2 ,

1
2 ,

1
2 ,−1

2)

. (4.69)

Altogether we find the degrees of freedom of one hypermultiplet. Taking into

account the fixed point multiplicity shows that 27 hypermultiplets originate

in the twisted sectors.

In conclusion, compactification of type IIB on T6/Z3 has massless content

summarized by

G2(4) + H2(4) + 36H2(4) . (4.70)

This result agrees with the general result for type IIB compactification on a

CY3 manifold. In fact, as we explained in section 4.1, the T6/Z3 orbifold has

h1,1 = 36 and h1,2 = 0.

Compactification of type IIA on T6/Z3 is completely analogous. The re-

sults are easily obtained changing the left-moving spinor helicities appropri-

ately. In the untwisted sector with r ·v = p ·v = 0 there are no changes. In the

untwisted sector with r · v = p · v = ±1/3, as well as in the twisted sectors,

instead of hypermultiplets there appear vector multiplets. Hence, type IIA

on T6/Z3 has massless multiplets

G2(4) + H2(4) + 36V2(4) . (4.71)

This agrees with the result for compactification on a CY3.

5 Recent developments

We have discussed basic aspects of supersymmetry preserving string compact-

ifications. The main simplifying assumption was that the only background
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field allowed to have a non-trivial vacuum expectation value (vev) was the

metric, for which the Ansatz (2.9) was made, and a constant dilaton φ0

that fixes the string coupling constant as gs = eφ0 . When we considered the

complexification of the Kähler cone we also allowed a vev for the (NS,NS) an-

tisymmetric tensor BMN , but limited to vanishing field strength so that the

equations of motion do not change. Restricting to these backgrounds means

exploring only a small subspace of the moduli space of supersymmetric string

compactifications. Type II string theory has several other massless bosonic

excitations, the dilaton φ and the (R,R) p-form fields A(p) with p even for

type IIB and p odd for type IIA, which could get non-vanishing vevs. The

interesting situation is when the vevs for the field strengths H = dB and

F (p+1) = dA(p) lead to non-vanishing fluxes through non-trivial homology

cycles in the internal manifold. It is clearly important to examine the im-

plications of these fluxes. One interesting result to date is that fluxes can

generate a potential for moduli scalars [73]. This provides a mechanism for

lifting flat directions in moduli space.

If the additional background fields are non-trivial they will have in general

a non-zero energy-momentum tensor TMN that will back-react on the geom-

etry and distort it away from the Ricci-flat Calabi-Yau metric. At the level

of the low-energy effective action this means that the lowest order (in α′)

equation of motion for the metric is no longer the vacuum Einstein equation

RMN = 0 but rather RMN = TMN . We also have to satisfy the equations

of motion of the other background fields (setting them to zero is one solu-

tion, but we are interested in less trivial ones) and the Bianchi identities of

their field strengths. Again, a practical way to proceed is to require unbro-

ken supersymmetry, i.e. to impose that the fermionic fields have vanishing

supersymmetric transformations which are now modified by the presence of

additional background fields, cf. (2.10). It must then be checked that the

Bianchi identities and the equations of motion are satisfied.

The effect of H flux was studied early on [74] and has lately attracted

renewed attention. The upshot is that the supersymmetry preserving back-

grounds are, in general, not Calabi-Yau manifolds. The analysis of these

solutions is a current research subject. For recent papers that give references

to the previous literature see e.g. [75].
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The presence of (R,R) fluxes leads to an even richer zoo of possible type II

string compactifications. One simple and well-studied example is the AdS5 ×
S5 solution of type IIB supergravity which has, in addition to the metric,

a non-trivial five-form field strength F (5) background. A general analysis of

type IIB compactifications to four dimensions, including backgrounds for all

bosonic fields as well as D-brane and orientifold plane sources, was given

in [76]. Conditions for N = 1 supersymmetry of such configurations were

found in [77]. These results have been applied in recent attempts to construct

realistic models with moduli stabilization [78].

Compactification of M -theory, or its low-energy effective field theory,

eleven-dimensional supergravity, on manifolds of G2 holonomy, have also been

much explored lately. These compactifications lead to N =1 supersymmetry

in four dimensions and are interesting in their own right and also in rela-

tion with various string dualities, such as compactification of M -theory on

a manifold with G2 holonomy and of the heterotic string on a Calabi-Yau

manifold. See [79] for a recent review.

There are many other aspects which one could mention in the context

of string compactifications. It is a vast and still growing subject with many

applications in physics and mathematics. We hope that our lecture notes will

be of use for those who are just entering this interesting and fascinating field.

Appendix A: Conventions and definitions

A.1: Spinors

The Dirac matrices ΓA, A = 0, · · · ,D − 1, satisfy the Clifford algebra

{ΓA, ΓB} ≡ ΓAΓB + ΓBΓA = 2ηAB , (A.1)

where ηAB = diag(−1,+1, . . . ,+1). The smallest realization of (A.1) is

2[D/2]×2[D/2]-dimensional ([D/2] denotes the integer part of D/2). One often

uses antisymmetrized products

ΓA1···Ap ≡ Γ [A1 · · ·ΓAp] ≡ 1

p!

(
ΓA1 · · ·ΓAp ± permutations

)
, (A.2)

with + (−) sign for even (odd) permutations.

The generators of SO(1,D−1) in the spinor representation are
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TAB≡− i

2
ΓAB≡− i

4
[ΓA, ΓB ] . (A.3)

Spinor representations are necessary to describe space-time fermions. Strictly

speaking, when discussing spinors we should go to the covering group, the

spin group. We will not make this distinction here but it is always implied.

Exercise A.1: Verify that TAB≡− i
2Γ

AB are generators of SO(1,D−1) in the

spinor representation, i.e.

i[TAB , TCD] = ηACTBD − ηADTBC − ηBCTAD + ηBDTAC . (A.4)

Dirac spinors have then dimension 2[D/2]. For D even the Dirac repre-

sentation is reducible since there exists a matrix that commutes with all

generators. This is

ΓD+1 ≡ e−iπ(D−2)/4Γ 0 . . . ΓD−1 . (A.5)

For D odd, ΓD+1 ∝ 1.

Exercise A.2: Show that Γ 2
D+1 = 1, {ΓD+1, Γ

A} = 0, and [ΓD+1, Γ
AB ] = 0.

With the help of ΓD+1 we can define the irreducible inequivalent Weyl

representations: if ψ is a Dirac spinor, the left and right Weyl spinors are

ψL =
1

2
(1 − ΓD+1)ψ , ψR =

1

2
(1 + ΓD+1)ψ . (A.6)

Note that ΓD+1ψR = ψR and ΓD+1ψL = −ψL.

Dirac and Weyl spinors are complex but in some cases a Majorana

condition of the form ψ∗ = Bψ with B a matrix such that BB∗ = 1
is consistent with the Lorentz transformations δψ = iωMNT

MNψ, i.e. B

must satisfy T ∗MN = −BTMNB−1. The Majorana condition is allowed for

D = 0, 1, 2, 3, 4 mod 8. Majorana-Weyl spinors can be shown to exist only in

D = 2 mod 8 [6].

SO(D) spinors have analogous properties. For D even, there are two in-

equivalent irreducible Weyl representations of dimension 2D/2−1. A Majorana-

Weyl condition can be imposed only for D = 0 mod 8.

A.2: Differential geometry

We use A,B, . . . to denote flat tangent indices (raised and lowered with

ηAB and ηAB) which are related to the curved indices M,N, . . . (raised and
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lowered with GMN and GMN ) via the D-bein: e.g. ΓA = eAMΓ
M and the

inverse D-bein, e.g. ΓM = eMA Γ
A, where GMN = eAMe

B
NηAB and eAMe

M
B = δAB ,

eAMe
N
A = δNM , ηABηBC = δAC . The ΓM satisfy {ΓM , ΓN} = 2GMN .

A Riemannian connection ΓPMN is defined by imposing

∇PGMN ≡ ∂pGMN − ΓQPMGQN − ΓQPNGMQ = 0 (metricity)

ΓPMN = ΓPNM (no torsion) . (A.7)

One finds for the Christoffel symbols

ΓPMN =
1

2
GPQ (∂MGQN + ∂NGMQ − ∂QGMN ) . (A.8)

The Riemann tensor is

[∇M ,∇N ]VP = −RMNP
QVQ . (A.9)

The Ricci tensor and the Ricci scalar are RMN = GPQRMPNQ and R =

GMNRMN . The spin connection is defined via the condition

∇Me
A
N = ∂Me

A
N − ΓPMNe

A
P + ωM

A
Be

B
N = 0 (A.10)

which leads to the following explicit expression for its components

ωABM =
1

2
(ΩMNR −ΩNRM +ΩRMN ) eNAeRB (A.11)

where

ΩMNR =
(
∂Me

A
N − ∂Ne

A
M

)
eAR .

In terms of ωABM the components of the Lie-algebra valued curvature 2-form

are

RMN
AB = eAP eBQRMNPQ = ∂Mω

AB
N − ∂Nω

AB
M + ωACM ωNC

B − ωACN ωMC
B .

(A.12)

The covariant derivative, acting on an object with only tangent-space indices,

is generically

∇M = ∂M +
i

2
ωABM TAB , (A.13)

where TAB is a generator of the tangent space group SO(1,D−1). For exam-

ple, i(TAB)C
D = ηACδ

D
B − ηBCδ

D
A for vectors and iTAB = 1

2ΓAB for spinors

(spinor indices are suppressed).
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Under infinitesimal parallel transport a vector V changes as δV M =

−ΓMNRV NdxR. When V is transported around an infinitesimal loop in the

(M,N)-plane with area δaMN = −δaNM it changes by the amount

δV P = −1

2
δaMNRMN

P
QV

Q . (A.14)

Notice that under parallel transport the length |V | remains constant since

|V |2 = VMV NGMN and ∇PGMN = 0. The generalization to the parallel

transport of tensors and spinors is obvious.

Appendix B: First Chern class of hypersurfaces of Pn

This Appendix is adopted from [27].

Let X = {z ∈ P
n; f(z) = 0}, f a homogeneous polynomial of degree d,

be a non-singular hypersurface in P
n. From (3.70) we know that c1(X) can

be expressed by any choice of volume element on X. As volume element we

will use the pull-back of the (n − 1)-st power of the Kähler form on P
n. We

will first compute this in general and will then use the Fubini-Study metric

on P
n. It suffices to do the calculation on the subset

U0 ∩ {∂nf 6= 0} ∩X . (B.1)

Given that ω = igi̄dz
i ∧ dz̄ we compute (zi are the inhomogeneous coordi-

nates on U0)

ωn−1 = (igi̄dz
i ∧ dz̄j)n−1 = in−1

n∑

i,j=1

(−1)i+j det(mij)(· · · î · · · ̂̄ · · · ) , (B.2)

where mij is the (i, j)-minor of the metric gi̄. The notation (· · · î · · · ̂̄ · · · )
means that the hatted factors are missing in the product dz1 ∧ dz̄1 ∧ · · · ∧
dzn ∧ dz̄n. In the next step we split the above sum according to how many

powers of dzn appear. We get

inωn−1 =

n−1∑

i,j=1

(−1)i+j det(mij)(· · · î · · · ̂̄ · · · )

+

n−1∑

i=1

(−1)n+i det(min)(· · · î · · · ̂̄n) +

n−1∑

j=1

(−1)n+j det(mhj)(· · · ̂̄ · · · n̂·)
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+ det(mnn)(· · · n̂ ̂̄n) . (B.3)

We now replace dzn via the hypersurface constraint:

df =
n−1∑

i=1

∂f

∂zi
dzi +

∂f

∂zn
dzn ⇒ dzn = −

(
∂f

∂zn

)−1 n−1∑

i=1

∂f

∂zi
dzi . (B.4)

Using this in (B.3), we find

(i)nωn−1 =

∣∣∣∣
∂f

∂zn

∣∣∣∣
−2 n∑

i,j=1

∂f

∂zi
∂f

∂zj
(−1)i+j det(mij)(dz

1 ∧ · · · ∧ dz̄n−1) . (B.5)

Next we need the identity

gi̄ ≡ (g−1)i̄ = (−1)i+j det(mij)(det g)−1 . (B.6)

Using this in (B.4), we obtain

(−i)nωn−1 = (det g)

∣∣∣∣
∂f

∂zn

∣∣∣∣
−2 n∑

i,j=1

gi̄
∂f

∂zi
∂f

∂zj
(dz1 ∧ · · · ∧ dz̄n) . (B.7)

We now specify to the Fubini-Study metric, for which

gi̄ = (1 + |z|2)(δij + ziz̄j) . (B.8)

It follows that

n∑

i,j=1

gi̄
∂f

∂zi
∂f

∂zj
= (1 + |z|2)




n∑

i=1

∣∣∣∣
∂f

∂zi

∣∣∣∣
2

+

n∑

i,j=1

zi
∂f

∂zi
zj
∂f

∂zj



 . (B.9)

Now, since f vanishes on X and since it is a homogeneous function of degree

d, on X we get

0 = d · f =
∂f

∂z0
+

n∑

i=1

zi
∂f

∂zi
, (B.10)

and therefore

n∑

i,j=1

gi̄
∂f

∂zi
∂f

∂zj
= (1 + |z|2)

(
n∑

i=0

∣∣∣∣
∂f

∂zi

∣∣∣∣
2
)
. (B.11)

Because the determinant of the metric is (cf. (3.28))

det(gi̄) =
1

(1 + |z|2)n+1
, (B.12)
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we find

(i)nωn−1 =

∣∣∣∣
∂f

∂zn

∣∣∣∣
−2
∑n

i=0

∣∣∣ ∂f∂zi

∣∣∣
2

(|z|2)n (B.13)

where now |z|2 =
∑n

i=0 |zi|2. If we set

ψ = log

(∑n
i=0 |∂if |2
|z|2d−2

)
, (B.14)

which is a globally defined function, i.e. it has a unique value on all overlaps,

we can write

∂∂̄ log ωn−1 = ∂∂̄ log

∑∣∣∣ ∂f∂zi

∣∣∣
2

(|z|2)n − ∂∂̄ log

∣∣∣∣
∂f

∂zn

∣∣∣∣
2

= ∂∂̄ log eψ(|z|2)d−n−1

= ∂∂̄ψ + i(n − d+ 1)ω . (B.15)

Recall that this is valid on the subset specified in (B.1), in particular that

this expression is to be evaluated on the hypersurface f(z) = 0. Comparing

this to (3.70) we realize that we have shown that

2πc1(X) = (n + 1 − d)[ω] . (B.16)

Appendix C: Partition function of type II strings on

T10−d/ZN

The starting point is the partition function for the ten-dimensional type II

strings that can be written as the product of a bosonic ZB and a fermionic

ZF contribution [4, 5, 6]. Up to normalization:

Z(τ, τ̄ ) = ZB(τ, τ̄)ZF (τ, τ̄ )

ZB(τ, τ̄) =

(
1√
τ2 η η̄

)8

(C.1)

ZF (τ, τ̄) =
1

4





ϑ4[00 ]

η4
−
ϑ4[ 0

1
2
]

η4
−
ϑ4[

1
2
0
]

η4
+
ϑ4[

1
2
1
2

]

η4





×





ϑ̄4[00 ]

η̄4
−
ϑ̄4[ 0

1
2
]

η̄4
−
ϑ̄4[

1
2
0
]

η̄4
±
ϑ̄4[

1
2
1
2

]

η̄4





,
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where η(τ) is the Dedekind function defined in (4.27) and the Jacobi theta

functions are

ϑ[ δϕ ](τ) =
∑

n

q
1
2
(n+δ)2 e2iπ(n+δ)ϕ ; q = e2iπτ . (C.2)

The theta functions also have the product form (4.42) given in section 4.3.

In the following we will not write explicitly that ϑ and η are functions of τ .

Depending on the sign in the last term of the right-moving piece of ZF we

have type IIB (+ sign) or IIA (− sign) strings. In the following we consider

type IIB so that ZF (τ, τ̄ ) = |ZF (τ)|2. The left-moving ZF (τ) can be written

as:

ZF (τ) =
1

2

∑

α,β=0, 1
2

sαβ
ϑ4[αβ ]

η4
. (C.3)

The sαβ are the spin structure coefficients. Modular invariance requires s0 1
2

=

s 1
2
0 = −s00. This can be checked using the transformation properties:

T : τ → τ + 1 ; η → e
iπ
12 η ; ϑ[αβ ] → e−iπ(α2−α)ϑ[ α

α+β− 1
2
] ,

S : τ → −1/τ ; η → (−iτ) 1
2 η ; ϑ[αβ ] → (−iτ) 1

2 e2iπαβϑ[ β−α ] . (C.4)

We take s00 = 1 and choose s 1
2

1
2

equal to s00 so that the GSO projections in

the NS and R sectors turn out the same as we explain below.

The NS sector corresponds to α = 0. Using (C.2) we can write

1

2





ϑ4[00 ]

η4
−
ϑ4[ 0

1
2
]

η4




 =
1

η4

∑

ra∈Z

q
1
2
r2

[
1 − eiπ(r0+r1+r2+r3)

2

]
. (C.5)

This shows that left-moving fermionic degrees of freedom of a given NS state

depend on a vector r with four integer entries. This is an SO(8) weight in

the scalar or vector class. Similarly, for the R sector with α = 1
2 we have

−1

2





ϑ4[

1
2
0
]

η4
−
ϑ4[

1
2
1
2

]

η4





= − 1

η4

∑

ra∈Z+ 1
2

q
1
2
r2

[
1 − eiπ(r0+r1+r2+r3)

2

]
. (C.6)

Now r has half-integer entries so that it corresponds to an SO(8) spinor

weight. Here we are actually exchanging the light-cone world-sheet fermions

by four free bosons that have momentum r in the SO(8) weight lattice. This
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equivalence between fermions and bosons is in fact seen in (C.5) and (C.6)

when we write the left-hand-side using (4.42). Furthermore, because we have

included both β = 0 and β = 1
2 , only states with

∑
ra = odd do appear.

This is the GSO projection. For instance, the tachyon r = 0 in the NS sector

is eliminated from the spectrum. In the R sector one of the SO(8) spinor

representations with r2 = 1 is also absent. For the right-moving piece we

obtain completely analogous results in terms of an SO(8) weight denoted p.

Let us now discuss the partition function for the orbifold that has the

form (4.39). Each term Z(θk, θℓ) can be written as the product of bosonic

and fermionic pieces. The bosonic piece is

ZB(θk, θℓ) =

(
1√
τ2 η η̄

)d−2

χ(θk, θℓ)

∣∣∣∣∣∣∣

5− d
2∏

j=1

η

ϑ[
1
2
+kvj

1
2
+ℓvj

]

∣∣∣∣∣∣∣

2

, (C.7)

where χ(θk, θℓ) is the number of simultaneous fixed points of θk and θℓ. The

first term is the contribution of the non-compact coordinates (d − 2 in the

light-cone gauge), whereas the second term comes from the (10− d) compact

coordinates as we have seen in section (4.3). We are assuming d even.

For the fermionic piece we start with the untwisted sector. The insertion

of θℓ in the trace leads to

ZF (1, θℓ) =
1

4

∣∣∣∣∣∣∣

∑

α,β=0, 1
2

sαβ(0, ℓ)
ϑ[αβ ]

η

3∏

j=1

ϑ[ α
β+ℓvj

]

η

∣∣∣∣∣∣∣

2

, (C.8)

where sαβ(0, ℓ) = sαβ(0, 0) are the spin structures in (C.3). We have special-

ized to d = 4, for other cases simply set vj = 0 for j > 5 − d
2 . To derive the

remaining ZF (θk, θℓ) we use modular transformations. In the end we obtain

ZF (θk, θℓ) =
1

4

∣∣∣∣∣∣∣

∑

α,β=0, 1
2

sαβ(k, ℓ)
ϑ[αβ ]

η

3∏

j=1

ϑ[α+kvj

β+ℓvj
]

η

∣∣∣∣∣∣∣

2

. (C.9)

Modular invariance imposes relations among the spin structure coefficients.

We find:

s00(k, ℓ) = −s 1
2
0(k, ℓ) = 1 ; s0 1

2
(k, ℓ) = −s 1

2
1
2
(k, ℓ) = −e−iπk(v1+v2+v3) .

(C.10)
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Setting k = N then gives a further condition on the twist vector, namely:

N(v1 + v2 + v3) = 0mod 2 . (C.11)

Notice that all twists in Table 2 do satisfy this condition.

Exercise C.1 : Use (C.4) to show that (C.9) has the correct modular trans-

formations, i.e. ZF (θk, θℓ) transforms into ZF (θk, θk+ℓ) under T and into

ZF (θℓ, θ−k) under S.
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61. A. Strominger, Special Geometry, Commun. Math. Phys. 133 (1990) 163-180.

62. B. Craps, F. Roose, W. Troost and A. Van Proeyen, The definitions of special geometry,

hep-th/9606073 and What is special Kaehler geometry?, Nucl. Phys. B 503 (1997) 565-

613, hep-th/9703082.

63. P. Mayr, On supersymmetry breaking in string theory and its realization in brane

worlds, Nucl. Phys. B593 (2001) 99-126, hep-th/0003198.

64. I. Antoniadis, S. Ferrara, R. Minasian and K. S. Narain, R4 couplings in M- and type

II theories on Calabi-Yau spaces, Nucl. Phys. B507 (1997) 571-588, hep-th/9707013.

65. I. Antoniadis, R. Minasian, S. Theisen and P. Vanhove, String loop corrections to the

universal hypermultiplet, Class. Quant. Grav. 20 (2003) 5079-5102, hep-th/0307268.

66. L. J. Dixon, Some World Sheet Properties of Superstring Compactifications, on Orb-

ifolds and Otherwise, published in Superstrings, Unified Theories and Cosmology 1987,

Proceedings of the 1987 ICTP Summer Workshop, pp. 67-126.

67. J. Erler and A. Klemm, Comment on the Generation Number in Orbifold Compactifi-

cations, Commun. Math. Phys. 153 (1993) 579-604, hep-th/9207111.

68. D. G. Markushevich, M. A. Olshanetsky and A. M. Perelomov, Description of a Class

of Superstring Compactifications Related to Semisimple Lie Algebras, Commun. Math.

Phys. 111 (1987) 247-274.

69. D.N. Page, A Physical Picture of the K3 Gravitational Instanton, Phys. Lett. B80

(1978) 55-57.
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