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Abstract

The topology induced on classes of �rst order structures by the
elementary classes is characterized among �ner topologies by intrinsic
non-boolean properties. This yields a topological version of Lind-
ström�s �rst theorem which applies to certain extensions of �rst order
logic lacking classical negation. In this setting, we examine the possi-
bility of extending to in�nite models the equilibrium game semantics
of imperfect information logic on �nite models, and show that under
reasonable conditions this is possible only for essentially �rst order
fragments of the later logic.

1 Introduction

Closure under classical negation is an essential feature in the usual proofs of
the celebrated Lindström�s theorems characterizing �rst order logic [21] and
many other results in abstract model theory. We provide in this paper an
intrinsic characterization of the elementary topology, actually a topological
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version of Lindström�s �rst theorem, from which negationless forms of this
result follow. It is well known that for each �rst-order vocabulary � the
class of �rst-order structures of type � becomes a topological space by taking
as a basis the elementary classes Mod('); ' a �rst-order sentence, so that
model theoretic properties as compactness correspond to genuine topological
properties. We show that among �ner topologies this is the unique regular
compact topology for which the class of countable structures is dense, and the
forgetful and renaming functors relating distinct vocabularies are continuous.
Since any model theoretic logic gives rise similarly to a natural topology, we
obtain versions of Lindström�s theorem which apply to certain extensions of
�rst-order logic lacking classical negation.
One of the most interesting such extensions is imperfect information logic

in its various versions (cf. [23], [30]). In this context, we discuss the problem
of extending to in�nite models the [0,1]-valued equilibrium semantics on �nite
models introduced in [28], [15] for these logics. We show that under natural
desirable conditions this is possible only for essentially �rst order fragments
of imperfect information logic.
Model theoretic logics without negation have been considered by García-

Matos in [17]. Topological ideas have been present in classical model theory
from its beginnings, mainly via the study of spaces of enumerated countable
models [11] or spaces of types [24], [25]. Working directly with spaces of
models appears �rst in Fraïssé�s beautiful proof of countable compactness
of �rst order logic [13]. This approach has been exploited in the context of
model theoretic logics by Mundici in [26] and the author in [5], [6], [7].
We refer the reader to [10], [2], [32] for unexplained concepts in model

theory, abstract model theory or topology, respectively.

2 The elementary topology

Given a �rst-order vocabulary � , L!!(�) is the set of �rst-order sentences of
type � . The elementary topology on the class St� of �rst-order structures
type � is obtained by taking the family of elementary classes

Mod(') = fM :M j= 'g; ' 2 L!!(�)

as an open basis. Due to the presence of classical negation, this family
is also a closed basis and thus the closed classes of St� are the �rst-order
axiomatizable classes Mod(T ), T � L!!(�). Possible foundational problems
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due to the fact that the topology is a class of proper classes may be settled
observing that it is indexed by a set, namely the set of theories of type � :
The main facts of model theory are re�ected by the topological proper-

ties of these spaces. Thus, the downward Löwenheim-Skolem theorem for
sentences amounts to topological density of the subclass of countable struc-
tures. ×ós theorem on ultraproducts grants that U-limits exist for any ultra-
�lter U , condition well known to be equivalent to topological compactness,
which amounts in turn to model theoretic compactness.
These spaces are not Hausdor¤ or T1, but having a clopen basis they are

regular ; that is, closed classes and exterior points may be separated by dis-
joint open classes. All properties or regular compact spaces are then available:
normality, complete regularity, uniformizability, the Baire property, etc.
Many model theoretic properties are related to the continuity of natural

operations between classes of structures. The following operations are readily
seen to be continuous and play an important role in abstract model theory:
- Reducts, ��� : St� ! St� , ��� (M) =M � � ; which forgets the interpre-

tation of the symbols in � r � when � � �:
- Renamings, b� : St� ! St� that change the names of the interpretations

according to a bijection of vocabularies � : � ! � respecting kind and arity
of the symbols. More precisely, (�R)b�(M) = RM for any R 2 �:
Not only these, but a host of operations are continuous for the elementary

topology: �rst-order interpretations, cartesian products (as operations on
several arguments), any operation with �11 graph (cf. [6]), any operation
enjoying the uniform reduction property in the sense of Feferman and Vaught
[12]. Consider, for example:
- Restrictions, r�P : St� ! St� ; where P 2 � is a monadic predicate

symbol, sendingM to the substructureM � PM with universe PM ; when this
set is a subuniverse ofM . If � has function symbols, this is a partial operation
with closed domain. It is continuous because r�1P (Mod� (')) = Mod� ('

P )
where 'P results of relativizing the quanti�ers of ' to P:
- Disjoint sums, which assign to a family of structures (Mi)i2I 2 �iSt� i

the structure of type �i� i := [ifPig [ � i:

�i2IMi = ([iAi; M i)i2I ;

where the M i are mutually disjoint renamings of the Mi by disjoint vocabu-
laries � i, and have universes Ai which interpret the predicates Pi: The result-
ing map S : �iSt� i ! St�i� i is continuous due to Feferman-Vaught theorem
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[12] which grants for each sentence ' 2 L!!(�i� i) sentences  j 2 L!!(� ij),
j = 1; :::; k; and a boolean condition B(p1; :::; pk) such that �i2IMi j= ' if
and only if B(Mi1 j=  1; :::;Mik j=  k) holds. Taking a disjunctive normal
form of B; this is seen to mean that (Mi)i2I belongs to a union of basic
classes of the product topology on �iSt� i. Hence, S

�1(Mod(')) is open.

3 Topological regularity

As noticed before, a topological space is regular if closed sets and exterior
points may be separated by open sets. It is normal if disjoint closed sets
may be separated by disjoint open sets. We do not include the Hausdor¤
property in our de�nitions. Thus, normality does not imply regularity here.
However, a regular compact space is normal. Actually, a regular Lindelöf
space is already normal (cf. [32], exc. 32.4).
Consider the following equivalence relation in a space X:

x � y , clfxg = clfyg

where cl denotes topological adherence. Clearly, x � y if and only if x and y
belong to the same closed (open) subsets (of a given basis). Let X=� be the
quotient space and � : X ! X=� the natural projection. Then X=� is T0 by
construction but not necessarily Hausdor¤. The following claims are easily
veri�ed:

a) � : X ! X=� induces an isomorphism between the respective lattices of
Borel subsets of X and X=�. In particular, it is open and closed, preserves
disjointedness, preserves and re�ects compactness and normality.
b) The assignment X 7�! X=� is functorial, because � is preserved by

continuous functions and thus any continuous map f : X ! Y induces a
continuous assignment f=� : X=� ! Y=� which commutes with composition.
c) X 7�! X=� preserves products; that is, (�iXi)=� is canonically home-

omorphic to �i(Xi=�) with the product topology.
d) If X is regular, the equivalence class of x is clfxg (this may fail in

the non regular case).
e) If X is regular, X=� is Hausdor¤ : if x 6� y then x =2 clfyg by (d);

thus there are disjoint open sets U; V in X such that x 2 U; clfyg � V; and
their images under � provide an open separation of �x and �y in X=� by (a).
f) If K1 and K2 are disjoint compact subsets of a regular topological

space X that can not be separated by open sets, then there exist xi 2 Ki;
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i = 1; 2; such that x1 � x2. Indeed, �K1 and �K2 are compact in X=� by
continuity and thus closed because X=� is Hausdor¤ by (e) above. They
can not be disjoint; otherwise, they would be separated by open sets whose
inverse images would separate K1 and K2: Pick �x = �y 2 �K1 \ �K2 with
x 2 K1; y 2 K2:

Clearly, for the elementary topology on St� ; the relation � coincides with
elementary equivalence of structures and St�=� is homeomorphic to the Stone
space of complete theories.
As noticed before, the spaces St� with the elementary topology are uni-

formizable. It is easy to check that the family of relations�n;�0 (� 0-elementary
equivalence of structures up to quanti�er rank n); with n 2 ! and �nite
� 0 � � ; forms a uniformity basis.

4 An intrinsic characterization of the elemen-
tary topology

In this section, x; y; ::: will denote �rst-order structures in St� , x � y will
denote isomorphism.

x �n;� y means that there is a sequence ; 6= I0 � :::: � In of sets of
� -partial isomorphism of �nite domain so that, for any i < j � n; f 2 Ii and
a 2 x (respectively, b 2 y); there is g 2 Ij such that g � f and a 2 Dom(g)
(respectively, b 2 Im(g)): The later is called the extension property.

x �� y means the above holds for an in�nite chain ; 6= I0 � :::: � In � :::
Fraïssé�s characterization of elementary equivalence [13] says that for �-

nite relational vocabularies: x �n;� y if and only if x �n;� y. To have it
available for vocabularies containing function symbols it is enough to add to
the quanti�er rank the complexity of terms in atomic formulas.
It is well known that for countable x; y : x �� y implies x � y:

Given a vocabulary � let � � be a disjoint renaming of � . If x; y 2 St�
have the same power, let y� be an isomorphic copy of y sharing the universe
with x and renamed to be of type � �. In this context, (x; y�) will denote the
� [ � �-structure that results of expanding x with the relations of y�.

Lemma 1 There is a vocabulary �+ � � [ � � such that for each �nite vocab-
ulary � 0 � � there is a sequence of elementary classes �1 � �2 � �3 � ::::
in St�+ such that if � = ��+;�[�� then (1) �(�n) = f(x; y�) : jxj = jyj � !;
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x �n;�0 yg, (2) �(
T
n�n) = f(x; y�) : jxj = jyj � !; x ��0 yg. Moreover,T

n�n is the reduct of an elementary class:

Proof. Let � be the class of structures (x; y�; <; a; I) where < is a discrete
linear order with minimum but no maximum and I codes for each c � a a
family Ic = fI(c; i;�;�)gi2x of partial � 0-� �0�isomorphisms from x into y�,
such that for c < c0 � a: Ic � Ic0 and the extension property holds for this
pair. Describe this by a �rst-order sentence �� of type �+ � � 0 [ � �0 and
set �n = ModL(�� ^ 9�nx(x � a)g: Then condition (1) in the Lemma is
granted by Fraïssé�s characterization and the fact that x being in�nite has
room to code all partial isomorphisms of �nite domain, and condition (2) is
granted because (x; y�; <; a; I) 2

T
n�n if and only if < contains an in�nite

increasing !-chain below a, a �11condition. �
A topology on St� will be called invariant if its open (closed) classes are

closed under isomorphic structures. In the following we will always assume
this property of the topologies considered. Of course, it is super�uous if we
identify isomorphic structures.

Theorem 1 Let �� be a regular compact topology �ner than the elementary
topology on each class St� ; such that the countable structures are dense in
St� and reducts and renamings are continuous for these topologies. Then ��
is the elementary topology for all � :

Proof. We �rst show that any pair of disjoint closed classes C1, C2 of
�� may be separated by an elementary class. Assume this is not the case.
Since the Ci are compact in the topology �� then they are compact for the
elementary topology and, by regularity of the latter, there exist xi 2 Ci such
that x1 � x2 in L!!(�) by claim (f) in the previous section. The xi must be
in�nite, otherwise they would be isomorphic contradicting the disjointedness
of the Ci: By normality of �� ; there are towers Ui � C 0i � U 0i � C 00i ; i = 1; 2;
separating the Ci with Ui; U 0i open and C

0
i; C

00
i closed in �� and disjoint. Let

I be a �rst-order sentence of type � 0 � � such that (z; ::) j= I , z is in�nite,
and let � be the corresponding reduct operation. For �xed n 2 ! and �nite
� 0 � � let t be a �rst-order sentence describing the common�n;�0-equivalence
class of x1; x2: As

(xi; ::) 2Mod� 0(I) \ ��1Mod(t) \ ��1Ui; i = 1; 2
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and this class is open in �� 0 by continuity of �, then by the density hypothesis
there are countable xi 2 Ui; i = 1; 2; such that x1 �n;�0 x2. Thus for some
expansion of (x1; x

�
2),

(x1; x
�
2; ::) 2 �n;�0 \ ��11 (C 01) \ (��2)�1(C 02); (1)

where �n;�0 is the class of Lemma 1, �1; �2 are reducts, and � is a renaming:

�1(x1; x
�
2; :::) = x1 �1 : St�+ ! St�[�� ! St�

�2(x1; x
�
2; :::) = x�2 �2 : St�+ ! St�[�� ! St��

�(x�2) = x2 � : St�� ! St� :

Since the classes (1) are closed by continuity of the above functors thenT
n�n;�0 \ ��11 (C 01) \ (��2)�1(C 02) is non-emtpy by compactness of ��+ . ButT
n�n;�0 = �(V ) with V elementary of type �++ � �+. Then

V \ ��1��11 (U 01) \ ��1(��2)�1(U 02) 6= ;
is open of �L++ and by the density condition it must contain a countable
structure (x1; x�2; ::; :::): Thus (x1; x

�
2; ::) 2

T
n�n;�0 ; with xi 2 U 0i � C 00i : It

follows that x1 ��0 x2 and thus x1 � � 0 � x2 � � 0. Let ��0 be a �rst-order
sentence of type � [� �[fhg such that: (x; y�; h) j= ��0 , h : x � � 0 � y � � 0:
By compactness,

(
\

�0�fin�
Mod�[��[ffg(��0)) \ ��11 (C 001 ) \ (��2)�1(C 002 ) 6= ;

and we have h : x1 � x2; xi 2 C 00i ; contradicting the disjointedness of the C 00i .
Finally, if C is a closed class of �� and x =2 C, cl��fxg is disjoint from C by
regularity of �� : Then cl��fxg and C may be separated by open classes of
the elementary topology, which implies C is closed in this topology. �
If we ask the continuity of further operations, we may trade o¤ the com-

pactness hypothesis in Theorem 1 for normality, or the Lindelöf property,
due to the following topological version of Th. 15 in [5].

Theorem 2 Let �� be a regular normal (or Lindelöf) topology on each St�
such that reducts, renamings, restrictions, and disjoint sums are continuous.
Then �� is compact.
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Proof. By hypothesis, the disjoint sum embedding S : �iSt� i ! St�i� i is
continuous for the Tychono¤ product of the topologies �� i in the domain
and the topology ��i� i in the co-domain. On the other hand, the map D :
St�i� i ! �iSt� i :

M 7�! (renam� i;� i(M � PMi � � i))i

decomposing a structure into a family of restricted renamed reducts, is also
continuous for these topologies since each projection St�i� i ! St� i is con-
tinuous by hypothesis. Clearly, D � S is the identity on �iSt� i (module
isomorphism) and by the functorial properties of X 7�! X=� , D=� � S=�
is the identity in (�iSt� i)=�. Therefore, S=� is injective and its image C
in St�i� i=� is a retract of this space. Since the latter space is Hausdor¤ by
regularity of ��i� i ; and retracts of Hausdor¤ spaces are closed, then C is
closed. As St�i� is normal by hypothesis, so is St�i� i=� and thus C is normal
also. Therefore, �i(St� i=�) � (�iSt� i)=� � C is normal. In particular, all
powers (St�=�)I are normal. By Noble�s theorem stating that a Hausdor¤
space X is compact if and only if the power space X� is normal for all � (see
[27], Corollary 2.2), we conclude that St�=� and thus St� is compact for �� .
Finally, recall that regular Lindelöf spaces are normal. �

5 Lindström´s theorem revisited

A model theoretic logic is a pair (L; j=) where L is an assignment � 7�! L�
from �rst-order vocabularies to classes of "sentences", and j= is a relation in
[�S� � L� satisfying Lindström�s axioms (cf. [2], II. De�nition1.1.1):

- Isomorphism: If M � N then M j= ' i¤N j= ':
- Reduct : If � � � then L� � L� and for any ' 2 L�, M 2 St� : M � � j= '
i¤M j= '.
- Renaming: A bijection � : � ! � respecting kind and arity induces a map
t : L� ! L� , so that M j= ' i¤ b�M j= t'; where b� : St� ! St� renames the
structures according to �:

Our results will hold under relaxed versions of the reduct and renaming
axioms where the inclusion L� � L� and the substitution map t : L� !
L� are replaced with maps L� ! P (L� ) from symbols to theories.

De�ne L �w L0 (L0 is a weak extension of L) if each sentence of L� is
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equivalent to a theory of L0� : We will say that L is equivalent in theories to
L0 if L �w L0 and L0 �w L.
Closure of L under boolean connectives :; _; ^; or relativization, is de-

�ned as usual. The same for compactness. As noticed in [17], the down-
ward Löwenheim-Skolem theorem splits for negationless logics in several non
equivalent versions:

� LSk1: If any sentence has a model it has a countable model (the familiar
version).
� LSk2: Any sentence true in all countable models is true in all models.
� LSk3: Two sentence equivalent in all countable models are equivalent (this
property implies the other two).

Examples. �11 (second order existential logic) satis�es the �rst but not the
second version, and the opposite is true of �11 (second order universal logic)
because fRg is �11-de�nable. The fragment L!!(Q+0 ) of L!!(Q0) obtained
by closing L!! under the quanti�er Q0 (there are in�nitely many...) and
^;_;9;8; but not :; satis�es all three versions.
De�nition. For any model-theoretic logic L let �� (L) the topology on St�
obtained by taking the classes Mod(�); � 2 L� ; as a sub-basis of closed
classes.

This topology is invariant, and reducts and renamings become automat-
ically continuous due to the (relaxed) Lindström�s axioms. Model theo-
retic compactness of L is equivalent to topological compactness of �� (L)
by Alexander sub-basis lemma (cf [32]). Closure under connectives refers to
properties of the sub-basis; for example, closure under disjunctions grants it
is a closed basis. LSk2 corresponds in the later case to topological density
of the countable structures. LSk1; instead, is basis dependent if the logic is
not closed under negations. Finally, notice that L �w L0 means that �� (L0)
is �ner that �� (L).
Call a logic regular if the topology it induces is regular1. In a regular

compact logic closed under disjunctions and conjunctions, LSk1 implies LSk2.
Indeed, if M =2 Mod(T ); then by regularity M belongs to a closed class C
contained inMod(T )c. By compactness there are �nitely many closed basics
Ci such that C � \iCi � Mod(')c: By the closure conditions \iCi contains
a countable model if LSk1 holds. Thus, Mod(')c has a countable model and
LSk2 holds. �

1No to be confused with the notion of regular logic in [2].
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The next version of Lindström�s theorem follows immediately from The-
orem 1 and the previous observation.

Theorem 3 (Positive Lindström�s theorem) Any regular compact logic L ex-
tending weakly L!!; closed under disjunctions and satisfying LSk2; is equiv-
alent in theories to L!!: If L is also closed under conjunctions, the results
holds under LSk1:

Examples. a) Trivial examples of logics satisfying the hypothesis of the
�rst part of this theorem are th�!!;� = fT : T is a �rst-order theory of
type � ; jT j � �g: From these, only th!!!;� satis�es LSk1. This shows that for
negationless logics regularity and compactness do not grant �nite dependence
nor any bound on the dependence number.
b) Regularity can not be dropped from the hypothesis of Theorem 3.

For example, L!!(Q+0 ) satisfy LSk2 and LSk1; and it is compact by an ul-
traproduct argument (see next section), but the class Mod(9xQ0y(y < x))
is not �rst-order axiomatizable because its complement is not closed under
ultrapowers. We conclude that this logic can not be regular.
c) Similarly, �11 can not be regular because it satis�es the other hypothesis

of Theorem 3 (with LSk1) but its sentences are not all reducible to �rst-order
theories. However, its topology is normal due to Robinson�s consistency
lemma. This shows that we can not replace regularity with normality in any
of our previous results.

Topological regularity of �� (L) does not have a simple model theoretic
description, but in compact logics closed under _ and ^; it implies the fol-
lowing weak form of negation: for any ' 2 L� there is f�igi2I � L� such
that M 6j= ' if and only if M j= _i�i: The second claim of Theorem 3, but
not the �rst, may be shown utilizing this hypothesis instead of regularity.

Lindström�s original theorem is an immediate corollary of Theorem 3 (for
a wider notion of extension).

Theorem 4 A compact weak extension of �rst-order logic closed under boolean
connectives and satisfying LSk1 is equivalent (in sentences) to L!!.

Proof. Closure of L under boolean connectives means that the closed sub-
basis of �� (L) is actually a clopen basis and thus the space is regular. By
Theorem 3, for any � 2 L� the complementary classes Mod(�) and Mod(:�)
are equivalent to �rst-order theories, thus � is elementary. �
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Versions of Theorems 3 and 4 in terms of [!1;1]-compactness instead
of compactness may be obtained from Theorem 2 if we add closure under
relativizations and the uniform reduction property for disjoint sums.

6 Compactness and ultraproducts

The relation between compactness and ultraproducts survives in negationless
logics because it is a purely topological convergence phenomenon. Recall that
given an ultra�lter U over I; a family faigi2I U -converges to an element x
in a space X, in symbols faigi2I !U x; if and only if fi 2 I : ai 2 V g 2 U
for any open (sub-basic) neighborhood V of x. It is well known that a space
is compact i¤ any I-family of X has an U -limit.
Given a logic L; convergence of structures; say fMigi2I !U M , expressed

in terms of open sub-basics of �� (L) means: M 6j= ' ) fi 2 I : Mi 6j= 'g 2
U ; that is

for all ' 2 L� : fi 2 I :Mi j= 'g 2 U )M j= ': (2)

Therefore, a logic is compact if and only if for any family of structures fMigi2I
of the same type and ultra�lter U over I there exists M such that (2) holds.
Thus, any logic L satisfying the following one-way ultraproduct property must
be compact:

fi 2 P :Mi j= 'g 2 U ) �iMi=U j= ': (3)

Example. Let K be a family of Lindström quanti�ers closed under ultra-
products (for example, cardinality quanti�ers Q�; Magidor-Malitz quanti-
�ers, the Hartig quanti�er, etc.), then the logic L!!(K+) obtained by closing
L!! under the quanti�ers in K and ^;_;9;8 may be shown to satisfy (3) by
a simple induction.

Reciprocally, compactness of L implies that for any family fMigi2I of
structures and any ultra�lter U over I there is an extension M � �iMi=U
such that for any ' 2 L�[fc;d;::g; f; g; :: 2 �iMi

fi 2 P :Mi j= '[f(i); g(i); ::]g 2 U )M j= '[f=U ; g=U ; ::]; (4)

because the family of expansions M+
i = (Mi; f(i))f2�iMi

; where f(i) in-
terprets cf ; must have a U -limit (M;af )f2�iMi

, and applying (4) to atomic
sentences yields an embedding f=U 7! af : �iMi=U �M:
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In this vein, the topological proof given in [7] of Shelah´s characterization
of [�; �]-compact boolean closed logics in terms of ultraproducts, [22], may be
readily adapted to negationless logics. Regularity of the logic is not required.
Recall that a logic L is [�; �]-compact if, for any family of theories fT�g�<�

in L� , if [j2ST�j is satis�able for all S � � of power less than � then [�<�T�
is satis�able. An ultra�lter U is (�; �)-regular if there is F � U of power �
such that \J = ? for any J � F of power �.

Theorem 5 (Positive abstract compactness theorem) Let L be a logic L
closed under disjunctions. If there is a (�; �)-regular ultra�lter U over �<�

such that for any family fMigi2I of structures there is an extension M �
�iMi=U such that for any ' 2 L�[fc;d;::g and f; g; :: 2 �iMi (4) holds, then L
is [�; �]-compact. If L is closed under relativizations the reciprocal holds.

7 Imperfect information logic as [0,1]-valued
logic

One of the most interesting logics lacking classical negation is imperfect infor-
mation logic in its various versions. These derive from independence friendly
logic IF; introduced originally by Hintikka as a "friendly" way of expressing
Henkin quanti�ers [19]. Its most general syntax extends that of L!! allow-
ing for each �nite set of variables Y and formulas ';  ; expressions 9x=Y ';
8x=Y '; ' _=Y  ; ' ^=Y  , where the decoration =Y expresses independence
with respect to the variables in Y; as in the usual de�nition of uniform con-
tinuity of a function:

8x 8" > 0 9�=x 8y (jx� yj < � ! jfx� fyj < ")
j

"there is � not depending on x"

The meaning of 8x=Y ', '_=Y  ; '^=Y  is more clearly explained by the game
semantics governing this logic [23]. To each sentence of ' and structure M
of the same type is associated a two-players game G(';M) which is played
from the root down along a branch of the syntactical tree of '. The two
players that we call E and A make their moves at each node depending on
its label as follows:

_=Y : E chooses the left or right descendant (subformula)
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^=Y : A chooses the left or right descendant
9x=Y : E assigns a value a 2M to the variable x
8x=Y : A assigns a value a 2M to the variable x
: : interchange roles and proceed to next node

Each move is made in ignorance of the value previously assigned to the
variables in Y:When a terminal node is reached, E wins if the atomic formula
labeling the node is true for the valuation of variables constructed by the
players along the way; otherwise A wins (if the roles have been reversed by
the last negation reached, it is the opposite).
A sentence ' is said to be true if E has a winning strategy in this game,

false if A has a winning strategy. We write, respectively, M j=+ ' and
M j=� ' (positive and negative satisfaction).
For �rst order sentences (where =? is the only decoration) the game is

determined and thus one of the players has a winning strategy according to
the classical truth value. This may be seen observing that the existence of a
winning strategy for E (for A) corresponds to the satisfaction of a particular
(dual) Skolem normal form of ': For the new sentences of the language this
is a game of imperfect information which may be undetermined. That is, it
may happen that M j=+ ' and M j=� ' and thus ' does not have a truth
value in the model M:
Game semantics of IF behaves so di¤erently from ordinary semantics

that it raises several non-trivial issues. The valid formulas of the form
8x9y8z9w=x' (' �rst-order) form already a non arithmetical set. Valid-
ity is not even �2 de�nable in set theory (Väänänen [29]). A serious study
was possible only after streamlining its syntax and Hodges discovery that it
has a compositional semantics [18], contradicting Hintikka�s previous claims.
Väänänen has introduced an essentially equivalent but conceptually di¤erent
dual version based on the notion of dependence between variables, expressed
at the atomic level [30]. Some strengthenings have been considered also by
Abramsky and Väänänen [1]. We will consider a variant IF � which elimi-
nates all restrictions on the use of the quanti�er slashes and where _;^ are
not slashed (cf. [8]). Our observations below are translatable to dependence
logic.
Since a winning strategy is a choice of appropriate Skolem functions mak-

ing true certain �rst-order condition, the disjoint classes

Mod+(') = fM :M j=+ 'g, Mod�(') =Mod+(:') = fM :M j=� 'g
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are �11. Therefore, IF
� has the compactness property and the Löwenheim-

Skolem property with respect to j=+ and j=�. Moreover, in �nite models it
de�nes exactly the NP classes. Burgess [4] has observed that for any pair
of disjoint �11-classes K1; K2 the union of which contains all one element
structures there is an IF � sentence ' such thatMod+(') = K1; Mod�(') =
K2:
The semantics of IF � may be seen as a partial two-valued semantics

taking the truth value 1 in Mod+('); the value 0 in Mod�('); and no value
outside of these classes. It is natural to ask if it is possible to interpolate in
a sensible manner a [0,1]-valued semantic assigning a value strictly between
0 and 1 to the structures where the game is undetermined. An intriguing
positive answer in the realm of �nite models is given by equilibrium semantics,
suggested by M. Ajtai (cf. [3]), studied by Sevenster and Sandu [28] for IF;
and by Galliani [15] for Väänänen�s dependence logic.
Given a particular run of G(';M) in which the players use strategies �; � ,

the payo¤ of the run for E is u(�; �) = 1 if she wins, 0 otherwise. For A the
payo¤ is 1�u(�; �). Probabilistic distributions on sets of strategies are called
mixed strategies. Given a pair of mixed strategies p; q on the respective sets
of strategies S1; S2 of each player, the expected value of the random variable
u(�; �); assuming the players choose their strategies independently, is:

u�(p; q) = ��;�p(�)q(�)u(�; �):

Since this is a constant sum game, the theory of games [31] grants that if
M is �nite there exists an equilibrium pair of mixed strategies (p0; q0) such
that u�(p0; q0) � u�(p0; q0) � u�(p0; q

0) for all p0, q0 so that the players will
not improve their payo¤ by changing them. Obviously all such pairs give the
same value which (less obviously) is identical to

u�(p0; q0) = max
p
min
q
u�(p; q) = min

q
max
p
u�(p; q): (5)

Equilibrium semantics takes this equilibrium value as the true value of ' in
the modelM . We will call it 'M . IfM j=+ ' and � is a winning strategy for
E then any pair (�; �) is an equilibrium pair and 'M = 1; similarly, 'M = 0
if M j=� ':
For example, 'M = 1� 1

jM j for the sentence 8x9y=x(x 6= y) (cf. [3]).

This semantics may be seen to satisfy on �nite models:

C1. 'M = 1 if and only if M j=+ '; 'M = 0 if and only if M j=� '
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C2. :'M = 1� 'M

C3. (' _  )M ;= maxf'M ;  Mg
C4. For any rationals r; " 2 [0; 1]; " < 1; and any sentence ' 2 IF � there is
'r;" 2 IF � such that 'M � r i¤ 'Mr;" � ":

C2 is straightforward, C1 and C4 are shown in [28], and C3 may be proven
by game theoretic considerations. It is an open question whether C4 holds
for " = 1; that is, there is 'r such that

C4�.For any rational r 2 [0; 1] there is 'r 2 IF � such that

'M � r i¤ 'Mr = 1:

Equivalently, whether the complexity of the query 'M � r with respect to
the size ofM is in NP . Sevenster and Sandu [28] have shown that �12\�12 is
an upper bound for the complexity of these queries. Thus, a collapse of the
polynomial hierarchy to NP would make (??) true. Finding a counterexam-
ple seems a though job because it would separate NP from �12 \�12; solving
an outstanding problem in algorithmic complexity theory.
Our main question is whether it is possible to have a [0,1]-valued semantic

of IF � in in�nite models satisfying C1 to C4 and preserving useful model
theoretic properties of IF �; as compactness and the downward Löwenheim-
Skolem property.
The �rst candidate is equilibrium semantics itself. To extend equilibrium

semantics to in�nite models we must consider pairs of probabilistic measures
p; q on S1; S2 for which u(�; �) is measurable in the product measure, so that
the expected payo¤

u�(p; q) =
RR

(�;�)2S1�S2
u(�; �)dpdq

exists. If equilibrium pairs exist, the equilibrium value is given by the gen-
eralization of (5):

sup
p
inf
q
u�(p; q) = inf

q
sup
p
u�(p; q):

However, the results may be wild. The existence of equilibrium pairs may
depend on the cardinality of the model and the sup-inf identity may fail for
humble sentences of IF �:

� 8x9y=x(x 6= y) does not have equilibrium pairs in N, but: supp infq u�(p; q) =
infq supp u

�(p; q) = 1:
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� 8x9y=x(x 6= y) has equilibrium pairs with value 1 in R; any pair of
atomless probabilistic measures is an equilibrium pair.

� For 8x9y=x(x � y) in (N;�) : supp infq u�(p; q) < infq supp u�(p; q):
Not withstanding this grim panorama, there are genuine IF � sentences

having mixed equilibrium pairs for all models.

Example. Consider the sentence Inf : 9u8x9y=u9z=ux(z = x ^ y 6= u) for
which Mod+(Inf) = fA : A in�niteg and Mod�(Inf) = fA : jAj = 1g: It
has mixed equilibrium pairs with value 1 in all the in�nite models and a well
de�ned equilibrium value InfM < 1 in each �nite model M .

Call an IF � sentence total if it has equilibrium pairs for all models. This
family of sentences has pleasant properties and is worth studying, but it has
a serious �aw for our purposes. Notice that C1 is precisely the condition we
would not like to abandon if we wish to extend faithfully game semantics.

Fact 1. Equilibrium semantics on total sentences satisfy C2, C3, C4 in all
models but not necessarily C1.

Proof. C2 is straightforward, C3 may be proved by game theoretic con-
siderations and the proof in [28] of C4 may be seen to hold for in�nite
structures. Now, there is a sentence incf 2 IF � such that Mod+(incf) =
fM : M 6� (R,+; �; 0; 1; <)g and Mod�(incf) = ? because being an incom-
plete ordered �eld is a �11-condition. The formula incf _ 8x9y=x(x 6= y)
has equilibrium value 1 in all models because in structures non isomorphic
to R there is a pure winning strategy for E choosing the left formula of the
disjunction, and we have seen that the right formula has equilibrium value 1
in R. However, R 6j=+ incf _ 8x9y=x(x 6= y); violating C1. �
We could restrict further the formulas of IF � or we could search for [0,1]-

valued semantics for all formulas of IF � not necessarily related to equilibrium
values. If we choose the second course of action we should assume the natural
generalization of Lindström�s axioms for [0,1]-valued semantics:

C0 'M = 'N if M � N ; 'M = 'M�� if � � �; 'M = �'b�M if � is a
renaming.

An obvious possibility in this direction is three-valued semantics:

M 7�! 'M =

8<:
1 if M j=+ '
0 if M j=� '
1
2

otherwise
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Indeed, it satis�es C0-C4, and C4� in all models: The straightforward proofs
are left to the reader. But this is not the end of our search because this
semantics does no satisfy compactness nor the Löwenheim-Skolem property.
In fact, our search is doomed because no [0,1]-valued semantics M 7! 'M

satis�es the later properties and C0, C1 at the same time in all formulas of
IF �. To see this we must specify �rst what we mean by these properties.
De�ne for any r 2 [0; 1] \Q:

Mod�r(') = fM : 'M � rg; Mod�r(') = fM : 'M � rg:
Compactness: If fMod� (�)ri('i)gi2I has the �nite intersection property then
it has non-empty intersection.

Löwenheim-Skolem property: If Mod�(�)r(') is non-empty then it contains a
countable model.

Fact 2: There is no [0,1]-valued semantics on all formulas of IF � satisfying
simultaneously C0, C1 and compactness or the Löwenheim-Skolem property.

Proof. Consider a semantics satisfying C0, C1. Then for the sentence incf
introduced in the previous example we must have f(M;a) : M � Rg =
Mod�r(incf) for some rational r < 1 due to C1 and C0 (a),(b). But this class
is a counterexample to compactness and the Löwenheim-Skolem property. �
Thus, we are bound to consider proper fragments of IF �. In this context,

it is worth noticing that the fragment of perfect recall sentences satis�es com-
pactness and the Löwenheim-Skolem property for the three-valued semantics
discussed above. The next result shows that there are serious limitations if
we wish more than that.

Theorem 6 Let L be an extension of L!! closed syntactically under :; _;
with a [0,1]-valued semantics extending the {0,1}-valued semantics of L!!:
Suppose L satis�es C0, C2-C4, compactness, and the Löwenheim-Skolem
property. Then for each ' 2 L and rational (real) r 2 [0; 1] there is a
�rst order theory Tr such that; 'M � r i¤ M j= Tr:

Proof. Consider the topology on StL having for a sub-basis of closed classes
Mod�r('): ' 2 L; r 2 [0; 1] \ Q. By C2 it includes the classes Mod�r(')
and due to C3, C4, it is closed under unions: Mod�r1('1) [Mod�r2('2) =
Mod�"('1r1)[Mod�"('2r2) =Mod�"('1r1 _'2r2); hence, it is a closed basis.
The topology is regular becauseM 62Mod�r(') implies 'M < s < r for some
rational s and thus the open classes Mod�s(')

c and Mod�s(')
c separate M
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and Mod�r('). Countable structures are dense because 'M < r implies
'M � s < r. Finally, C0 grants the continuity of reducts and renamings.
Therefore, this is the elementary topology by Theorem 1. �
Corollary. If L is a fragment of IF � with a [0,1]-valued semantics satisfying
C0-C4, compactness, and the Löwenheim-Skolem property, then Mod+(') and
Mod�(') are recursively �rst-order axiomatizable for any ' 2 L:
Proof. Mod+(') =Mod�1(') =Mod(T1) by C1 and the previous theorem.
Moreover, the �rst-order consequences of T1 coincide with the consequences
of a �11-sentence. �
Assuming C4�; a simpler proof of the corollary may be obtained be-

cause Mod+(') being �11 is closed under ultraproducts, and its complement
Mod+(')c = [r<1Mod�r(') = [r<1Mod+((:')r) is closed under ultrapow-
ers; hence, it is �rst order axiomatizable (cf. [10]). Moreover, under C4� all
the Tr of Theorem 6 result recursively axiomatizable.

8 Final remarks

Further Lindström�s characterizations of �rst order logic also hold for regular
logics, the proofs being essentially topological with minimal model theoretic
contents. Thus, any regular weak extension of L!! satisfying compactness
and the (countable) Tarski�s chain property, or having relativizations and
satisfying the uncountable omitting types theorem, is equivalent in theories
to L!!. Many other model theoretic results known for boolean logics are
essentially topological and may also be lifted to logics without classical nega-
tion.
The case of equilibrium semantics for IF � logic shows that [0,1]-valued

semantics makes perfect sense for classical structures, and topological regu-
larity appears naturally in this setting. Theorem 6 is actually a Lindström�s
theorem for [0,1]-valued logics on classical structures. This viewpoint may be
translated to the realm of [0,1]-valued structures to obtain Lindström�s the-
orems and other results mentioned in this paper for extensions of continuous
logic and Lukasiewicz-Pavelka logic. These results will appear elsewhere (cf.
[9]).
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