Tropical geometry Exercises (third lecture)

Exercise 1 Fix a positive integer d. It is clear from their definitions that the numbers W_d and N_d are equal modulo 2. Prove that

$$W_d = N_d \mod 4.$$

Exercise 2 Show that for any generic collection of 8 points in \mathbb{R}^2 , there exist exactly 9 or exactly 10 rational tropical cubics that pass through the points of the collection.

Exercise 3 Fix a positive integer d and an integer $0 \le g \le \frac{(d-1)(d-2)}{2}$.

- (a) Prove that the Block-Göttsche polynomial $G_{d,\frac{(d-1)(d-2)}{2}}$ is equal to 1.
- (b) Prove that the highest power of q which appears in the Block-Göttsche polynomial $G_{d,g}$ is $\frac{(d-1)(d-2)}{2} g$, and that the coefficient of the corresponding monomial of $G_{d,g}$ is equal to

$$\left(\begin{array}{c} \frac{(d-1)(d-2)}{2}\\ g \end{array}\right).$$