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Abstract. We introduce a natural class of quantifiers Th containing all monadic 
type quantifiers, all quantifiers for linear orders, quantifiers for isomorphism, 
Ramsey type quantifiers, and plenty more, showing that no sublogic of Lo~o,(Th) or 
countably compact regular sublogic of L~o,(Th), properly extending L,o,o, satisfies 
the uniform reduction property for quotients. As a consequence, none of these 
logics satisfies either A-interpolation or Beth's definability theorem when closed 
under relativizations. We also show the failure of both properties for any sublogic 
of L~o~(Th) in which Chang's quantifier or some cardinality quantifier Q,, with 

> 1, is definable. 

Introduction 

Under reasonable closure conditions any logic good for classifying classical first 
order structures of finite type is of the form L = L,o,o(Qi I i ~ I) where the Qi are 
Lindstr6m quantifiers. A logic is regular if it is of the above form, and has in 
addition the relativization property (cf. I-E]). 

In [C1] it is shown that no regular proper extension of Lo,,o generated by 
quantifiers of monadic type satisfies Craig's interpolation lemma. On the other 
hand we have the result by Mekler and Shelah [MeShl] to the effect that the 
validity of the weak Beth property for Lo,~,(Q1) is consistent with ZF. This raises the 
obvious question about the status of the intermediate definability properties: 
A-interpolation (or Souslin-Kleene property) and Beth's definability theorem for 
these logics. An earlier result of Friedman [Fr] shows that Beth property fails 
when L is any logic between L~,o,(Ch) or L,o,o(Q~), ~ > 1, and the infinitary logic 
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L~o,o(Ch, Q~ I c~ > 0), where Ch is Chang's quantifier and the Q~ are the cardinality 
quantifiers. Other negative results appear scattered in the literature. 

In this paper we introduce a natural class of quantifiers Th which includes not 
only all monadic type quantifiers but also all linear order quantifiers, as Shelah's 
cofinality quantifiers or quantifiers comparing linear orders [Shl],  isomorphism 
quantifiers (see survey in [Mu]) and many others one could fancy, say: 

Sxyq~(x, y)<,~o(x, y) defines a Souslin tree, 

Gxyzq)(x, y, z)<:~o(x, y, z) defines the operation of a finitely generated group, 

R~,Xl,..., x,q)(xl,..., x,)<*there is a set of x indiscernibles for ~0 in the field of ~o, 

and we show, via a uniform counterexample, that both properties fail for any 
regular sublogic of L,o,o(Th), or for any countably compact regular sublogic of 
L~,o(Th) properly extending L,o,o. They also fail for any L (not necessarily regular) 
between Lo, o,(Ch) or L~o,o(Q,), a > 1, and Loo,o(Th). 

The canonical reason for failure of A-interpolation is that these logics do not 
have the uniform reduction property with respect to the quotient operation of 
dividing a structure by a congruence relation [Fe, Ma]. In other words, these 
logics are not congruence closed in the sense of [MeSh2]. The counterexample for 
A-interpolation is transformed in one for Beth property using a tree technique due 
to Friedman [Fr], and later generalized in [MaSh1, 2]. 

Recently Hella [HI has shown strong results which intersect at some points 
with ours, implying for example that AL,o,o(Q~, Q,+ 1) and Beth L~oo,(Q~) are not 
finitely generated for regular c% 

All logics considered in this paper will be single sorted and will have finite 
occurrence number. For all unexplained concepts and notation we refer the reader 
to [BFe]. 

1 Thin quantifiers 

A set I is said to be a set of indiscernibles for a n-ary relation R if/__c Field(R), and for 
any Xl,.. . ,x,, Yl,...,Y, e I  with x i+xj, Yi+Yj for i 4 j  we have: 
(xl, ..., x,) e R~*(yl, ..., y,) e R. Here, Field(R) = ? rh(R), rc i being the i th projection, 
i=1 ,  ...,n. 

A Lindstr6m quantifier Q will be said to be ~-thin if (A, R1 ....  , R~)e Q with 
IAI > x implies none of the R~, i = 1 .....  m, admits a set of IAI indiscernibles (in its 
field). Let T~ be the class of all x-thin quantifiers. Evidently T~ C T~, for x < ~c'. 

Recall that for a class of quantifiers C, the fragment of L~o(C) consisting of 
formulae of quantifier rank less than an ordinal e is denoted by L~o~(C), where a 
quantifier of arity @1 .. . .  , ns) is supposed to increase the quantifier rank by 
max{n,}. 

A Lindstr6m quantifier Q will be called thin if there is n e e) and a cardinal x o 
such that for each ~: > ~0, Q is definable in models of power ~ by a sentence of 
L~o~(T~), depending only on ~c. 

Let Th be the class of all thin quantifiers. It contains U T~ and it is closed under 
K 

all first order operations. Many familiar quantifier belong to Th. 
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Examples 

(a) Cardinality quantifiers. --7 Q~ is co~-thin, because a set of [A[ many indiscernibles 
for a monadic relation R ~n A is just a subset of Field(R)=R, of power [AI, which is 
impossible if(A, R) e -7 Q~ and [AI _-__ ~o=. Similarly, Q = ~ (there are exactly x...) is x +- 
thin, and -7 Ch is l-thin. 

(b) Linear order quantifiers. Those quantifiers Q for which (A, R1,... ,  R,) ~ Q 
implies the R~ are linear orders of their fields are 2-thin, due to antisymmetry and 
tricotomy. Various of these quantifiers have been discussed in the literature, for 
example Wxyq~(x, y), Q~~ y), or lxyzx(q~(x, y), ~p(z, 2)), meaning respectively: ~o 
defines a well order, ~o defines a linear order of co finality x, or q~ and ~p define 
isomorphic linear orders. We still obtain thin quantifiers allowing the R~ to be 
partial orders of bounded width, for example: 

S~xyq~(x, y)ce%o defines a x-Souslin tree in its field 

is x-thin because of the x-chain condition. 
(c) Bounded power quantifiers. Q is bounded in power if there is x such that for 

all (A, R1 . . . .  ,R , )eQ,  IR~l<x, i= l , . . . , n .  Such quantifiers are obviously x-thin. 
They include the quantifiers --1Q~ and Q =~; also the quantifiers for isomorphism to 
a given structure Qt~: 

~ Qmx~...2,,(~o, q), . . . .  , q),,).e~(rp ~, q)]~ . . . .  , q)~)~ f~, 

and many others as: 

Gxyz~o(x, y, z ) ,~o  defines the operation of a finitely generated group. 

(d) Ramsey quantifiers. The quantifiers R n X l  . ..Xnq)(X 1 . . . .  ,Xn) meaning there is 
a set of x indiscernibles for ~o (in its field). Obviously, --7 R~ is K-thin. 

Lemma 1. Th contains all monadic type quantifiers. 

Proof A monadic type quantifier Q is characterized by a family of sets c(x) =c p(x) 2", 
x ~ Card., such that (A, P1,... ,  P,) ~ Q if and only if(lRl[ . . . .  , IRa,I) e c([A[), where the 
Rj are the blocks of the partition induced by the P~ in A. Hence, in models of power 
X~ 2 n 

Qxl . . .x , (PI(xO, . . . ,P , (x , ) )~  ~/ /~ Q=r 
fl~c(rr j =  1 

which belongs in said structures to L~,o(T~) because Q =Bj is x-thin for flj < x and is 
equivalent to Q, for flj = x = o9,. []  

2 Failure of uniform reduction for quotients 

Recall that for any logic L there are minimal closures AL and Beth L satisfying 
A-interpolation and Beth definability property, respectively. In general both 
closures are incomparable (cf. [E]). 

Other sorts of closures may be defined. A logic is said to be congruence closed 
[MeSh2] if for any sentence ~0 in L of type say z there is another sentence q~-~ in L 
of type z u ( E ) ,  E a new binary symbol, such that: 

~ / E ~ q, ~,. ( ~,  E) ~ ~o - ~ (1) 
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for any z-structure 91 and congruence relation/Tin 91. It is easy to see that this is the 
same as asking the logic to have the uniform reduction property with respect to the 
quotient operation: 

Jg~/E if E is a congruence in 
F(9.1, E)= 

otherwise, 

in the sense of [Fe, Ma]. For any logic L there is a well behaved congruence closure 
qL, obtained by adjoining to L the sentences defined by (1) as new quantifiers. 

In the next theorem no regularity condition is asked from the logic L, it could 
consist of a single sentence added to L ~ .  

Theorem 1. I f  L extends properly L,o,o then qL~= L,o,o(Th). I f  qL < L~,o(Th) then L 
has the Karl) property. 

Proof Given any cardinal x and structure ~I of type z, define g[(x) -- (9I x G, E) 
where 9.1 x G is the ordinary cartesian product of structures, G is the structure with 
universe x and relations R ~ = x  "~ for each R s z ,  and E is the relation: 
(a,e)E(b, fl)~,a=b. Obviously, E is a congruence in 9I(~) such that N(x)/E 

(9.1, =), and ff E(x) denotes the E-equivalence class of x e A x ~c then JE(x)] = ~c. 

Claim 1. Let q~(vl, ..., vr+,) be a formula in any logic, 8=  {at . . . .  , a,} =CA x ~c, and 

= {2 e (A x ~)r 1 !R(x)~ ~0(2, at . . . .  , a,)}, 

then one of the two following properties must hold: 
i) Field(~) =C d. 

ii) There is x ~ A x x such that E(x)\a is a set of indiscernibles for ~. 

Proof Since E is a congruence, for any x e A  x ~c and xt .... ,x,, Yl, ...,y, eE(x)\8 
with x~ -~-*y~ bijective, there is an automorphism of !~I(x) sending x~ to y~ and leaving 
fixed ~. I.f there exists x e Field(~)\~, then by the isomorphism axiom of logics 
applied to the formula defining Field(~) we have E(x)\gt c__ Field(~). By the same 
axiom applied to q~ we conclude this is a set of indiscernibles for Field(~). 

Claim 2. For x > c0, any formula of L~(T~)  is equivalent in all structures ~l(x) to a 
formula of L~o, depending only on ]Ax x[. 

Proof If ~I(x)~ Qxt...xjqh(21, ~), ..., r g)) for a x-thin quantifier Q, then by 
Claim 1, Field(~) ~ d for any of the truth sets ~ corresponding to the ~0~. If Q has 
arity (nl,  ..., G)  let x '=  [A x xl, and 

Q0() = {(Rt, ..., R,)I(tr Rt .... , R~)6 Q, RiC= {0,..., n}"'}, 

then by the closure of quantifiers under isomorphism plus the fact that 9.I(x) has 
power x', the above formula is equivalent in this structure to the disjunction over 
Q(x') of 

VXi qJi(xi, a) 4"+ V (xr"~-ajr) , 
i= 1 jER~ r 

where 2i = (xl ..... x79. This formula adds max{n/} to the rank of the q~i, which is 
exactly what the quantifier Q does. 

Now we may prove the theorem. Let ~o s L\Lo, o, be of finite type z, then by a well 
known argument due to Lindstr6m there are for each m ~ co structures 9.I t and 9.12 
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of type z such that 

~ = 9 . I  2 in Lm~, 9.I1~o, 9/2Nq~. (2) 

By using partial isomorphisms one may easily show that for any tc 

9.1~(x)__ 9.I20c) in Lmo~. (3) 

By Claim 2, one may conclude that if to>[All , [A2[ , (9, 

~(K)--~Iz(X ) in L%~(T~). (4) 

Now, any sentence a e L~,o(Th) contains finitely many thin quantifiers, and so there 
is m ~ co and ~c o such that for all x > Xo, a is equivalent in models of power x to a 
sentence in L~,(T~). Taking tc > [All, [Azl, 1r o), we see by (4) that a can not reduce 
uniformly ~o, since 911(tc)/El~q) and 9.I2(x)/E2~ ( p. Hence q~-qCL~,o(Th). 

Finally, if L is not a Karp logic, one may strengthen (2) to elementary 
equivalence of 9.I~ and 9.12 in L~oo,, yielding equivalence with respect to L~oo, in (3), 
and with respect to L~o,o(T~) in (4) by Claim 2. A sentence of Loo,o(Th) contains a set 
of thin quantifiers and so there is x0 such that for models of power ~: > x0 it is 
equivalent to a sentence in L~o,o(T~). This, together with the strengthened version of 
(4) implies that ~p-qCL~(Th).  []  

Corollary 1. There is no congruence closed logic L with Lo~o~ <L_-<L~o~o(Th), neither 
countably compact, regular, congruence closed L with L,o~ < L <= L~o(Th). 

Proof The only countably compact, regular extension of L~,,o with the Karp 
property is Lo,,~ itself, by LindstrSm's argument coding partial isomorphisms. []  

Compare this result with Theorem 4.8 in Krinicki [K]. There are many 
interesting congruence closed logics, which by the first part of the Corollary can 
not be sublogics of L,o,o(Th). For  example L~o~ withK > co 1 (these are sublogics of 
L~oo~(Th)); qLo~o~(Q~) = Lo~o,(E~), where E~xyq)(x, y) says that (p defines an equivalence 
relation with at least co~ equivalence classes; L~o~(Q"~), n > 2, where Q~" is the n-ary 
Magidor-Malitz quantifier in the (o,-interpretation; monadic second order logics 
L m2, E,m2, and L~], where the second order variables range over arbitrary monadic 
predicates, monadic predicates of power at least rg,, and monadic predicates of 
power less than c9~, respectively. See [K] for more examples and some proofs. 

V/i/in/inch shows in [V] that there is no family Qi, i e co, of monadic type 
quantifiers such that Lm~ < Lo~o(Q i [ i e (9). This is explained and improved by our 
result. We can do better. 

Corollary 2. None of the following logics is a sublogic of L~o~(Th):L~o~(E~), 
Lo~,(Q2), m2 m2 E, , and 12 < ~, when a _>-1, also L m2 and L~ 2. 

Proof These logics do not have the Karp property because either the quantifer  Q~, 
> 1, or the class of complete dense linear orders is definable in them. [] 

3 Failure of A-interpolation 

The logics introduced in [C2] are such that 
Theorem 1 we have for them qL$=AL. This is 
relativizations. 

AL=L<L,o,~(Th). Hence, by 
not possible if the logic has 
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Lemma 2. I f  L is an extension of L,oo~ closed under conjunctions, negations, and 
relativizations then qL <= AL. 

Proof. Let q~ be a sentence of L of type t and consider the sentences ofL~o , where E 
and V are new predicate symbols: 

~p: Vxa !y(Vy ^ Exy). 

Then the following are complementary PC classes of type tu{E} in L: 

c l  = {921 0 ^ w ^  ov}, 

= {921 aV( , = ^ -n 

and q~- q is the sentence of AL making C 1 elementary, because 92 e C, if and only if 
E ~ is a congruence in 92, and there is a set of representatives V for E ~ such that 
92/E~'~9.IIP~q~. As AL is always closed under substitutions the result 
follows. [] 

Theorem 2. I f  L is a proper extension of L,o,o closed under relativizations then 
AL~Lo,,~(Th). I f  in addition, AL is not a Karp logic, for example it is countably 
compact, then AL ~ L~,o(Th ). 

Proof It is easy to check that AL is regular, hence, by Lemma 2, qAL< AAL= AL. 
The conclusion follows from Theorem 1. [] 

Many results in the literature become special cases of this theorem, as the 
following examples illustrate. 

(a) Lo~(Q I~) does not satisfy A-interpolation for any infinite structure 92, 
moreover AL~o,(Q ~) can not be generated by thin quantifiers. Compare with 
Theorem 2.3.1 in Mundici [Mu]. 

(b) ALo~o~(Q,) ~= Lo~,o(Th) for ~ > 1, compare with [KLV]. Also AL~2o~ ~ Lo~,~(Th) 
because Q1 is definable in this logic. 

(c) Let C be any non empty class of infinite cardinals and let Q~~ y) mean 
that q(x, y) defines a linear order of cofinality in C, then L,o,o(Q~ ~ does not satisfy 
A-interpolation. It is not a Karp logic since it allows elementary classes of 
uncountable dense linear order so AL,oo~(Q~~ Lo~o~(Th). Compare with [MaSh2]. 
We have similar results for the logic Lo~,ot~ctr~d~ where Q~"xy~o(x, y) means that 
q3(x, y) defines a linear order having a dense subset of power belonging to C (cf. 
Theorem 3.2.1 in [Mu]). 

(d) L,~,o(aa)~L~,~(Th) because ALo,~(Q~ ~ <L,oo~(aa) by one of the few known 
positive results on definability, shown by Shelah [Sh2]. [] 

The logic L,o,~(Ch) is not covered by Theorem 2 because it is not closed under 
relativizations. However, we can dispence with the relativization hypothesis if the 
logic is strong enough to define Ch or one of the Q~, c~ > 1. 

Theorem 3. A sublogic of L~oo~(Th) extending L ~  + Ch or L~o,~ + Q~ for some c~ > 1 
does not satisfy A-interpolation. 

Proof In case Ch e L consider the complementary PC classes C~, C2 defined as in 
the proof of Lemma 2, with "c=0 and using ChxXx instead of the relativized 
sentence ~o v. For any K>~o, the structures 9.11=(tc ) and 9.I2=(e) ) are L~oo~- 
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elementary equivalent, and so by Claim 2 in the proof of Theorem 1, N~(x) = 9~2(/~ ) 
in L~,~(T~), but the first belongs to C~ and the second to C2; hence, these two 
classes are inseparable in Loo,~(Th). If Q~ ~ L for some e >_ 1, use Q~xV(x) instead of 
q~v to define the classes, and let 9.1~ =(co~), N2=(co), then for any x_>og~ 9.It(x) 
-9~2(tc ) in L~,(T~); but these two structures belong to distinct Ci. [] 

4 Failure of Beth's property 

Logics generated by thin quantifiers do not have in general the "tree preservation 
property", cf. [Ma], but preservation for certain structures will be enough to 
transform our counterexample to interpolation in one for Beth's property. This 
time we will assume regularity of the logic, although the reader may verify slightly 
weaker conditions suffice. 

Theorem 4. I f  L is a regular proper extension of L~, then Beth L ~: Lo,,~(Th). I f  in 
addition L is not a Karl) logic (for example it is countably compact) then 
Beth L ~: L~o,(Th). 

Proof. Given q~ e L \ L ~ ,  let Ci = {~ [ ~ ~(9.I, F)~ ai}, i = 1, 2, be the complementary 
PC classes of Lintroduced in the proof of Lemma 2, where al and a2 are sentences 
in the vocabulary zw {E, V}. Add a new binary relation symbol R and consider the 
following sentence X(V) of type zu{E, R, V}, which belongs to L by regularity: 

Vx [( Vx -~ o-~,l Rx,~) ̂  ( Vx -~ o-2 ~ J Rxr~)]. 

Then we have, whenever 0I, F')~ S(V), and letting Sa = {y ~A [(a, y)~ R~}, that 
(9.I rSa) r~g3 is in C1 or C2, and P =  {a ~ A [(9.1 ISa) [ ~  ~ C1}. This shows V is 
implicitely defined by S(V). To show that V is not explicitely definable from S(V) in 
L~,(Th), respectively in L~o~,(Th), it is enough to prove that the projection 
C = {9.1 [ 3 P(9.I, F)M S(V)} is not elementary in these logics. For this purpose we will 
utilize the structures 9.I1(x ) e C1, 9.I2(x) r C~, introduced in the proof of Theorem 1 
to construct tree structures V~(~c)r C, Dz(~ ) ~ C, such that for large enough x 

D~0c)-D2(~c) in L%o,(T~), (5) 
respectively 

D~(x)-D2(x) in Lo~,(T~). (6) 

Let (T,/~) be the tree of all finite sequences of ordinals less than ~, where/~ is the 
immediate successor relation: ( x , y ) e g . ~ y = x - ( f l )  for some flex, with the 
empty sequence 0 as the root. We expand (T,/~) in two different ways to structures 
of type {R}wzw{E}. The sets Sa.~-{X~ T[ (a,x)~g}, ae  T, have power ~c and are 
mutually disjoint. 

Expansion 1. Let Dl(tC) be the result of giving to each Sa the structure of ~[l(x), this 
is, taking D a =(DI(K ) ISa)I'cu{E} '~ 9~l(X) and interpreting the symbols of zw{E} in 
Da(x) as the union of their interpretations in the Da. Obviously D~(x) q~ C because 
(Dl(x), ~')~ S(V) would imply E m~) ISr to be an equivalence relation in Sr with set 
of representatives VerSo, and for y ~ So, D r would be in C~ only ify e V,, which is not 
the case by construction since the equivalence classes are infinite and all D r ~ C 1. 

Expansion 2. Fix choice sets V~ and V2 for E ~'(~ and E ~(~), respectively. We define 
inductively in the level ofa e T a structure (Da, V~) of type zu {E, V} with domain S,. 
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First, (D~, V0) ~ (9.ix(x), Vx). Assume (Db, Vb) has been defined on Sb for each b of level 
< n, then for a of level n + 1 let b be its immediate predecessor in the tree and define: 
(D,, Va),~(9.1~(x), Vx) if a~ Vb, (D,, Va)g(9.1z(x), Vz) if ar Vb. (D2(x), V) will be the 
expansion of (T,/~) which interprets z w {E, V} by the union of its interpretation in 
the (D,, V~), taking care of adding the root 0 to the interpretation of V. Then 
(D2(~), V)~ S(V) by construction and so D2(x ) e C. 

Equivalences (5) and (6), and so the proof of the theorem will follow from the 
next lemma. 

Lemma 3. I f  9.I~ and ~[2 have power at most ~c > e), and 9.1~ =_ ~[2 in I2~o~, then D ~(~) 
-D2(~c) in L~,~(T~). 

Proof We already know that under the hypothesis: 9.-[1(/~)-------~2(/r ) in/A~o,. We 
define now a Karp system of partial isomorphisms (I~)~ < = between O ~(x) and D2(~c) 
as follows: f e I v if and only if it is a partial map of finite domain from 7"1 to Tz such 
that: 

i. Domain and range of f are closed under predecessors, and f is an 
isomorphism between the induced subtrees. 

ii. If ~i=(at . . . .  , a,) is a listing of dom f, and b-=(b~, ..., b,) with b~=f(a~), then 
for all x e dora f :  (D~, ~i [S~) = (Ds(~), b-rSf(~)) in L~2.  

For simplicity we will write the last equivalence as d rS~ ~ b-ISi(~ ). Obviously, 
0 s Ir for any ~ < c~. Now we show that this system has the extension property with 
respect to ~. Assume f e I~ + ~, V + 1 < e, and let ~i and b be as in (ii) above. Given 
x e T 1 \ d o m  f we must find g e 1~ such that g ~ f and x ~ dora g. Let Zo, ..., zt = x be 
the unique path in the tree connecting the root to x, and let z k be the first in the path 
not belonging to dom f, then Zk + ~, ..., Zt r dom f Let a= ~ dom f be the inmediate 

predecessor of Zk, since by definition we must have ~IS.V+--I~ISb., we may find 

Z'k e Sb. such that &k IS.. ~ b-z~ ISb~ using and adequate formula of rank 7 + 1. Now 

find z~+~ e S~ such that Zk+ ~Lz~+~; this is possible because by our initial 

observation D ~ -  Dza, in L ~  2. Inductively, continue choosing z~ +~ e S~ such that 

zi + ~ 2_ z, i + ~ i = k + 1,.. . ,  t. Then g = f w  {(zi, z~) [ i = k .....  t} e I~ because (i) holds by 
construction, and (ii) may be verified case by case: for aw ~ dom, f, w :t=u, 

S 

by hypothesis; 

az rS. = az~ IS.. ~ - '  - -  ~ bZk [Sb. = bS' [Sb. 

by choosing of z~. Now, for i=  k, ~ ,  t - 1 ,  

---t 
~' ' =bz  ISz; ~ r s , , , =  zi+ t - z i +  l 

by construction, and 



Definability properties and the congruence closure 239 

The other direction of the extension property is analogous. 
With this we have shown that DI(K)-  D2(x) in L~o, it remains to show that the 

to-thin quantifiers are eliminable in Di(tc), i=  1, 2. Consider the Karp system of 
partial isomorphisms defined as before but from Ol(tc) into itself, similarly for 
D2(~). 

Claim. Let E, be the interpretation of E in D 1(~), then for any a E T n closed under 
predecessors and x 1 .. . .  , x ,  yl , . . . ,  Yr e e l ( x l ) \ a  with x, 4: x j, Yi 4= y j, and any 7 there 
is f e I v which is the identity in 8 and f(xi) = Yv A similar claim holds for D2(x). To 
see this notice that under the hypothesis, the x~ and y~ lie in the same Su. Close 8u 
under predecessors to obtain 4'; still xi, y~q~gt'. By Claim 1 in the proof of 
Theorem 1, applied to an appropriate complete formula of rank 7, we have: (D,, 
a'2 [ Su)-  (Du, 8'y ISu) in L~+2; moreover, for w + u, 8'2 ISw = 8' [Sw = 8'y [Sw. This 
shows condition (ii) for the m a p f  which is the identity in 4' and sends x~ to y~; 
condition (i) holds by construction. 

Under the same hypothesis of the Claim we have by the properties of Karp 
systems: 

Di(l.(,)~ q)Fx1 . . . .  , xr ,  4] <---> (P[Y l . . . . .  Yr, al 

for any (p ~ L~o,o. Arguing as in the proof of Theorem 1 we may conclude that any 
formula of Looo,(T~) is equivalent in Di(x) to a formula of Loo,o of the same 
quantifier rank which only depends on the power of Di(x), and so it is the same for 
Dl(~c ) and D2(tc ) which have both power •. Hence, DI(~)-D20c ) in/2~o~(T~). []  

Again, if Ch is definable in the logic we may avoid the relativization hypothesis 
to get a generalization of Friedman's theorem in [Fr]. 

Theorem 5. No logic between L~o~o(Ch) or L,~,~(Q~) with ~ > 1 and L~o~(Th) satisfies 
Beth's definability theorem. 

Proof Beth L,o~,(Q~)~_ Looo,(Th) by Theorem 4 because it has relativizations and is 
not a Karp logic for ~__> 1. Now the sentence Z(V) that defines V implicitely in 
L~(Ch)  but not explicitely in L ~ ( T h )  is 

Vx[(Vx ~O A ~,(x) A --7 Chy(Rxy A Vy)) A (--7 Vx A O~,p(x) A Chy(Rxy A Vy))] 

where 0 says that E is an equivalence relation and ,p(x) is the formula 

Vy(Rxy~3  !z(Rxz A VZ A Eyz)). 

The proof  is as in Theorem 4 starting with the structures 911,912 introduced in the 
proof of Theorem 3. []  
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