Moulay-Tahar Benameur

 

Moulay-Tahar Benameur

(Lyon, France)

 

Equivariant index theory

 

Abstract

We shall explain how equivariant index theory can be described in the language of Non Commutative Geometry. As a main application, we shall give a unifying approach to many Lefschetz fixed point formulae.

 

Chapters

  1. Review of the classical equivariant index theory.

  2. The Lefschetz fixed point formulae.

  3. Equivariant spectral triples in von Neumann algebras.

  4. A local Lefschetz formula in type II Non Commutative Geometry.

  5. Higher Lefschetz formulae for foliations.

 

Home Topics and Lecturers Downloads Sponsors Contact Us

Christine Lescop    Thierry Fack    Shiraz Minwalla    Raimar Wulkenhaar    Anamarķa Font    Stefan Theisen

 

Updated 04/03/2005

Web Manager