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Abstract. An extensions by new axioms and rules of an algebraizable logic in the sense

of Blok and Pigozzi is not necessarily algebraizable if it involves new connective symbols,

or it may be algebraizable in an essentially different way than the original logic. However,

extension whose axioms and rules define implicitly the new connectives are algebraizable,

via the same equivalence formulas and defining equations of the original logic, by enriched

algebras of its equivalente quasivariety semantics. For certain strongly algebraizable log-

ics, all connectives defined implicitly by axiomatic extensions of the logic are explicitly

definable.
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The well known functional completeness of the truth table interpretation
of the usual connectives of classical propositional calculus has a deductive
counterpart: if an axiomatic extension of the calculus defines implicitly a
new connective symbol, this must be deductively equivalent to a combina-
tion of classical connectives. Although this may seem obvious, its proof is not
immediate. Other calculi, like Heyting calculus or intermediate logics, allow
implicitly defined connectives which are not explicitly definable in this man-
ner, providing thus natural and interesting enrichments by hidden concepts
of the logic, cf. [3]. In this paper, we consider implicit connectives in the
general context of algebraizable logics, in the sense of Blok and Pigozzi [1].

An extension by new axioms and rules of an algebraizable logic L is not
necessarily algebraizable if it involves new connective symbols, or it may
happen that it is algebraizable in a essentially different way than L (Sec.
2). However, we prove that extensions defining the new connectives im-
plicitly (with respect to the equivalence provided by the algebraization) are
algebraizable, via the same equivalence formulas and defining equations of
L, by expanded algebras of its equivalent quasivariety semantics (Sec. 3).
The algebraic interpretation of a connective implicitly defined by a purely
axiomatic extension (adding new axioms but no new rules) is shown to be
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always compatible with the relative congruences of the quasivariety seman-
tics of L. It follows that such a connective is explicitly definable by a formula
of L if and only if the class of algebras where its interpretation exists forms
a quasivariety (Sec. 4, 5). Under certain conditions on the variety seman-
tics of a strongly algebraizable logic, all the connectives defined implicitly
by axiomatic extensions are shown to be equivalent to combination of the
original connectives (Sec. 6).

1. Algebraizable logics

Given a family of finitary function symbols τ = {ωα : α < κ}, a sentential
logic or deductive system L of type τ will be a structural finitary conse-
quence relation �L in the absolutely free algebra Fmτ of type τ generated
by the (propositional) variables p1, p2, ... The function symbols ωα are called
primitive connectives of L and the terms of Fmτ are called formulas of L.
Usually, �L is specified by a set of Hilbert style axiom schemes and inference
rules.

Definition (cf. Def. 2.8, Cor. 2.9 [1]). A logic L is (finitely) algebraizable
by a quasivariety K of type τ (the equivalent quasivariety semantics of L)
via a finite set of binary formulas {p⇔i q}i (the equivalence formulas of L)
and a finite set of identities {δj(p) ≈ εj(p)}j (the defining equations of L) if
the following conditions are met:

i) φ1, ..., φn �L φ iff {δ(φi) ≈ ε(φi)}n
i=1 |=K δ(φ) ≈ ε(φ)

ii) p ≈ q =||=K δ(p ⇔ q) ≈ ε(p⇔ q).

We are using the abbreviations p⇔ q for {p⇔i q}i, δ(p ⇔ q) ≈ ε(p⇔ q)
for {δj(p⇔i q) ≈ εj(p⇔i q)}i,j , etc.

The quasivariety K = KL is uniquely determined by L, when it exists,
and the equivalence formulas and defining equations are also unique in the
sense that for any other system p⇔′ q, δ′(p) ≈ ε′(p) satisfying (i-ii) we have:
p⇔ q � �L p⇔′ q and δ(p) ≈ ε(q) =||=K δ′(p) ≈ ε′(q).

Among the various characterizations of algebraizability, the following one
is quite useful.

Syntactic characterization (Th. 4.7 [1]). L is algebraizable via p ⇔
q = {p⇔i q}i, δ(p) ≈ ε(p) = {δj(p) ≈ εj(p)}j if and only if:

1. �L p⇔ p

2. p⇔ q �L q ⇔ p

3. p⇔ q, q ⇔ r �L p⇔ r
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4. p⇔ q �L ω(p1, .., p, .., pn) ⇔ ω(p1, .., q, .., pn), for any ω ∈ τ
5. p � �L δ(p) ⇔ ε(p).

Notice that with the help of condition 3, condition 4 spreads to all for-
mulas by induction on complexity:

4′. p⇔ q �L ϕ⇔ ϕ(p/q),

and a derived Detachment Rule follows from 4′ and 5 (cf. Lemma 2.14 [1]):

DR. p⇔ q, p �L q.

Classical and intuitionistic propositional calculus, intermediate logics,
deductive �Lukasiewicz logics, normal modal logic with classic or intuitionistic
base, as well as many fragments of these logics are algebraizable by suitable
varieties of algebras, via what we will call the standard system: p ⇔ q =
{p→ q, q → p} and δ(p) ≈ ε(p) = {p ≈ p→ p}. BCK-logic is algebraizable
via the standard systems but requires a proper quasivariety semantics, cf.
[11]. Relevance logic in the sense of Anderson and Benlap is algebraizable
by a variety with standard p⇔ q but δ(p) ≈ ε(p) = {p ∧ (p→ p) ≈ p→ p}.

2. Algebraizable and non-algebraizable extensions

An extension L′ of an algebraizable logic L, by new axioms and rules on
the primitive connectives of L, is automatically algebraizable by a sub-
quasivariety of KL and the same equivalence formulas and defining equa-
tions of L (Cor. 4.9 [1]). In fact, it may be shown that the lattice of such
extensions of L is anti-isomorphic to the lattice of sub-quasivarieties of KL
by the natural correspondence:

L′ �−→ KL′ = Mod {∧i φi ≈ ψi ⇒ φ ≈ ψ : {φi ⇔ ψi}i �L′ φ⇔ ψ },
K ′ �−→ LK ′ = 〈Fmτ, {{φi}i � φ :

∧
i δ(φi) ≈ ε(φi) |=K ′ δ(φ) ≈ ε(φ) }〉.

However, extensions involving new connective symbols are not necessar-
ily algebraizable. For example, adding the axioms of modal logic S5 without
the necessitation rule to classical propositional calculus yields a non alge-
braizable logic (Cor. 5.6 [1]). A more significant example follows.

Example 1 (non-algebraizable logic of the dual pseudocomplement). Con-
sider the extension IPC(D) of intuitionistic propositional calculus IPC by
the axioms:

D1. p ∨Dp
D2. (q ∨D(q ∨ p)) ↔ (q ∨Dp)
D3. ¬D(p→ p).
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Interpreting D as an operation satisfying the corresponding identities in
Heyting algebras:

E1. x ∨D(x) = 1
E2. y ∨D(y ∨ x) = y ∨D(x)
E3. D(1) = 0,

it becomes the dual pseudocomplement operation:

DH(x) = min{y ∈ H : x ∨ y = 1}.
Indeed, these identities are clearly satisfied by DH and, whenever x∨ y = 1,
they imply: y ∨D(x) =E2 y ∨D(y ∨ x) = y ∨D(1) =E3 y ∨ 0 = y; that is,
D(x) ≤ y. Not every Heyting algebra supports such an operation, but finite
Heyting algebras (at least) do. To see that IPC(D) is not algebraizable.
consider the Heyting algebra H:

1
|
c

� �
a b

� �
0

where DH(1) = 0 and DH(x) = 1 for x �= 1. Then 〈H,DH〉 is simple because
any congruence Θ distinct from the diagonal must contain (x, 1) with x �= 1,
thus (1, 0) = (DH(x),DH(1)) ∈ Θ and Θ = H ×H.On the other hand, the
non trivial Heyting algebra filters of H: {a, c, 1}, {b, c, 1}, {c, 1}, {1}, are
IPC(D)-filters because the axioms D1,D2,D3 evaluate to 1 when interpreted
by DH . This means that the Leibniz operator Ω(H,DH) from IPC(D)-filters
into congruences of (H,DH) can not be injective. Thus IPC(D) is not
algebraizable by any quasivariety whatsoever by Th. 5.1(ii) in [1], not even
weakly algebraizable in the sense of Czelakowski and Jansana [6].

IPC(D) inherits from IPC, by structurality, all the conditions in the
syntactic characterization of algebraizability for standard ⇔, δ, ε, except
condition 4 for the connective D. In fact, we may conclude that p ↔ q
�IPC(D) Dp↔ Dq, since we know that the logic is not algebraizable.

An extension of an algebraizable logic L by new connectives may be
algebraizable via a system of equivalence formulas and defining equations
essentially different from those of L, and the algebras in its quasivariety
semantics do not need to be expansions of the algebras in the quasivariety
semantics of L, as illustrated next.
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Example 2. Let L′ = CPC(�) be the following extension of classical
propositional calculus, with Modus Ponens as the only inference rule:

A1. �ϕ for any theorem ϕ of IPC
A2. �(p→ q) → (�p→ �q)
A3. �(p→ q) → �(�p→ �q)
A4. p→ �¬¬p
A5. �¬¬p→ p.

Glivenko’s theorem plus A1, A5 grant that L′ extends, in fact, CPC. This
logic is algebraizable via

p⇔′ q := {�(p → q),�(q → p)}, δ′(p) ≈ ε′(p) := {¬¬p ≈ �},
where � stands for (p → p). Clause 1 in the syntactic characterization
of algebraizability follows from A1, clauses 2, 3 and clause 4 for classical
connectives follow from A1, A2, and clause 4 for � follows from A3. Let us
verify clause 5:

�L′ �(¬¬p→ �) and �L′ �(¬¬p↔ (� → ¬¬p)) by A1; hence,
�L′ �¬¬p↔ �(� → ¬¬p) by A2, and thus
p �L′ {�(¬¬p→ �) ,�(� → ¬¬p)} �L′ p by A4, A5.

However, p ⇔′ q is not equivalent in L′ to standard p ⇔ q. To see this,
notice that the enriched Heyting algebra 〈B,�〉:

1
� �

a b
� �

c
|
0

�x =
{

1 if x = 1
0 if x �= 1

belongs to the equivalent quasivariety semantics of L′, according to Th. 2.17
in [1], because it satisfies the identities and quasi-identities:

¬¬Ai ≈ � (i = 1, ..., 5)
¬¬�(p→ p) ≈ �
¬¬(p→ q) ≈ �, ¬¬p ≈ � ⇒ ¬¬q ≈ �
¬¬�(p→ q) ≈ �, ¬¬�(q → p) ≈ � ⇒ p ≈ q,

corresponding, respectively, to the axioms of the logic, the identity δ′(p ⇔′

p) ≈ ε′(p⇔′ p), the Modus Ponens rule, and the quasi-identity δ′(p⇔′ q) ≈
ε′(p ⇔′ q) ⇒ p ≈ q. Indeed, for any values of p, q in 〈B,�〉 we have Ai = 1
for i = 1, .., 4, and A5 �= 0 (�¬¬x → x = 0 → x = 1 if ¬¬x �= 1, and
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�¬¬x → x = 1 → x = x if ¬¬x = 1). Thus, ¬¬Ai = 1 for i = 1, .., 5. The
second displayed identity holds trivially and the first quasi-identity holds in
any Heyting algebra. The last quasi-identity holds because ¬¬�(x→ y) = 1
is possible only if �(x→ y) = 1, which implies x→ y = 1, and hence x ≤ y.
On the other hand, 〈B,�〉 does not satisfy the quasi-identity

¬¬(p→ q) ≈ 1 , ¬¬(q → p) ≈ 1 ⇒ ¬¬�(p→ q) ≈ 1

because ¬¬(1 → c) = ¬¬(c → 1) = 1 while ¬¬�(1 → c) = 0. By algebraiz-
ability this means

{p→ q, q → p} �L′ {�(p→ q),�(q → p)}.
Similarly, δ′(p) ≈ ε′(p) is not equivalent to standard δ(p) ≈ ε(p) because
¬¬c = 1 but c �= 1 in 〈B,�〉.

3. Extensions by implicit connectives

Let L be an algebraizable logic with a system of equivalence formulas p⇔ q.
We will say that an extension L(C) by axioms and rules involving a family
of new connective symbols C defines C implicitly if:

�L(C)∪L(C′) ∇(p1, ..., pn∇) ⇔ ∇′(p1, ..., pn∇), for each ∇ ∈ C,
where C′ is a family of disjoint copies of the symbols in C, and L(C)∪L(C′)
is the structural extension of the logic L(C) by the ∇′-duplicates of the
axioms and rules of L(C). We will write L(∇) for L({∇}). This generalizes
the notion of an implicit connective of intuitionistic propositional calculus
introduced in [3].

Theorem 1. An extension L(C) of an algebraizable logic L defining im-
plicitly a family of connectives C is algebraizable via the same equivalence
formulas and defining equations of L.
Proof. By the syntactic characterization of algebraizability, it is enough
to show that p ⇔ q �L(C) ∇(p) ⇔ ∇(p(p/q)) for each ∇ ∈ C, since the
other conditions hold automatically in the extension by structurality. Fix
distinct propositional variables p, q and define, by simultaneous induction,
two transformations ϕ∗ and ϕ+ from Fmτ∪C∪C′ into formulas of Fmτ∪C :

p∗ := q, and v∗ := v if v is variable distinct from p
ω(ϕ1, ..., ϕk)∗ := ω(ϕ∗

1, ..., ϕ
∗
k), for ω ∈ τ

∇(ϕ1, ..., ϕn)∗ := ∇(ϕ+
1 , ..., ϕ

+
n ), for ∇ ∈ C

∇′(ϕ1, ..., ϕn)∗ := ∇(ϕ∗
1, ..., ϕ

∗
n), for ∇′ ∈ C′.

v+ = v for any propositional variable
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ω(ϕ1, ..., ϕk)+ := ω(ϕ+
1 , ..., ϕ

+
k ), for ω ∈ τ ∪ C.

∇′(ϕ1, ..., ϕn)+ := ∇(ϕ∗
1, ..., ϕ

∗
n), for ∇′ ∈ C′.

Claim 1: p ⇔ q �L ϕ∗ ⇔ ϕ+, for any ϕ ∈ Fmτ∪C∪C′ . For a variable ϕ
this becomes: p ⇔ q �L q ⇔ p if ϕ is p, and p ⇔ q �L ϕ ⇔ ϕ, otherwise.
The inductive step for a connective ω of L follows by condition (4) in the
syntactic characterization of algebraizability, and for the connectives in C∪C′
by condition (1) since ∇′(ϕ1, ..., ϕn)∗ = ∇(ϕ∗

1, ..., ϕ
∗
n) = ∇′(ϕ1, ..., ϕn)+ and

∇(ϕ1, ..., ϕn)∗ = ∇(ϕ+
1 , ..., ϕ

+
n ) = ∇(ϕ1, ..., ϕn)+ .

Claim 2: �L(C)∪L(C′) ϕ implies p ⇔ q �L(C) ϕ
∗, ϕ+. We verify this by

induction on the length of the proof of �L(C)∪L(C′) ϕ. For convenience, we
consider axioms as inference rules with an empty set of premises. Assume
that the last step in the proof of �L(C)∪L(C′) ϕ is the use of an inference rule
in L(C′):

ρj = θj(∇′
1, ..,∇′

m, p1/ψ1, ..., pk/ψk) j < m
ϕ = θ(∇′

1, , ..,∇′
m, p1/ψ1, ..., pk/ψk) ψi ∈ Fmτ∪C∪C′ ,

where �L(C)∪L(C′) ρj. Then p ⇔ q �L(C) ρ
∗
j by induction hypothesis, and

since θj , θ ∈ Fmτ∪C′ do not contain symbols of C, applying ( )∗ yields

ρ∗j = θj(∇1, ..,∇m, p1/ψ
∗
1 , ..., pk/ψ

∗
k) j < m

ϕ∗ = θ(∇1, ..,∇m, p1/ψ
∗
1 , ..., pk/ψ

∗
k),

a rule of L(C). Thus, p ⇔ q �L(C) ϕ
∗, and p ⇔ q �L(C)

ϕ+ by Claim 1 and
the Detachment Rule. Now, if the rule used belongs to L(C):

ρj = θj(∇1, ..,∇m, p1/ψ1, ..., pk/ψk) j < m
ϕ = θ(∇1, ..,∇m, p1/ψ1, ..., pk/ψk) ψi ∈ Fmτ∪C∪C′ ,

where θj , θ do not contain∇′ ∈ C′, applying ( )+ yields a rule in L(C):

ρ+
j = θj(∇1, ..,∇m, p1/ψ

+
1 , ..., pk/ψ

+
k ) j < m

ϕ+ = θ(∇1, ..,∇m, p1/ψ
+
1 , ..., pk/ψ

+
k ).

Then p ⇔ q �L(C) ρ
+
j by the induction hypothesis, and thus p ⇔ q �L(C)

ϕ+, ϕ∗ as before. Finally, according to Claim 2, the hypothesis �L(C)∪L(C′)
∇(p) ⇔ ∇′(p) yields a proof of: p ⇔ q �L(C) [∇(p) ⇔ ∇′(p)]∗ = ∇(p)∗ ⇔
∇′(p)∗ = ∇(p) ⇔ ∇(p(p/q)).

Corollary 2. Under the hypothesis of Theorem 1, KL(C) consists of the
algebras (A,∇A)∇∈C , A ∈ KL, satisfying the identities and quasi-identities:∧

i δ(ρi) ≈ ε(ρi) ⇒ δ(ϕ) ≈ ε(ϕ) corresponding to the axioms and rules
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{ρi}i � ϕ in L(C) \ L. Moreover, for each A ∈ KL there is at most one
family of functions {∇A : ∇ ∈ C} such that (A,∇A)∇∈C ∈ KL(C).

Proof. The first statement follows from Th. 2.17 in [1]. Moreover, Theo-
rem 1 also yields: p ⇔ q �L(C′) ∇′(p) ⇔ ∇′(p(p/q)). Thus, L(C) ∪ L(C′) is
algebraizable via ⇔, (δ, ε), and therefore �L(C)∪L(C′) ∇(p) ⇔ ∇′(p) implies
|=KL(C)∪L(C′) ∇(p) ≈ ∇′(p) for each ∇ ∈ C.�
Remark. The algebraic interpretation of the connectives ∇ ∈ C does not
necessarily exist in all algebras A of KL. However, the subclass RedL(KL(C))
of algebras of KL where ∇A exists for all ∇ ∈ C is easily seen to be closed
under products. Moreover, it is first order axiomatizable because each ∇ ∈ C
is first order definable in the vocabulary of KL, due to Beth’s definability
theorem, plus compactness in case C is infinite.

Recall that L(C) is a conservative extension of L if Γ �L(C) ϕ implies
Γ �L ϕ whenever Γ ∪ {ϕ} ⊆ FmL.

Corollary 3. An extension L(C) of an algebraizable logic L defining C
implicitly is conservative over L if and only if RedL(KL(C)) generates KL
as a quasivariety. Equivalently, if and only if each A ∈ KL is embeddable in
an algebra of RedL(KL(C)).

Proof. RedL(KL(C)) generates KL as a quasivariety if and only if any quasi-
identity holding in the first class holds in the second. By algebraizability
this is equivalent to conservativity. The second claim follows from closure
under products of RedL(KL(C)).

Example 3 (implicit definability of classical connectives). In any algebraiz-
able logic with standard equivalence p⇔ q = {p → q, q → p} and containing
the Modus Ponens rule, the usual axioms for conjunction:

p ∧ q → p
p ∧ q → q
(p→ q) → ((p → r) → (p→ q ∧ r)),

define implicitly this connective. Something similar happens with disjunc-
tion. Negation is defined implicitly by the axioms:

(q → (p → ¬p)) → (q → ¬p)
¬p→ (p → q).

In this way, most familiar logics may be obtained from their implicational
fragments by adding implicitly defined connectives.

Example 4 (algebraizable logic of the dual pseudocomplement). According
to Theorem 1, the logic IPC(D) of Example 1 can not define D implicitly
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because it is not algebraizable. However, its non-axiomatic strengthening
IPC(D)+:

D1. p ∨Dp
D2. (q ∨D(q ∨ p)) ↔ (q ∨Dp)
R. p � ¬Dp,

(the inference rule R makes D3 superfluous) defines D implicitly. Indeed,

�D′
1+IPC+R ¬D(D′p ∨ p); thus,

�D′
1+IPC+R (D′p ∨D(D′p ∨ p)) → D′p, but

�IPC Dp→ (D′p ∨Dp) �D2+IPC Dp→ (D′p ∨D(D′p ∨ p)); hence,
�D′

1,D2+IPC+R Dp→ D′p.

Therefore, IPC(D)+ is algebraizable via the standard systems. The reader
may wish to verify directly that p ↔ q �IPC(D)+ Dp ↔ Dq (warning:
the deduction theorem is not available). KIPC(D)+ consists of the enriched
Heyting algebras (H,DH ) satisfying the identities E1,E2,E3 of Example 1
and the quasi-identity corresponding to the rule R:

x ≈ 1 ⇒ D(x) ≈ 0.

Since the identities E1,E2,E3 force DH to be the dual pseudocomplement,
this quasi-identity is already a first order consequence of them, and thus
KIPC(D)+ is the variety considered in Example 1. As D exists in all ultra-
products of finite Heyting algebras and any Heyting algebra is embeddable
in such an ultraproduct, IPC(D)+ is conservative over IPC, not only for
theorems but for deductive inferences also.

Example 5 (Kuznetsov connective). The extension IPC(S) of IPC by the
axioms

S1. p→ Sp
S2. Sp→ (q ∨ (q → p))
S3. (Sp → p) → p,

was introduced by Kuznetsov [10], who proved that these axioms are con-
servative over any intermediate logic, and studied in [3] where it is shown
that it has the disjunction property. It is easily seen that IPC(S) defines S
implicitly; thus, it is algebraizable. SH exists in any well founded Heyting
algebra H and must be the successor in linearly ordered ones. It does not
exist for example in the real interval [0, 1]. Conservativity may be obtained
as in Example 4.

Example 6 (n-valued linear Heyting logic with successor). The intermediate
logic IPCn extending IPC by the axioms (p → q) ∨ (q → p) and (p1 →
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p2) ∨ ... ∨ (pn → pn+1), is algebraizable by the variety of Heyting algebras
generated by the ordered chain Hn of length at least n. The corresponding
extension IPCn(S) by S1, S2, S3 is algebraized by the variety generated by
〈Hn, SHn〉 (cf. [3]).

The further extension IPCn(S)+ of IPCn(S) by the inference rule

Sn−1p � S(p ∧ ¬p) → p

has a proper quasivariety semantics since the algebra 〈Hn, SHn〉 satisfies the
corresponding quasi-identity

Sn−1(x) ≈ 1 ⇒ (S(0) → x) ≈ 1,

but its homomorphic image 〈Hn−1, SHn−1〉 does not. KIPCn(S)+ is generated
by 〈Hn, SHn〉 as a quasivariety, and any maximal chain in a non trivial
algebra of this quasivariety must have length at least n.

Example 7 (division connectives in �Lukasiewicz logic). �Lukasiewicz infinite
valued logic �LL is a sublogic of classical propositional calculus given by the
axioms

p→ (q → p)
(p→ q) → ((q → r) → (p→ r))
((p→ q) → q) → ((q → p) → p)
(¬p→ ¬q) → (q → p)

and the Modus Ponens rule. �LL is algebraizable via the standard systems by
the variety of Wajsberg algebras generated by L∞ = 〈[0, 1],→L,¬L〉, where
x→L y = min(1, 1−x+ y) and ¬Lx = 1− x. These algebras become lattice
by the relation: x ≤ y iff x→L y = 1 (cf. [5]).

Define 2p := ¬p → p, and inductively (k + 1)p := ¬p → kp. Then, for
each integer k ≥ 2 the axioms:

Dk1. p→ k(δkp)
Dk2. (p→ kq) → (δkp→ q),

define implicitly a connective δk over �LL. Thus the logic �LL({δk}k≥2) is
algebraizable. The interpretation of δk in Wajsberg algebras is:

δk(x) = min{y : ky ≥ x}.

Therefore, it exists in L∞ where δk(x) = 1
kx, and in the finite algebras Ln =

〈{0, 1
n−1 , ..,

n−2
n−1 , 1},→L,¬L〉 where δk( j

n−1) = [(j+k−1)/k]
n−1 . Being first order

definable, δk exists in all ultrapowers of these algebras. But any Wajsberg
algebra is embeddable in a product of ultrapowers of L∞ as a consequence
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of Chang’s representation theorem for MV-algebras [4]. Thus �LL({δk}k≥2)
is conservative over �LL. The connective δk can not be given by a formula of
�LL because the subalgebra {0, 1} of L∞ is not closed under δk.

Adding to �LL({δk}k≥2) the following axiom for each k ≥ 2:

Dk3. kδkp→ p,

we obtain the implicational version of Rational �Lukasiewicz Calculus (R�LL),
introduced by B. Gerla [7]. This logic is algebraized by the Wajsberg ver-
sion DW of the variety DMV of divisible MV algebras in which δk(x) is
the unique y such that ky = x. Clearly, DW is a proper subvariety of
K�LL({δk}k≥2) because it does not contain the finite algebras Ln. However,
L∞ ∈ DW, granting as before that R�LL is conservative over �LL.

Example 8 (n-valued �Lukasiewicz logic with successor). �Lukasiewicz n-
valued logic �LLn is the extension of �LL by the axioms

np→ (n − 1)p
(n− 1)(jp → ¬(¬p→ ¬(j − 1)p)), for j ≤ n− 1, j � n− 1.

It is algebraized by the variety generated by Ln. The further extension,
�LLn(δn−1), by the axioms of δn−1 is algebraized by the variety generated
by 〈Ln, δn−1〉. This last algebra is primal (every function of the algebra is
given by a term) because it has a definable successor S(x) = ¬x → 1

n−1 =
¬x → δn−1(p → p), and the set of operations {→L,¬L, S} is known to be
functionally complete for Ln.

4. Compatibility

A function f : An → A, where A in an algebra, is compatible if any congru-
ence relation of A is a congruence of 〈A, f〉. It is K-compatible for a class K
of algebras if this happens for any congruence relation R such that A/R ∈ K.

An extension of a logic L will be called axiomatic if it may be defined
by adding a set of axiom schemes to L but no new inference rules.

In [3] it is shown that the algebraic interpretation of any connective
defined implicitly by an axiomatic extension of IPC is always compatible.
Although this property fails for non-axiomatic extensions (Example 9 below),
it generalizes to axiomatic extensions of any algebraizable logic.

Theorem 4. Let L be an algebraizable logic and L(C) an axiomatic exten-
sion defining implicitly a family of connectives C. Then the functions ∇A,
∇ ∈ C, are KL-compatible wherever they exist. Thus, RedL(KL(C)) is closed
under homomorphic images in KL.
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Proof. Let L(C) be obtained by adding a set of axiom schemas A(C) to L.
If (A,∇A)∇ ∈ KL(C), then any KL-congruence Θ of A comes from a L-filter
F of A by the Leibniz operator Θ = ΩA(F ) = {(a, b) ∈ A×A : a⇔ b ∈ F}
(Th. 5.1(i), Lemma 5.2, [1]). If α ∈ A(C) then |=KL(C)

δ(α) ≈ ε(α), due
to the algebraizability of L(C) with the same defining equations and equiv-
alence formulas of L (Theorem 1). Thus δA(v(α)) = v(δ(α)) = v(ε(α)) =
εA(v(α)) for any valuation v into A, and trivially (δA(v(α)), εA(v(α))) ∈
ΩA(F ). Hence, δA(v(α)) ⇔ εA(v(α)) ∈ F. But this implies that v(α) ∈ F
since δ(p) ⇔ ε(p) �L p. Thus, F is an L(C)-filter and Θ = ΩA(F ) =
Ω(A,∇A)∇(F ) is a KL(C)-congruence by Th. 5.1(i) [1]. This shows compati-
bility. Now, if h : A→ B is an epimorphism in KL and ∇A exists in A for all
∇ ∈ C, the maps ∇B(h(a1), ..., h(am)) = h(∇A(a1, ..., am) are well defined
and satisfy the identities satisfied by the ∇A’s. Hence, B ∈RedL(KL(C)).

Example 9. The logic IPC(D)+ of the dual pseudocomplement (Example
4) defines D implicitly but DH is not compatible for the algebra H de-
scribed in Example 1, because 〈H,DH〉 ∈ KIPC(D)+ is simple while H is
not. Therefore, the previous theorem fails for non-axiomatic extensions. In
fact, although its quasivariety semantics is a variety, the theorem grants that
IPC(D)+ is not equivalent to any axiomatic extension of IPC.

5. Explicit definability

A connective defined implicitly by an extension L(∇) of an algebraizable
logic L with a system of equivalence formulas p ⇔ q is explicitly definable
by a formula θ of L if:

�L(∇) ∇(p) ⇔ θ(p). (i)

By algebraizability this means:

|=KL(∇)
∇(p) ≈ θ(p). (ii)

Obviously, KL-compatibility of each ∇A is a necessary condition for this
to happen (a term is compatible with any congruence relation). Another
necessary condition is that the class of algebras A ∈ KL where ∇A exists
forms a quasivariety, since (ii) implies that these are precisely the algebras
satisfying E(∇/θ) for the system E(∇) of identities and quasi-identities of
KL(∇). A third condition is that L(∇) be an essentially axiomatic extension,
in the sense that L(∇) is equivalent to a set of axioms over an extension L′

of L not involving ∇. To see this, let L′ be the logic L(∇) restricted to the
formulas of L. Then (i) implies the following chain of equivalences: Γ �L(∇) ϕ
iff Γ(∇/θ) �L(∇) ϕ(∇/θ) iff Γ(∇/θ) �L′ ϕ(∇/θ) iff Γ �L′∪{∇(p)⇔θ(p)} ϕ.
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All the previous remarks can be generalized to families of connectives.
That these three conditions are already sufficient for explicit definability
follows by algebraizability from the next general result on quasivarieties.

Lemma 5. Let K be a quasivariety of type τ , E(C) a set of identities defining
implicitly a family of operations C in K, and MC = {A ∈ K : ∃(∇A)∇∈C
〈A,∇A〉∇∈C |= E(C)}. Then each ∇ ∈ C is explicitly definable by a term
of type τ if and only if each ∇A is K-compatible, and MC is closed under
subalgebras (equivalently, MC is a quasivariety).

Proof. Notice that MC is first order axiomatizable by Beth’s definability
theorem and it is always closed under products. Thus, it is a quasivariety
if and only if it is closed under subalgebras. The conditions in the theo-
rem are necessary for explicit definability by the discussion above. Assume
now that MC is a quasivariety and each ∇ ∈ C is K-compatible in MC .
Let F be the free algebra of MC on generators gα, α < κ = |τ ∪ C| + ω.
Then writing g for g1, ..., gn, and g′ for gα1 ..., gαk

,∇F (g) = qF
∇(g,g′) where

q∇(x1, ..., xn, xn+1..., xn+k) is a τ -term. Given A ∈ MC of power at most κ
and a = (a1, ..., an) ∈ An, let h : F → A be an onto homomorphism such that
h(gi) = ai for i = 1, ..., n, and h(gαi) = an for i = n+ 1, ..., n+ k. Since ∇F

is compatible with the kernel of h, there is a unique function f+
∇ : An → A

such that h is an homomorphism from 〈F,∇F 〉∇∈C onto 〈A, f+
∇ 〉∇∈C . Thus,

〈A, f+
∇〉∇∈C � E(C) and, by uniqueness, each f+

∇ = ∇A. Hence, ∇A(a) =
f+
∇(h(g)) = h(∇F (g)) = h(qF

∇(g,g′)) = qA
∇(h(g), h(g′)) = qA

∇(a, an, ..., an).
In sum, ∇A = tA∇ for any A ∈M of power at most κ, where t∇(x1, ..., xn) =
q∇(x1, ..., xn, ..., xn). Thus, E({∇/t∇ : ∇ ∈ C}) is satisfied in these algebras
and, by the Tarski-Löwenheim-Skolem theorem, in all algebras of MC . By
uniqueness again, ∇A = tA∇ in all MC .

Theorem 6. Let L(C) be an essentially axiomatic extension of an alge-
braizable logic L defining implicitly a family of connectives C. All ∇ ∈ C
are explicitly definable by formulas of L if and only if the class of algebras
in KL where all of them exist is closed under subalgebras. Equivalently, if
and only if it is a subquasivariety of KL.

Proof. Let L(C) be equivalent to a set of axioms A(C) over an extension
L′ of L not containing symbols of C. Apply the previous lemma to K = KL′

and the set of identities E(C) corresponding to A(C). The algebraic interpre-
tations of the new connectives in MC = RedL(KL(C)) = RedL′(KL′+A(C)) are
automatically KL′-compatible by Theorem 4. Then, by Theorem 1 and
Lemma 5, they are explicitly definable by formulas of L (= formulas of L′)
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if and only if MC is closed under subalgebras or, equivalently, it is a quasi-
variety.

Recalling Corollary 3, we have:

Corollary 7. Let L be an algebraizable logic. A family of connectives C
defined implicitly by an axiomatic conservative extension of L is explicitly
definable if and only if each ∇ ∈ C exists in all algebras of KL.

For example, IPC(S) is a conservative extension of IPC but S does not
exist in all Heyting algebras (Example 5). Hence, Sp is not equivalent in
IPC(S) to a formula of IPC. On the other hand, �LL(δk) extends conser-
vatively �LL (Example 7) but δk is not definable in �LL for k ≥ 2. We may
conclude that δk does not exist in all Wajsberg algebras.

6. A definability theorem

For some logics, any connective defined implicitly by an axiomatic extension
is explicitly definable, as shown in [3] for classical propositional calculus and
n-valued linear intuitionistic logic with successor (Example 6). These are
particular cases of the next theorem.

We will utilize the fact that any finite algebra of an arithmetical variety
is affine complete (Cor. 3.4.1, [9]). Recall that an algebra A is called affine
complete if any compatible function in A is given by a polynomial.

Theorem 8. Let L be an algebraizable logic such that KL is an arithmetical
variety generated either (i) by a finite algebra without proper subalgebras and
with linearly ordered congruence lattice, or (ii) by finitely many finite simple
algebras without proper subalgebras. Then all connectives defined implicitly
by axiomatic extensions of L are explicitly definable.

Proof. Let ∇ be implicitly defined over L by a set of axioms A(∇), and
let E(∇) be the corresponding set of identities. Since KL is congruence dis-
tributive and the generators do not have subalgebras, Jónsson’s lemma (Cor.
IV.6.10, [2]) implies that the subdirectly irreducible (s.i.) algebras of KL are
homomorphic images of the generators and thus do not have proper subalge-
bras either. In case (i), they form a chain of epimorphisms: S0 � S1 � ....
starting with the generator and, in case (ii), they coincide with the gener-
ators. The finite set {Si} of s.i. algebras entering in the generation of the
algebras in M = RedL(KL(∇)) is included in M by Theorem 4, and the quasi-
variety generated byM has the form ISP ({Si}) by finite generation. Module
isomorphism, any algebra A ∈ ISP ({Si}) has a representation A ≤ ΠjSij ,
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which is necessarily subdirect because the Sij do not have proper subalge-
bras. We claim that A contains a finite subalgebraB ∈M . To see this in case
(i), let Sk have the smallest subindex in the representation of A, then there
is an induced embedding Sk ≈ B ≤ ΠjSij where B = A∩B ≤ A because B
does not have proper subalgebras. In case (ii), pick any finite subalgebra B
of A′, which exists since KL is locally finite (Th. II.10.6 in [2]), and make the
necessarily subdirect embedding B ≤ ΠjSij irredundant. Then B becomes
isomorphic to a direct product of Sij ’s by Lemma 1.2.15 in [9], and hence
B ∈M . In any case, B is affine complete by arithmeticality of KL and ∇(x)
is compatible (Theorem 4). Thus, ∇B(x) = t(x,b), where t(x,y) is a term
and b ∈Bk. Therefore, B |= E[∇(−)/t(−,b)]. Let u(z,b) ≈ s(z,b) be one
of the identities in E[∇(−)/t(−,b)]. Since the embedding B ≤ A ≤ ΠjSij is
subdirect for B, given a ∈ Am interpreting z, we may choose bj ∈ Bm such
that πj(bj) = πj(a), where πj : ΠjSij → Sij is the projection. Since B |=
u(bj ,b) ≈ s(bj,b), then Sij |= u(πj(bj), πj(b)) ≈ s(πj(bj), πj(b)). That
is, Sij |= u(πj(a), πj(b)) ≈ s(πj(a), πj(b)), and hence Sij |= πj(u(a,b)) ≈
πj(s(a,b)). Since this holds for all j, then A |= u(a,b) ≈ s(a,b), showing
that A |= E[∇(−)/t(−,b)] and thusA ∈M.We have shownM = ISP ({Si})
and thus we may apply Theorem 6.

Example 10. The first condition of the theorem applies to IPCn(S) (Exam-
ple 6) because KIPCn(S) inherits arithmeticality from the variety of Heyting
algebras, and is generated by 〈Hn, SHn〉, which has linearly ordered congru-
ence lattice and no proper subalgebras.

Example 11. Both conditions of the theorem apply to classical proposi-
tional calculus, since its variety semantics is generated by the simple boolean
algebra without proper subalgebras {0, 1}. More generally, they apply to
n-valued �Lukasiewicz logic with successor �LLn(δn−1) (Example 8) because
Wajsberg algebras are arithmetical and 〈Ln, δn−1〉, being primal, is neces-
sarily simple and without proper subalgebras. In particular, all δk, k ≥ 2,
are definable in �LLn(δn−1).

Example 12. The second condition of the theorem applies to the al-
gebraizable extension of �LL({δk}k≥2) corresponding to the subvariety of
K�LL({δk}k≥2) generated by the primal algebras 〈Ln1 , δk〉k≥2, ..., 〈Lnr , δk〉k≥2.

Theorem 8 fails for non-axiomatic extensions:

Example 13. For n ≥ 3, IPCn(S)+ {D1,D2, R} defines the dual pseudo-
complement D implicitly (cf. Example 4) but not explicitly. Indeed, D can
not be given by a formula of IPCn(S) because DHn it is not compatible
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with the congruence relation of 〈Hn, SHn〉 that identifies the top element 1
with its immediate predecessor.
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