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Abstract

It is shown that a conservative expansion of in�nite valued ×ukasiewicz
logic by new connectives univocally determined by their axioms does not
necessarily have a complete semantics in the real interval [0,1]. However,
such extensions are always complete with respect to valuations in a family
of MV-chains, Rational ×ukasiewicz logic being the largest one that has
a complete semantics in [0,1]. In addition, the latter logic does not admit
expansions by axiomatic implicit connectives that are not already explicit.
Similar results are obtained for n-valued ×ukasiewicz logic and for the logic
of abelian lattice ordered groups. These and related results are obtained
by the study of compatible operations implicitly de�ned by identities in
the varieties of MV-algebras and abelian `-groups; the pertaining algebraic
results having independent interest.

1 Introduction

Much research e¤ort has been devoted to enrich propositional ×ukasiewicz logic
with new connectives in order to enhance its geometric expressiveness and alge-
braic signi�cance. These connectives are usually introduced as new operations
in the real interval [0; 1]; in consonance with the role of ×ukasiewicz logic as
one of the basic models of fuzzy logic. We present here a di¤erent approach
that seems natural from the proof theoretic and algebraic perspectives and may
contribute to clarify the possibilities of this quest.
Consider a conservative extension L(C) of an algebraizable deductive calcu-

lus L = (L;`L); by axiom schemes which de�ne univocally a new n-ary connec-
tive symbol C. That means that the duplicate system L(C) [ L(C 0) deduces
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C(p1:::pn)$ C 0(p1:::pn), where $ is the equivalence formula associated to the
algebraizability of L: Then we say that C is an (axiomatic) implicit connective
of L: If there is a formula ' 2 L such that `L(C) C(p1:::pn) $ '(p1:::pn); we
say that C is explicit; otherwise, it is a proper implicit connective of L.
It is shown in [9] that any implicit connective of classical propositional calcu-

lus is explicit, but that is not the case for Heyting intuitionistic calculus where
one has instead the approximation `Heyt(C) ::C(p1:::pn)$ '(p1:::pn): We do
not have at the moment a clear picture of the implicit connectives of intuition-
istic logic; however, the intermediate calculus Gn given by n-valued Gödel logic
possesses a proper implicit connective S such that the extension Gn(S) does
not allow proper implicit connectives. Something similar is shown to hold for
n-valued ×ukasiewicz logic ×n in [8].
We study in this paper the implicit connectives of in�nite-valued ×ukasiewicz

calculus ×. This logic has in�nitely many proper implicit connectives: among
others, the division connectives introduced in [3] and utilized in [15] to de�ne
Rational ×ukasiewicz logic R×. The latter logic is complete with respect to its
natural interpretation in the real interval [0; 1]; according to [15], and it is shown
in [3] to satisfy a natural extension of McNaughton�s theorem, and to be the
minimum extension of ×having the interpolation property.
Our main results here are the following:

Any implicit connective of R×is explicit (Theorem 7).

Thus, R×is maximal with respect to extensions by implicit connectives.
However, it is not the largest extension of ×by implicit connectives. We exhibit
such extensions which are sound but not complete with respect to values in [0; 1];
and thus they can not be interpreted faithfully into R×(Theorem 3). On the
other hand, we show that any extension of ×by implicit connectives is complete
with respect to a family of MV-chains, thus qualifying as a fuzzy logic in the
broad sense (Theorem 2, cf. [13]). Among those, R×is the largest one having
a complete semantics with values in [0; 1]:

Any extension of ×by implicit connectives having a complete semantics in
[0; 1] has a faithful syntactic interpretation into R×(Theorem 8).

The latter result implies, for example, that the product connective of com-
bined product logic ×� (cf. [20]) is not an implicit connective of ×since it is
not interpretable into R×; that is, it can not be characterized univocally by any
axiomatization whatsoever.
We review also the case of n-valued ×ukasiewicz calculus ×n; showing sim-

ilar results, and exhibiting examples of implicit connectives whose logic is not
complete with respect to a single MV-chain.
Our main tool are the results of [8] which imply that any extension ×(C)

of ×by a family C of implicit connectives is algebraizable by a variety of en-
riched MV-algebras, where the operations interpreting the connectives in C are
implicitly de�ned by identities and are compatible with all the MV-algebra con-
gruences. Therefore, studying implicit connectives of ×ukasiewicz logic amounts
to studying compatible operations implicitly de�ned by identities in the variety
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of MV-algebras. Our main algebraic result in this direction may have indepen-
dent interest (DMV-algebras are the enriched MV-algebras of R×):

Any compatible operation de�ned implicitly by identities in the variety of
DMV-algebras is given by a term of the variety (Theorem 5).

For the variety of lattice ordered abelian groups, related to MV-algebras by
Mundici�s functor [21], we have:

Any compatible operation de�ned implicitly by identities in divisible lattice
ordered abelian groups is given by a Q-vector lattice term. (Theorem 10).

The last result allows us to prove analogues of the previous results for the
Logic of equilibrium introduced in [14].
We refer the reader to [7], [6], and [12] as standard references for the concepts

of universal algebra, algebraizable logics, and model theory utilized in this paper.

2 Preliminaries

We start with some general preliminaries on implicit operations in varieties of
algebras and their relation to implicit connectives.
Let V be a variety of algebras of type � and let E(C) be (the universal closure

of) a set of identities of type � [C where C is a family of new function symbols.

De�nition 1 E(C) de�nes implicitly C in V, if in each algebra A 2 V there is
at most one family frA : An �! Agr2C such that (A;rA)r2C j= E(C): We
say then that C is an implicit family of operations of V, or an implicit operation
in case it has single member.

The class

V(C) = f(A;rA)r2C : A 2 V; (A;rA)r2C j= E(C)g

is a new variety of type � [ C: The class RedC of reducts of V(C); that is, those
algebras of V where each r 2 C exists, does not need to be all of V. In case
RedC generates V then V(C) is conservative over V, that is, any identity of type
� holding in V(C) already holds in V.
The following lemmas collect some basic facts about implicit operations.

Lemma 1 Let C be an implicit family of operations of V. Then
1. Each r 2 C has an explicit �rst order de�nition �r(x; y) of type � : That is,
for any A 2 RedC and x; y in A

y = rA(x), A j= �r(y;x):

2. The class RedC is �rst order axiomatizable.
3. If each r 2 C exists in Ai for all i 2 I then it exists and is computed compo-
nentwise in the product �iAi: The same is true for reduced products �iAi=F .
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Proof. 1. This is a simultaneous form of Beth�s de�nability theorem. Without
loss of generality, assume that E(C) contains the de�ning identities of V and
E(C0) is a duplicate of E(C) with disjoint copies of the symbols in C. Pick r 2 C
and �x distinct variables y;x; then E(C)[E(C0) j= r(x) = r0(x) by hypothesis,
and E(C) may be assumed to be a single sentence by compactness of �rst order
logic. Thus, the above may be written E(C) ^ y = r(x) j= E(C0)! y = r0(x);
and Craig�s interpolation lemma yields an interpolant �r(y;x) which does not
contain the operation symbols in C or C0. Standard logical manipulations give
then E(C) j= y = r(x)$ �r(y;x); which proves the claim.
2. All operations r 2 C exist in A if and only if A satis�es the set of

sentences f8x9!y�r(y;x)gr2C [ E(r=�r)r2C ; where E(r=�r)r2C is the result
of rewriting the identities in E(C) so that all the occurrences of r 2 C appear
in the form y = r(x) and then replacing these by �r(y;x). For example,
r1(r1(v; x); x) = r2v should be rewritten: 8y8y0[(y = r1(v; x)^ y0 = r2v)!
y0 = r1(y; x)]; and then 8y8y0[�r1

(y; v; x) ^ �r2
(y0; v)! �r1

(y0; y; x)]:
3. If (A;rA)r2C j= E(C) for all i 2 I then �i�F (Ai;rAi)r2C j= E(C) for

any �lter F over I because identities are preserved by reduced products. �

De�nition 2 An implicit operation r of V will be compatible if for any A 2
RedC the congruences of A are congruences of (A,rA)r2C.

Not every implicit operation of a variety is compatible. For example, the
identities

nDn(x) = x; Dn(nx) = x

(n � 2) de�ne an implicit operation in the variety of abelian groups since
any other operation f satisfying the second equation must satisfy f(x) =
f(nDn(x))) = Dn(x): It may be seen that Dn exists exactly in the n-divisible
abelian groups having no elements of order n; where Dn(x) =

1
nx is well de-

�ned. But this operation is not compatible because we have k � 0 (mod Z) in
the group (Q;+;�; 0) for any integer k; but Dn(k) 6� Dn(0) (mod Z) if n does
not divide k:

Lemma 2 Let C be an implicit family of compatible operations of V.
1. If h : A ! B is an onto homomorphism of V and all r 2 C exist in A then
all of them exist in B and hrA(a1; ::; an) = rB(h(a1); ::; h(an)).
2. Reducts of subdirectly irreducible algebras of V(C) are subdirectly irreducible
in V.

Proof. 1. If h : A ! B is an onto homomorphism and rA is compatible
with Ker(h); then the function fr(h(a)) = h(rA(a)) is well de�ned in B:
Therefore, h : (A;rA)r2C ! (B; fr)r2C becomes an homomorphism. As
(A;rA)r2C j= E(C), then (B; fr)r2C j= E(C) and by de�nition fr = rB :
2. Since (A;rA)r2C and A have the same congruences, a monolith of the

�rst structure is a monolith of the second. �

Our interest in compatible implicit operations is explained by their relation
to implicit connectives of algebraizable logics given by Theorem 1 below. We

4



will consider only logics L which are strongly algebraizable in the sense of Blok
and Pigozzi (cf. [6]) with respect to an equivalence formula $ and a constant
formula 1 of the calculus. This means that

' `L '$ 1, '$ 1 `L ' (a)

and there is a variety of algebras V, of the same signature as the logic, such that
the following algebraic completeness theorem holds:

f'i $  igi�n `L '$  if and only if f'i =  igi�n j=V ' =  ; (b)

equivalently, due to (a),

f'igi�n `L ' if and only if f'i = 1gi�n j=V ' = 1; (c)

the usual completeness with respect to valuations in all the algebras of V. Notice
that we use, as we will keep on using throughout the paper, the formulas of the
calculus as terms of the variety.
Most familiar logics are algebraizable in this sense. By �niteness of the

deductions in L and compactness of �rst order logic applied to V, (c) holds
for in�nite theories f'igi2I . In fact, this strong algebraic completeness may be
achieved by taking valuations only in the subdirectly irreducible algebras of V:

f'igi2I `L ' if and only if f'i = 1gi2I j=S:I:(V) ' = 1: (sc)

Now, let L(C) be an extension of L by a system of axiom schemes A(C)
involving a family of new connective symbols C; and let

A�(C) = f' = 1 : ' 2 A(C)g;

then we may de�ne the variety

V(C) = f(A; fr)r2C : A 2 V, (A; fr)r2C j= A�(C)g:

One has by construction that `L(C) ' implies j=V(C) ' = 1; but the reciprocal
does not necessarily hold. That is, we can not claim that L(C) is algebraizable
by V(C): However, algebraicity is obtained in the following case.

De�nition 3 L(C) de�nes implicitly C over L if ` rp$ r0p for each r 2 C,
where A(C0) is a duplicate of A(C) with a new connective symbol r0 replacing
each r 2 C.

Theorems 1 and 4 in [8] yield:

Theorem 1 If L is algebraizable by a variety of algebras V, and L(C) = L [
A(C) de�nes implicitly a family of connectives C over L, then A�(C) de�nes an
implicit family of compatible operations of V (that we denote C also) and L(C)
is algebraizable by V(C); by means of the same formulas $ and 1 as L.

This theorem fails in various ways if the extension does not de�ne implicitly
C. It may happen that L(C) is not algebraizable at all, or that it is algebraizable
by algebras not having reducts in V, or that it is algebraizable for algebras with
reducts in V but the interpretation of the connectives in C is not compatible.
See [8] for examples.
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3 Implicit Connectives of ×ukasiewicz Logic

In�nitely valued ×ukasiewicz calculus ×has the primitive connectives!; :; and
the following axioms plus the Modus Ponens rule:

p! (q ! p)
(p! q)! ((q ! r)! (p! r))
((p! q)! q)! ((q ! p)! p)
(:p! :q)! (q ! p):

Its expressive power is better revealed by the use of the following explicitly
de�ned connectives:

pg q := (p! q)! q
pf q := :(:pg :q)
p$ q := (p! q)f (q ! p)
1 := p! p
0 := :(p! p)
p� q := :p! q
p� q := :(p! :q):

For each integer n � 2, the abbreviations:
np := p� :::� p| {z }

n

and pn := p� :::� p| {z }
n

;

are unambiguous up to equivalence due to associativity and commutativity of
� and �. The set f�;:g serves as a complete set of connectives because `×
(p ! q) $ (:p � q). We will assume familiarity with this calculus. For a full
account we refer the reader to [10].
Utilizing f�;:; 0g as primitive connectives (0 super�uous but convenient),

Lukasiewicz logic is algebraizable with respect to the de�ned connectives$ and
1 by the variety of MV-algebras, MV, variety generated as a quasivariety by
the Lukasiewicz algebra

[0; 1]MV = ([0; 1];�;:; 0), x� y = minfx+ y; 1g; :x = 1� x:
Any MV-algebra has a natural lattice order de�ned by x � y i¤ (x ! y) = 1;
where g;f become the join and meet, and 0, 1 become minimum and max-
imum, respectively. Chang�s representation theorem [11] says that the sub-
directly irreducible algebras of this variety are MV-chains (linearly ordered
MV-algebras) and thus any MV-algebra is a subdirect product of MV-chains.
Moreover, [0; 1]MV generatesMV as a quasivariety and thus we have Chang�s
completeness theorem: 1

f'igi�n `×' if and only if f'i = 1gi�n j=[0;1] ' = 1:

It is well known that ×is not strongly complete with respect to [0; 1]MV ; that
is, the above does not hold for in�nite theories. However, ×is strongly complete

1Chang�s theorem is usually stated with an empty set of premises but it is equivalent to
the given version because ×has a form of the Deduction Theorem.
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for valuation in all MV-chains, by (sc) in the previous section. In fact, it is
enough to take the divisible MV-chains because any MV-chain is embeddable
in a divisible one.
Strong completeness with respect to a family of totally ordered algebras has

been proposed as a test for being a �fuzzy logic�in [13]. Our �rst observation
is that any extension of ×ukasiewicz logic by implicit connectives quali�es as a
fuzzy logic in this sense.

Theorem 2 Any extension ×(C) of ×by implicit connectives is strongly com-
plete with respect to the class ofMV(C)-chains.

Proof. By Theorem 1, ×(C) is algebraizable by the varietyMV(C) where C is an
implicit family of compatible operations ofMV. Thus, by (sc), ×(C) is strongly
complete with respect to valuations in the subdirectly irreducible algebras of
MV(C), which by Lemma 2-2 have subdireclty irreducible reducts inMV and
thus are chains. �
However, we will see later (Theorem 3) that ×(C) does not need to be com-

plete, even the less strongly complete, with respect to values in the algebra
[0; 1]MV .

3.1 Division Connectives, Rational ×ukasiewicz Logic.

For n � 2; the axiom schemes:

(A1) n�np! p
(A2) p! n�np
(A3) (p! nq)! (�np! q)

de�ne an implicit connective �n of ×. To see this, assume the same axioms for
a di¤erent connective symbol �:

(A1�) n�p! p; (A2�) p! n�p; (A3�) (p! nq)! (�p! q):

Then A3 gives (p ! n�p) ! (�np ! �p) and Modus Ponens with A2� yields
�np! �p: Similarly, A3� and A2 give �p! �np: In sum, `×(�n)[×(�) �np$ �p:

This axiom system is equivalent to the one given in [15] with a di¤erent
version for the third axiom. These connectives were introduced semantically
in [3] and are explicitly de�nable from the propositional existential quanti�er
introduced in [1].
According to Theorem 1, ×(�n) is algebraized by the varietyMV(�n), where

�n is a compatible operation de�ned implicitly by the inequalities

n�n(x) � x
x � n�n(x)
(x! ny) � (�n(x)! y):

The reader may verify, after some computation, that these reduce to the single
identity:

(n� 1)�n(x) = x� :�n(x):
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This operation exists exactly in the n-divisible MV-algebras introduced in
[17]. In particular, �n(x) = 1

nx in [0; 1]MV ; and it does not exist in any �nite
non trivial algebra.
The calculus R×= ×(�n)n�2; obtained by adding the axioms of �n to ×for

all n � 2; is called Rational ×ukasiewicz logic in [15], and the corresponding
variety MV(�n)n�2, consisting of divisible MV-algebras enriched with all the
operations �n, is called the variety of DMV-algebras, DMV for short.
It follows immediately from Lemma 2-2 that each DMV-algebra is a subdirect

product of DMV-chains. Moreover, Theorem 2, together with the �rst order
completeness of the theory of non trivial divisible MV-chains (see [17]), yields
a quick proof of completeness of R×with respect to values in [0; 1]:

Proposition 1 (Th 4.3, [15]) R×= ×(�n)n�2 is complete with respect to valu-
ations in ([0; 1]MV ; �n)n�2:

Proof. By Theorem 2, R×is algebraicallly complete with respect to all DMV-
chains. But any no trivial divisible MV-chain is elementarily equivalent to
[0; 1]MV by �rst order completeness. By �rst order de�nability of the �n;
this means that all non trivial DMV-chains are elementarily equivalent to
([0; 1]MV ; �n)n�2: Hence, any quasi-identity holds in all DMV chains if and
only if it holds in this algebra. �

3.2 Approximate Division Connectives.

We exhibit now a family of implicit connectives whose calculus is sound but not
complete for values in [0; 1]MV : It is clear from the proof of uniqueness of �n in
the previous example that the pair of axioms

(B1) p! n��np
(B2) (p! nq)! (��np! q)

already de�ne an implicit connective of ×. Regarding its algebraic interpretation
we have:

Proposition 2 ��n exist in a MV-chain M if and only if minfy 2M : ny � xg
exists for all x 2M; in which case ��n(x) is that minimum.

Proof. The identities de�ning the varietyMV(��n) become:

(E1) x � n��nx; (E2) :x� ny � :��nx� y.

Assume they hold in a chain M and x � ny there. Then :x � ny = 1 and
thus :��nx� y = 1 by E2, which means ��nx � y: Together with E1, this shows
��nx = minfy : ny � xg: Reciprocally, assume the function f(x) = minfy :
ny � xg exists in a chain. Then f satis�es (E1) by de�nition. For the second
equation, consider �rst f(x) � y; then :f(x) � y = 1 and thus E2 holds
trivially. Consider now y < f(x); then ny < x by de�nition of f and thus
u = x � :ny > 0. Moreover, x = ny � u � ny � nu = n(y � u); which implies
y�u � f(x): Suppose E2 is false, then :x�ny > :f(x)�y and taking negations
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u = x�:ny < f(x)�:y: Adding y to both sides gives: y�u < y�(f(x)�:y) =
f(x); a contradiction. �

Therefore, ��n exists in [0; 1]MV where it coincides with �n(x) = 1
nx; and it

exists also in the �nite Lukasiewicz chains

Lk = (f0; 1
k�1 ; ::; 1g;�;:); k � 2;

as well as in all �nite MV-algebras by Lemma 1 (3), because these are products
of Lk�s. However, the reader may check that �

�
n does not exist in any of the

Komori algebras Km, [16]. Observe that if �n exists in a MV-algebra M then
��n also exists inM and coincides there with �n; because �

M
n satis�es the de�ning

identities of ��n: With this observation it is easy to show:

Theorem 3 ×(��n) is sound but not complete for values in ([0; 1]MV ; �
�
n):

Proof. Soundness is clear because ��n exists in [0; 1]MV : Now, 0×(��n) (n�1)�
�
n1$

:��n1 because the equation (n � 1)x = :x does not have solutions in Ln. But
([0; 1]MV ; �

�
n) can not refute this because �

�
n coincides in [0; 1]MV with �n and

�n1 =
1
n satis�es the given equation. �

We do not know if ×(��n) is complete with respect to a single chain.

4 Lattice-ordered Abelian Groups and MV-
algebras

Abelian lattice ordered groups, `-groups for short, are abelian groups with a
lattice order compatible with the group operations. They may be presented
as a variety `G in the vocabulary f+;�; 0;g;fg where � represents di¤erence
and g;f represent the join and meet of the lattice order, respectively. The
homomorphism must preserve not only the group structure and the order but
also g and f: We refer the reader to [5] for full details, but emphasize here the
following facts:

Fact 1. `-groups are closed under lexicographic products. We will utilize
the notation G
H to denote lexicographic product (left priority).

Fact 2. Linearly ordered abelian groups may be expanded naturally to `-
groups. All subdirectly irreducible `-groups are linearly ordered.

Fact 3. Any `-group may be embedded in a divisible abelian `-group, the
usual divisible hull of the group with a naturally extended order.

We will need also the following model theoretic fact. Recall that a �rst order
theory has elimination of quanti�ers if for any formula �(x) of the language of
the theory there is a quanti�er free formula  (x) which is equivalent to �(x) in
all models of the theory (see [12]).
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Fact 4. The theory of non trivial linearly ordered divisible groups (or `-
groups) is complete and has elimination of quanti�ers with respect to the lan-
guage f+;�; 0; <g ([22], [10], Cor. 3.1.17 [18]), also with respect to the language
f+;�; 0;g;fg because in the context of total order x < y is equivalent to the
formula xf y 6= y:

Consider now the relation between `-groups and MV-algebras.

De�nition 4 A unital `-group will be a pair (G; u) where G is an `-group and
u � 0: If for any x 2 G there is n such that nu � x; then u is a strong unit.

We will need the following re�nement of Fact 4.

Lemma 3 The theory of linearly ordered divisible unital `-groups (G; u) with
u > 0 is complete.

Proof. This theory trivially inherits elimination of quanti�ers from the theory
of linearly ordered divisible `-groups (Fact 4). Therefore, it is model complete
(that is, any embedding between its models is elementary, see [12]). To obtain
completeness it is enough to notice that (Q;+;�; 0; <; 1) is a prime model of
the theory (it is embeddable in all other models). Indeed, if u > 0; the unique
group homomorphism (Z,1) ! (G; u) sending 1 to u is injective and preserves
the order, and it may be extended canonically to Q maintaining the same char-
acteristics. �
Notice that the previous result does not hold if we add two distinguished

constants 0 < u1 < u2 to `-groups since (Q; 1; 2) 6� (Q; 1; 3):

Unital `-groups form a variety `G� whose morphisms are the `-group ho-
momorphism preserving the constant u. The functor � : `G� !MV asso-
ciates to each unital `-group an MV-algebra by generalizing the de�nition of
the Lukasiewicz algebra [0; 1]MV :

�(G; u) = ([0; u];�;:; 0), x� y := (x+ y)f u; :x := u� x
�(h) = h � [0; u]:

Mundici [21] has shown that his functor has a left adjoint

� :MV !`G�

such that � � � = IMV and � establishes an equivalence of categories between
MV and the subcategory of `G� where u is a strong unit. In particular, any
MV-algebra is of the form M = �(�M). The following may be easily veri�ed
by construction or in general categorical grounds:

Lemma 4 � and � preserve divisibility, linear order, and injectivity of homo-
morphisms. Hence, for any MV-algebras M;N :
1. M is divisible i¤ �M is divisible.
2. M is a chain i¤ �M is linearly ordered.
3. h :M ! N is an injective homomorphism i¤ �h :M ! N is injective.
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Clearly, �(G; u) is �rst order de�nable in (G; u): This de�nability is best
expressed by the following translation (cf. [10]). To any �rst order formula �(x)
in the language f�;:; 0g of MV-algebras associate ��(x; u); in the language
f+;�; 0;g;fg of `-groups, by the following substitution of atomic terms
0 7�! 0; x� y 7�! (x+ y)f u; :x 7�! u� x;

and restriction of quanti�ers to the interval [0; u]. Then, for any unital `-group
(G; u) and any list of parameters a in [0; u];

�(G; u) j= �[a] i¤ (G; u) j= ��[a; u]:

In particular, for any MV-algebra M and choice of parameters a in M;

M j= �[a] i¤ �M j= ��[a; 1M ]: (t)

The �rst order theory of non trivial divisible MV-chains was already men-
tioned to be complete, [17]. This is an immediate consequence of Lemma 3 and
the translation (t), and it implies automatically the completeness of the theory
of DMV-chains by de�nability of the �n. In fact, these theories inherit also full
elimination of quanti�ers from divisible linearly ordered `-groups. Since this is
not immediate because elimination of quanti�ers is sensible to the vocabulary
utilized, and we have not seen it mentioned in the literature, we provide a proof
utilizing the following criterion:

Lemma 5 (Corollary 3.1.6, [18]) T has elimination of quanti�ers if and only
if for any pair of models B; C of T having a common substructure A; not
necessarily a model of T; and for any formula �(x; y) and choosing a of a list
of parameters in A; it holds that B j= 9y�[a; y] implies C j= 9y�[a; y]:

Theorem 4 The theory of non trivial divisible MV-chains (DMV-chains) has
elimination of quanti�ers in the language f�;:; 0g.

Proof. Let M;N be non trivial divisible MV-chains and A a common MV-
subalgebra. By Lemma 4, we have injections �A � �M and �A � �N between
totally ordered unital `-groups with �M and �N non trivial and divisible. Now
let �(x; y) be any formula of type f�;:; 0g and a 2 Ar, m 2 M be such that
M j= �[a;m]: Then �M j= (0 � m � 1M ) ^ ��[a;m; 1M ] by (t). Since a
and 1M = 1N = 1A belong to �A, by Fact 4 and the above criterion (Lemma
5), there is n 2 N such that �N j= (0 � n � 1M ) ^ ��[a; n; 1M ]. Thus
N j= '[a; n] by (t) again. Once more by Lemma 5, we conclude that the theory
of divisible MV-chains has elimination of quanti�ers. The claim about DMV-
chains is immediate from the �rst order de�nability of the �n: �

5 Implicit Operations of MV-algebras and Max-
imality of R×

The next result holds for each member of any implicit family of compatible
operations. For the sake of simplicity, we consider a single operation only.
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Theorem 5 Any compatible operation implicitly de�ned by identities in DMV-
algebras is given by a term of type f�;:; �ngn�2. Moreover, it exists in all the
DMV-algebras or in the trivial algebra only.

Proof. If such an operation r exists in the trivial algebra only, 0 is the desired
term. Assume it exists in a non trivial DMV-algebraM: Then, by compatibility
of r (Theorem 1), this operation exists in any non trivial subdirectly irreducible
factor ofM (Lemma 2-1), which must be a non trivial DMV-chain by Lemma 2-
2. By completeness of the theory of these chains and the �rst order de�nability
of Redr (Lemma 1-2), r exists in all non trivial DMV-chains, in particular
in the chain ([0; 1]MV ; �n)n. Let �(y;x) be the explicit �rst order de�nition
of r given by Lemma 1-1, which we may assume to be given in the language
of MV-algebras since the �n are �rst order de�nable, and let �

�(y;x; u) be its
translation to the language of unital `-groups where u is the unit constant. By
(t), ��(y;x; 1) de�nes r

[0;1]

: [0; 1]n ! [0; 1] as a partial function in the unital
`-group (R; 1). Since the join and meet g;f are interde�nable with the order
<, we may put ��(y;x;1) in the language f+;�; 0; <; 1g; then in quanti�er free
form using Fact 4, and �nally in full disjunctive normal form

W
�
��(y;x;1): Each

�� is a conjunction of atomic formulas t = 0; t < 0 or their negations, where
the term t has the form koy + ::: + knxn + kn+11; ki 2 Z. Negations may be
eliminated because in linearly ordered groups: t 6= 0 , (t < 0 _ �t < 0) and
t � 0, (t = 0_�t < 0): Separating the atomic formulas where y appears with
non zero coe¢ cient, and solving for y, ��(y;x;1) becomes equivalent in (R; 1)
to: V

i

y = ti(x;1) ^
V
j

y < sj(x; 1) ^
V
k

uk(x;1) = 0 ^
V
r
vr(x;1) < 0;

where some of the conjunctions may be empty and the terms ti; sj ; uk; vr have
now rational coe¢ cients.
If the �rst large conjunction

V
i

is empty and there are values b 2 [0; 1];

a 2 [0; 1]n, satisfying ��(b;a;1), then by density of < in [0; 1] there are in�nitely
many values y 2 [0; 1] satisfying ��(y;a;1): This contradicts the functionality of
��(y;x;1): Therefore, the �rst large conjunction is non-empty (or �� is unsatis�-
able and thus super�uous in the disjunctive normal form). Fixing one equation
in the �rst conjunction, say y = t0(x; 1); and substituting the other occurrences
of y by t0 throughout the formula, �� becomes

y = t0 ^
V
i

t0 = ti ^
V
j

t0 < sj ^
V
k

uk = 0 ^
V
r
vr < 0

which may be rearranged to  �(y;x;1) :

y = t0 ^
V
k

uk = 0 ^
V
r
vr < 0:

Thus ��(y;x;1) is equivalent in (R; 1) to a disjunction
W
�
�0�(y;x;1) which de-

scribes a de�nition by cases of r[0;1] :

12



r
[0;1]

x =

8>>>>><>>>>>:
t0(x;1) if

^
k

u0k(x;1) = 0 ^
^
r

v0r(x;1) < 0

...
tm(x;1) if

^
k

umk(x; 1) = 0 ^
^
r

vmr(x;1) < 0

(d)

where ti; uik; vir are linear terms with rational coe¢ cients, and the regions
Ri de�ned by the conditions in the right hand side determine a partition of
[0; 1]n. This could have been obtained also utilizing the fact that the theory of
linearly ordered Q-vector spaces is o-minimal (that is, any de�nable subset of
the universe is a �nite union of order intervals), see Corollary 7.6, Chap. 1, in
[23].
Our aim now is to show that r[0;1] is continuous. By the initial observations,

r exists in the DMV-chain M = (�(R 
 R; (1; 1)); �n)n�2; and it is de�ned as
a partial function rM : [(0; 0); (1; 1)]n ! [(0; 0); (1; 1)] in the unital `-group
(R
 R; (1; 1)) by the formula ��(y;x; u): Since the latter group is elementarily
equivalent to (R; 1) by Lemma 3 then it satis�es the sentence

8y8x 2 [0; u]n+1(��(y;x;u)$
W
�
�0�(y;x;u));

which says precisely that de�nition (d) by cases holds for rMx in (R
R; (1; 1))
with the unital constant (1,1) in the place of 1 (notice that being these groups
torsion free and divisible, the rational coe¢ cients in the �0� are �rst order de-
�nable).
Moreover, the �rst projection �1 : (R
 R; (1; 1))! (R; 1) is an onto homo-

morphism of unital `-groups, whose restriction to M gives an onto homomor-
phism �1 :M ! ([0; 1]MV ; �n)n of MV-algebras, and a fortiori of DMV-algebras
by compatibility of the �n:
We are ready to show that r[0;1] is continuous. Suppose that is not the

case; then there is a convergent sequence am ! a in [0; 1]n such that r[0;1](an)
does not converge to r[0;1](a): We may assume that fang � Ri for some i
because there are �nitely many regions. Then r[0;1](an) = ti(an; 1) ! ti(a; 1)
by continuity of ti and thus

r[0;1](a) 6= ti(a; 1): (e)

Similarly, uik(a;1) = limn uik(am;1) = 0 and vir(a;1) = limn vir(am;1) � 0 by
continuity of uik and vir: Take a point b 2 Ri and consider the point a � b =
((a1; b1); :::; (an; bn)) 2Mn where a = (a1; ::;an); b = (b1; ::; bn): Then

uik(a � b; (1; 1)) = (uik(a; 1); uik(b; 1)) = (0; 0)
vir(a � b; (1; 1)) = (vir(a; 1); vir(b; 1)) �lex (0; vir(b; 1)) <lex (0; 0)

for all k; r: That is, a � b belongs to the region Ri in R
 R and thus by (d)
rM (a � b) = ti(a � b; (1; 1)) = (ti(a; 1); ti(b; 1)):
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On the other hand, since r is a compatible implicit operation of DMV-algebras
and �1 :M ! ([0; 1]MV ; �n)n is an onto homomorphism then

ti(a; 1) = �1rM (a � b) = r[0;1](�1(a1; b1); :::; �1(an; bn))) = r[0;1](a)

by Lemma 2-1, contradicting (e). We conclude, that r
[0;1]

is continuous.
By the analogue of McNaughton theorem for DMV algebras (Lemma 9 in

[3]), r
[0;1]

must be given by a term ' of type f�;:; �ngn�2. Then the identi-
ties in E(r) are satis�ed by ' in all the algebras of the variety generated by
([0; 1]MV ; �n)n2!; that is, in all the DMV-algebras. This means, by uniqueness,
that r exists and is given by ' in all these algebras. �

We may conclude that R×does not admit proper implicit connectives:

Theorem 6 Any implicit connective of Rational ×ukasiewicz logic is explicit.
More precisely, if R×(C) is an extension of R×by implicit connectives then for
each r 2 C there is ' 2 R×such that `R×(C) r(p)$ '(p):

Proof. Due to Theorem 1, for any implicit family C of connectives of ×, the logic
R×(C) is algebraized by DMV(C); where C is an implicit family of compatible
operation of DMV-algebras. By Theorem 5, for each r 2 C there is a term '
of DMV algebras such that j=DMV(C) r(x) = '(x); and by algebraizability this
implies `R×(C) r(p)$ '(p); where ' 2 R×. �

An inspection of the proof of Theorem 5 shows that it actually proves:

Theorem 7 Any member of a family of compatible operations de�ned implicitly
by identities in MV-algebras is given by a term of type f�;:; �ngn�2 in all
DMV-algebras where the family exists (if any).

This result will allow us to show that R×is the largest extension of ×by
implicit connectives having a sound and complete semantics with values in [0; 1],
module bi-interpretations leaving ×�xed.

De�nition 5 Call a function T : ×(C) ! ×(D) between extensions of ×by
implicit connectives a faithful translation over ×if there are formulas 'r 2×(D),
r 2 C, such that for any �; �i 2 ×(C);
1. T (�) = �(r='r)r2C
2. f�igi�n `×(C) � i¤ fT (�i)gi�n `×(D) T (�):

This amounts to say that ×(C) is bi-interpretable with a full fragment of ×(D)
by a translation that �xes ×.

Theorem 8 An extension ×(C) of ×by implicit connectives is sound and com-
plete with respect to valuations in ([0; 1]MV ; fr)r2C for some interpretation of
the connectives in C if and only if there is a faithful translation T : ×(C)! R×.
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Proof. For simplicity, we consider a single connective. Assume the hypothesis
for ×(r). By soundness, fr satis�es the identities corresponding to the axioms
de�ning implicitly r; and thus r

[0;1]

= fr exists in [0; 1]MV . By Theorem
7, there is a DMV-term ' such that fr = ' in [0; 1]MV � = ([0; 1]MV ; �n)n:
Hence, we have the following chain of equivalences: f�igi�n `×(r) � i¤
f�i = 1gi�n j=([0;1]MV ;fr) � = 1 (completeness of ×(r)), i¤ f�i(r=') =
1gi�n j=[0;1]MV �

�(r=') = 1 (previous observation), i¤ f�i(r=')gi�n `R×
�(r=') (completeness of R×). Therefore, T (�) := �(r=') is the required trans-
lation.
Reciprocally, if there is a faithful translation T :×(r) ! R× as de-

scribed, then f�igi�n `×(r) � i¤ f�i(r=')gi�n `R× �(r=') (hypothe-
sis), i¤ f�i(r=') = 1gi�n j=[0;1]MV �

�(r=') = 1 (completeness of R×), i¤
f�i(r) = 1gi�n j=([0;1]MV ;'[0;1]) �(r) = 1. Thus, ×(r) is complete with respect
to ([0; 1]MV ; '

[0;1]). �

By Theorem 3, the previous result implies that the logic ×(��n) of approx-
imate division introduced in Section 3 can not be faithfully embedded in R×,
even less in ×(�n); for n � 2: Therefore, R×is not the maximum extension of ×
by implicit connectives.
Observe that ×(�n) cannot be embedded in ×(�

�
n); even as a weak fragment.

Otherwise, the image  of �n1 by a possible translation would satisfy `×(��n)
(n � 1) $ :; which is impossible because the corresponding equation, (n �
1)x = :x has no solution in Ln. Therefore, ×(��n) and ×(�n) are incomparable
extensions of ×with respect to faithful translations.

6 Implicit Connectives of n-valued ×ukasiewicz
Logic

For n � 2; ×ukasiewicz n-valued calculus ×n (cf. [10]) is algebraized by the
varietyMVn of n-valued MV-algebras, generated in turn (as a quasivariety) by
the ×ukasiewicz chain Ln. By Jónsson�s lemma (Th. 6.8, [7]), the subdirectly
irreducible algebras of MVn are the subalgebras of Ln because this variety is
congruence distributive and these algebras are simple. Moreover, they are the
only chains of the variety.
For n � 3; the axiom

(n� 2)c$ :c
de�nes an implicit constant connective of ×n. In fact, it de�nes an implicit
connective already in ×because the quasi-identity

8x8y(mx = :x ^my = :y =) x = y)

holds in [0; 1]MV , and by completeness mc $ :c; mc0 $ :c0 `× c $ c0.
According to Theorem 6, c is reducible to �n�1(1) in R×.
Returning to ×n; c is realized algebraically in Ln as the element 1

n�1 ; but
it does not exists in any proper subalgebra of Ln: Thus (Ln; 1

n�1 ) is the only
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subdirectly irreducible algebra of the corresponding varietyMVn(c) by Lemma
2-2, and therefore ×n(c) is sound and strongly complete with respect to values
in this algebra by Theorem 1.

Theorem 9 Any implicit connective of ×n(c) is explicit.

Proof. For any implicit extension ×n(c;r), the only subdirectly irreducible
algebra ofMVn(c;r) is (Ln; 1

n�1 ;r
Ln) by Lemma 2-2 and the previous obser-

vations, and thus this algebra generates the variety. But (Ln; 1
n�1 ) is a primal

algebra because it is term equivalent to the basic Post algebra of order n. Then
r is a term ' ofMVn(c) in (Ln; 1

n�1 ): The identity r = ' is inherited by the
varietyMVn(c;r); and thus `×n(c;r) r $ ' by algebraizability. �

It is possible to show, as in Theorem 8, that ×n(c) is the largest extension
of ×n by implicit connectives which is complete with respect to values in the
algebra Ln. However, there are such extension that are not complete with
respect to Ln, or any single given chain. For example, the axioms

nc�

np! (c� ! p)

de�ne an implicit connective of ×n which is realized in each subalgebra of Ln as
the minimum positive element of that subalgebra. Thus ×n(c�) is complete with
respect to the family of chains (Lk; 1

k�1 ); (k � 1)j(n� 1): But it is not complete
with respect to any particular one of them. We illustrate the case when n = 5:

Proposition 3 ×5(c�) is a conservative extension of ×5 not complete with re-
spect to any single chain.

Proof. The only chains of MV5(c�) are (L5; 14 ) and (L3;
1
2 ). The logic is not

complete with respect to the �rst chain because 0×5(c�4) 3c
� $ :c�; which may

be falsi�ed only in (L3; 12 ); nor is it complete with respect to the second one
because 0×5(c�4) 2c

�; which may be falsi�ed only in (L5; 14 ). �

7 Implicit Operations of `-groups and Implicit
Connectives of Abelian Logic

For each n � 2; the single identity

nDn(x) = x

de�nes an implicit operation Dn(x) =
1
nx in `-groups because these groups are

torsion free. This operation may be seen to be compatible because the con-
gruences of `-groups are determined by their convex subgroups and 1

nx belongs
to the interval determined by 0 and x. The variety `G(Dn)n�2 consists of all
divisible `-groups endowed with these operations. This is essentially the variety
of Q-vector lattices (lattice ordered Q-vector spaces satisfying r(x_y) = rx_ry
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for any positive r 2 Q). Clearly, there is an analogue of Mundici�s functor which
sends `G(Dn)n�2 onto the variety of DMV-algebras.
The proof of Theorem 5 may be readily adapted to show the following result,

which we state for a single operation but holds equally for families.

Theorem 10 Any compatible operation r de�ned implicitly by identities over
the variety `G(Dn)n�2 is given by a term of the variety.

Proof. If r exists in a non trivial G 2 `G(Dn)n�2, then by compatibility it
exists in each one of the non trivial subdireclty irreducible factors of a subdirect
decomposition of G. From Lemma 2-2 and Fact 2 in Section 4, these are divisible
linearly ordered `-groups. By completeness of the theory of these groups (Fact
4) and �rst order de�nability of r; this operation exists in all non trivial linearly
ordered groups of `G(Dn)n�2, in particular in (R,Dn)n. Arguing as in the proof
of Theorem 5, the �rst order de�nition �(y;x) of r takes the form in R:

rRx =

8>>><>>>:
t1(x) if

V
k

u1k(x) = 0 ^
V
r
v1r(x) < 0

...
tm(x) if

V
k

umk(x) = 0 ^
V
r
vmr(x) < 0

(q)

where ti; u1k; and v1r are linear expressions with rational coe¢ cients, and the
left right conditions determine a partition of R into disjoint non empty regions
Ri.
To prove that rR is continuous, notice �rst that r exists and must obey (q)

in the group (R
 R; Dn)n because this fact is expressible by �rst order sentences
and (R
 R; Dn)n � (R; Dn)n. Moreover, the �rst projection �1 : R
 R! R
is an epimorphism of `-groups which may be seen to preserve the Dn: Thus
�1 : (R
 R; Dn)n ! (R; Dn)n is an epimorphism and it must preserve r by
the compatibility hypothesis; that is,

�1rR
R((x1; y1); :::; (xn; yn)) = rR(x1; :::; xn): (r)

As in the proof of Theorem 5, were rR not continuous we could �nd a region
Ri and points a =2 Ri; b 2 Ri in Rn such that rR(a) 6= ti(a) and a � b =
((a1; b1); :::; (an; bn)) would belong to the region Ri in (R
 R)n: Hence,

rR
R(a � b) = ti(a � b) = (ti(a); ti(b))

and thus rR(a) = �1rR
R(a � b) = ti(a), by (r), a contradiction.
We have then a piecewise linear function with rational coe¢ cients. Let m

be the common denominator of the coe¢ cients of the ti(x); u1k(x); v1r(x): Then
mrR(x) is a piecewise linear continuous function with integer coe¢ cients in R
and thus it must be given by an `-group term (folklore, see �nal remark in [4]),
say mrR(x) = u(x). Hence, rR(x) = 1

mu(x) = Dmu(x); a term of `G(Dn)n�2.
By �rst order completeness, r is given by Dmu(x) in all subdirectly irreducible
algebras of `G(Dn)n�2. Therefore, the set of identities E(r=Dmu(x)) holds in all
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the algebras of the variety `G(r; Dn)n�2 and, by uniqueness, r(x) = Dmu(x)
in `G(r; Dn)n�2: �

A Logic of equilibrium, Bal, is described in [14] which is algebraizable by the
variety of `-groups (being thus a version of so called Abelian logic, [19]). It has
the axiom schemes:

(p! q)! ((r ! q)! (r ! p))
(p! (q ! r))! (q ! (p! r)
((p! q)! q)! p
((p! q)+ ! (q ! p)+)! (p! q)
p++ ! p+

and inference rules

p! q; p ` q; p; q ` p! q; p ` p+; (p! q)+ ` (p+ ! q+)+:

The de�ned connectives

0 := p! p; �p := q ! 0; p+ q := �p! q; pg q := (p! q)+ + q

form a complete set since p! q a` �p+ q and p+ a` pg 0; and they allow the
interpretation of Bal in `-groups so that we get algebraic completeness:

f'igi�n `Bal ' i¤ f'i = 0gi�n j=`G ' = 0:

In fact, algebraic completeness holds with respect to values in Z (or Q, or R),
because these groups generate `G as a quasi-variety, [5]. The �equivalence�and
constant formula mediating algebraicity are just p ! q (equivalently, �q + p);
and thus this connective must satisfy symmetry and transitivity, and 1 := 0.
Since p + ::: + p = 0 j=`G p = 0; because all `-groups are torsion free, we have
by algebraic completeness: n' `Bal ' for any n � 2: Also, �np + nq = 0 j=`G
n(�p+ q) = 0; which implies n'! n `Bal n('!  ):
It follows easily from the previous observations that the single axiom

p! nDnp

de�nes implicitly the connective Dn over Bal. Indeed:
p! nDnp; p! n�p ` nDnp! n�p ` n(Dnp! �p) ` Dnp! �p:

By Theorem 1, the logic RBal = Bal(Dn)n�2; that we could call Rational
logic of equilibrium, is algebraized by the variety `G(Dn)n�2 introduced above.
Together with Theorem 10, this implies:

Corollary 1 Every implicit connective of RBal is explicit.

Note that RBal is complete with respect to values in R (or Q). One may
show, as in Theorem 8, that it is the largest extension of Bal by implicit con-
nectives with this property:

Theorem 11 An extension of Bal by implicit connectives is sound and complete
with respect to valuations in (R; fr)r for some interpretation fr of the new
connectives if and only if it has a faithful translation into RBal.
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8 Final Remarks

We have not considered in this paper extensions of ×ukasiewicz logic by con-
nectives implicitly de�ned by axiom schemes and new inference rules. In this
case, the extension is still algebraizable by a (perhaps proper) quasivariety of
enriched MV-algebras (Th. 1 in [8]), but the algebraic interpretation of the
connectives is not necessarily compatible. For example, the following system:

�pg :�p
p! �p
q g :q; (p! q) ` (�p! q)

de�nes implicitly a connective � over ×. It may be shown that the extension
×(�) is algebraizable by the MV-algebras which support the operation

�(x) := smallest boolean y greater or equal than x:

Thus, � exists in all MV-chains, particularly in [0; 1]; where it takes the form of
the Baaz delta operator, [2]:

�(x) =

�
0 if x = 0
1 if x > 0:

Clearly, this operation is not compatible in the non-simple MV-chains, and thus,
by Theorem 1, � can not be de�ned implicitly by means of axioms only.
This fact marks a sharp di¤erence with classical propositional calculus, be-

cause it may be shown that the latter does not admit new connectives de�ned
implicitly by axiom schemes and inference rules.
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