Tropical geometry Exercises (second session)

Exercise 1 (a) Prove that the only root of the tropical polynomial $P(x) = x^*$ is $-\infty$.

- (b) Prove that x_0 is a root of order k of a tropical polynomial P(x) if and only if there exists a tropical polynomial Q(x) such that $P(x) = (x + x_0)^k Q(x)$ and x_0 is not a root of Q(x).
- (c) Prove that the tropical semi-field \mathbb{T} is algebraically closed, in other words, every tropical polynomial in one variable of positive degree d has exactly d roots when counted with multiplicities.

Exercise 2 Let d be a positive integer number, and let $T_d \subset \mathbb{R}^n$ be the *n*-dimensional simplex with vertices $(0, 0, 0, \ldots, 0, 0)$, $(d, 0, 0, \ldots, 0, 0)$, $(0, d, 0, \ldots, 0, 0)$, \ldots , $(0, 0, 0, \ldots, 0, d)$. Prove that a tropical hypersurface X in \mathbb{R}^n with Newton polytope T_d has at most d^n vertices, and that X is non-singular if and only if equality holds.

Exercise 3 Let $T_2 \subset \mathbb{R}^3$ be the tetrahedron with vertices (0, 0, 0), (2, 0, 0), (0, 2, 0), and (0, 0, 2), and let S be a non-singular tropical surface in \mathbb{R}^3 with Newton polytope T_2 . Show that S has a unique compact facet.

Exercise 4 Let d be a positive integer, and let $T_d \subset \mathbb{R}^3$ be the tetrahedron with vertices (0,0,0), (d,0,0), (0,d,0), and (0,0,d). Consider a real non-singular tropical surface in \mathbb{R}^3 with Newton polytope T_d , and denote by F_t the corresponding family of homogeneous Viro polynomials in three variables. Assuming that t is sufficiently big, calculate the Euler characteristic of the zero locus of F_t in $\mathbb{R}P^3$.