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Abstract. In any model theoretic logic, Beth’s definability property together with Fefer-
man-Vaught’s uniform reduction property for pairs imply recursive compactness, and the
existence of models with infinitely many automorphisms for sentences having infinite mod-
els. The stronger Craig’s interpolation property plus the uniform reduction property for pairs
yield a recursive version of Ehrenfeucht-Mostowski’s theorem. Adding compactness, we
obtain the full version of this theorem. Various combinations of definability and uniform
reduction relative to other logics yield corresponding results on the existence of non-rigid
models.

The celebrated theorem of Ehrenfeucht and Mostowski states that any first order
theory having infinite models must have non rigid models. In its strongest form, it
claims that any linearly ordered set may be embedded as a set of indiscernibles in
a model of the theory, so that all the automorphisms of the order extend to auto-
morphisms of the model (cf. [EM], [Ho]). The known proofs of the theorem utilize
compactness and Ramsey’s theorem or ultrafilter arguments combining both to get
models with the given ordered set as a set of indiscernibles, and they use the fact
that first order logic is generated by the existential quantifier to Skolemize over the
indiscernibles. These techniques have been adapted successfully to obtain analogs
of the Ehrenfeucht-Mostowski theorem for the infinitary logics Lκω by Chang [Ch]
and others, following Morley [Mo], and for logics with additional quantifiers like
L(Qα), L(Q

cof
ω ) or L(aa) by Ebbinghaus [E1] and Otto [O].

In this paper, we show that the familiar definability properties, together with
the Feferman-Vaught uniform reduction property for pairs (URP), imply versions
of increasing strength of the Ehrenfeucht-Mostowski theorem for arbitrary model
theoretic logics. Thus, Beth’s definability property and URP imply the existence of
models with infinite automorphism group for any relativized projective class hav-
ing infinite or arbitrarily large finite models. Recursive compactness follows (Sec.
2). Under Craig’s interpolation lemma, this may be improved to a recursive ver-
sion of Ehrenfeucht-Mostowski’s theorem, implying, for example, that any recur-
sive theory with infinite models has models with the ordered rational numbers as
indiscernibles (Sec. 3).Adding compactness yields the full Ehrenfeucht-Mostowski
theorem except, perhaps, for its functorial character (Sec. 4). Other combinations
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of weak forms of definability and uniform reduction relative to other logics yield
corresponding results on the existence of non-rigid models, and allow some appli-
cations. These results should be seen in the light of [S1, S2], and [Ma], where some
connections between definability, uniform reduction, and automorphism properties
are considered.

1. Preliminaries, κ-uniform reduction for pairs

For the concept of a model theoretic logic L, we follow [E2]. L will be assumed
to contain first order logic, and to be closed under finite conjunctions, renamings,
and relativizations. An additional proviso will be that L(τ) be closed under con-
junctions of power |τ | if there is a sentence ϕ ∈ L(τ) for which |τ | is minimum.
Unless stated otherwise, smallness of L will not be assumed; that is, the class L(τ)

of sentences of type τ might be a proper class. For simplicity, we will deal with
single sorted logics only, but all the given results hold in the many sorted case.

See [E2] or [Ma] for a description of the definability properties: Beth defin-
ability, weak Beth definability, and Craig interpolation, as well as their relativ-
ized versions involving two logics: Weak-Beth(L,L∗), Beth(L,L∗), and Craig(L,L∗).
Recall that any logic L has smallest closures WB(L) and B(L) satisfying, respec-
tively, weak-Beth and Beth’s properties (which is not the case for the interpolation
property). The condition Weak-Beth(L,L∗) means the same as WB(L) ≤ L∗, but
Beth(L,L ∗) is weaker than B(L) ≤ L∗.

The disjoint sum of two vocabularies τ1 and τ2 is the vocabulary τ1 ⊕ τ2 =
{P1}∪τ1 ∪{P2}∪τ ′

2, where τ ′
2 is a copy of τ2, disjoint from τ1, and P1, P2 are new

unary relation symbols. The disjoint pair (full cardinal sum, strong cardinal sum) of
two structures Ai ∈ Str(τi), i = 1, 2, is the structure [A1, A2] = 〈A1∪A′

2, A1, A
′
2〉

of type τ1 ⊕ τ2, with {P1} ∪ τ1 interpreted by the universe A1 and the relations of
A1, and {P2} ∪ τ ′

2 interpreted by the universe A′
2 and the relations of a copy A′

2 of
A2, disjoint from A1.

We introduce, in the next definition, a relativized hierarchy of intermediate prop-
erties between the uniform reduction property for pairs (URP ) and the pair preser-
vation property (PPP ), cf. [Ma]. As usual, A ≡� B means that A |= ϕ ⇔ B |= ϕ

for all ϕ ∈ �, and we write A ≡ϕ B for A ≡{ϕ} B.

Definition. A logic L has the κ-uniform reduction property for pairs (κ-URP ) in
L∗ if for any ϕ ∈ L(τ1 ⊕ τ2) there are sets of formulae �i ⊆ L∗(τi) of power less
than κ such that, for any structures Ai , Bi of type τi, i = 1, 2 :

Ai ≡�i
Bi , i = 1, 2, imply [A1, A2] ≡ϕ [B1, B2].

∞-URP means that the above holds with sets �i of arbitrary power, and PPP

means that it holds with �i = L∗(τi) . In this context, we say that the sets �1, �2
reduce ϕ uniformly. Whenever L = L∗, the second logic will not be mentioned.

Clearly, URP = ω-URP ⇒ ... κ-URP ⇒ ...∞-URP ⇒ PPP , the last two
properties being equivalent for small L∗. For compact L∗, the hierarchy collapses
because URP = ∞-URP by Claim 2.2 in [S1].
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It is easily shown, using appropriate systems of partial isomorphisms, that Lωω,
Lωω(Qα), and Lωω(Q

cof
ω ) have URP (in themselves), and the infinitary logic Lα

∞λ,

consisting of sentences of L∞λ of quantifier rank less than α, has PPP . However,
Lκλ has PPP in itself if and only if κ is strongly inaccessible or ∞ (cf. Malitz
[M]). This is partially repaired in the next example.

Recall that �α(κ) is defined inductively as �0(κ) = κ, �α+1(κ) = 2�α(κ), and
�α(κ) = supβ<α �β(κ) for limit α. We write �α for �α(ω).

Example 1. If κ is regular then Lκλ has �κ -URP in L�κλ. Thus, L∞λ and L∞∞
have ∞-URP. This may be shown by a Feferman-Vaught construction like in
Malitz Th. 2.1 [M], but a simpler argument is the following. By regularity of κ,

any sentence of Lκλ has both occurrence number and quantifier rank less than κ.

Consider ϕ ∈ Lα
∞λ(τ1 ⊕ τ2), with α, |τi | < κ. Since Lα

∞λ has PPP , the equiv-
alence ≡ϕ is reducible to equivalence with respect to subclasses �i ⊆ Lα

∞λ(τi),

i = 1, 2, but a straightforward induction on α shows that |Lα
∞λ(τi)| ≤ �α+1(|τi |)

≤ �|τi |+α+1 < �κ .
Any logic has PPP in some extension, for example in its join with the logic

L∞∞, but it may happen that it does not have ∞-URP in any extension (see
Example 3 below).

2. Automorphisms from Beth

Given a structure A of type τ , A�µ will denote its reduct to a sub-vocabulary µ ⊆ τ,

and A�P A will denote its restriction to the subuniverse P A, where P ∈ τ. A class
K of structures of type τ is a relativized projective class (RPC) of L if it has the
form K = {A�P A�τ : A |= ϕ}, where ϕ ∈ Lµ∪{P } and τ ⊆ µ ∪ {P }. We say that
K is RPC	 if a theory is allowed instead of the sentence ϕ in the definition of K .
We will write K ∈ RPC(L), respectively K ∈ RPC	(L), to express these facts.

A recursive theory of L will be one of the form {ϕ} ∪ T , where ϕ ∈ L, and
there are finitary quantifiers Qi definable in L such that T ⊆ Lωω(Q1, ..., Qn) is
recursive in the usual sense. It is easy to see, adapting well known arguments due to
Kleene, Craig and Vaught [CV], that the models of such a theory form a RPC class
of L. Therefore, all the results stated in this paper for RPC classes will hold for
recursive theories.

For any class of structures K, set:

||K|| = sup{|A| : A ∈ K}.
Thus, ||K|| = ∞ means that K has arbitrarily large structures.

Theorem 1. If Beth(L, L∗) holds and L∗ has κ-URP in some extension, then
any K ∈ RPC(L) with ||K|| ≥ κ has non rigid models. If, in particular, L∗ has
∞-URP in some extension then no proper class of rigid structures is RPC in L.

Proof. If K ∈ RPC(L) is rigid with ||K|| ≥ κ, then the class Kp of structures
isomorphic to 〈A ∪ S, A, ∈�(A × S)〉, where A ∈ K and S ⊆ P(A) ∪ PP(A) is
extensional, inherits from K rigidity and the property of being RPC in L. More-
over, ||Kp|| ≥ sup{22δ

: δ < κ } . Assume that Kp = { A�P A �µ : A |= ϕ},
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where µ ⊆ τ and ϕ ∈ L(τ) with minimum |τ |. Since the logic has relativizations,
and conjunctions of power |τ |, there is a sentence θ(F ) ∈ L(τ+ ∪ {F }), τ+ =
(τ ∪ {c}) ⊕ (τ ∪ {c}), defining the following class of structures

{〈[〈A, a〉, 〈B′, b〉], f 〉 : A, B |= ϕ, and f : A�P A�µ → B′�P ′B′�µ′ is an
isomorphism}.

Here, ′ denotes a disjoint copy of each symbol, structure, or relation, and F is
interpreted by f , which is an isomorphism in the sense that it sends the interpre-
tation of R ∈ µ to the interpretation of the corresponding R′ ∈ µ′. The sentence
θ(F ) defines F implicitly, due to the rigidity of Kp. By hypothesis, there is an
explicit definition ρ(c, c′) ∈ L∗(τ+) of F and a set � ⊆ L∗∗(τ ∪ {c}) of power
|�| = δ < κ uniformly reducing ρ(c, c′), in some extension L∗∗ of L∗. Since
there is A |= ϕ such that |P A| ≥ 22δ

and the equivalence ≡� has index at most
2δ , we may find distinct a, b ∈ P A such that 〈A, a〉 ≡� 〈A, b〉. Let A′ be a
disjoint copy of A with a necessarily unique isomorphism h : A → A′. Then
M1 = [〈A, a〉, 〈A′, h(a)〉] ≡ρ(c,c′) [〈A, a〉, 〈A′, h(b)〉] = M2. But 〈Mi , h�P A〉 �
θ(F ); thus, 〈Mi , h�P A〉 � F(c) = c′ if and only if Mi � ρ(c, c′) for i = 1, 2. This
is a contradiction, since 〈M1, h�P A〉 � F(c) = c′ and 〈M2, h�P A〉 � F(c) = c′.

��

As an immediate application of the previous theorem we have the following
strengthening of the undefinability of well order in L∞ω: no proper class of rigid
structures is RPC in L∞ω. Indeed, Beth(Lκω, L

(2<κ)
+

κ
) holds by a result of

Malitz (Th. 5.1 [M]) and thus Beth(L∞ω, L∞∞); moreover, L∞∞ has ∞-URP

after Example 1. A finer version of this result is the following one, due originally
to Chang [Ch] for successor κ.

Example 2. If κ is regular, there is r < �(2<κ)+ such that any K ∈ RPC(Lκω)

with ||K|| ≥ r has non rigid models . Indeed, combining the above mentioned
result of Malitz with the fact that the logic L

(2<κ)
+

κ
has �(2<κ)+ -URP in some

extension (Example 1), Theorem 1 implies that any rigid K ∈ RPC(Lκω) has
||K|| < �(2<κ)+ , and thus ||K||+ < �(2<κ)+ since the last cardinal is limit. But
there are essentially 2<κ distinct RPC classes in Lκω if we identify isomorphic
vocabularies. Thus we may take r = sup{||K||+ : K ∈ RPC(L), K rigid}, which
is less than �

(2<κ)
+ by regularity of (2<κ)+.

Example 3. B(L(aa)), the Beth closure of Stationary Logic, does not have ∞-
URP in any extension. Under the continuum hypothesis, the same is true of the
infinitely deep logic Mω2ω1 . This follows from Theorem 1, since L(aa) has a rigid
sentence with arbitrarily large models (Otto [O]), and the second logic has the inter-
polation property under CH (Hyttinen [Hy]), and obviously defines well-order. We
may conclude, further, that these two logics are not contained in L∞∞ and do not
have PPP in any small extension.

Considering κ = ω in Theorem 1, we obtain:
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Theorem 2. If Beth(L, L∗) holds and L∗ has URP in some extension, then any
RPC class of L having infinite or arbitrarily large finite models has models with
infinite automorphism group.

Proof. Under the given hypothesis, any K ∈ RPC(L) with ||K|| ≥ ω must have
infinite models. Otherwise, the rigid class {(A, <) : A ∈ K and < is a linear order
of A} would contradict Theorem 1 for κ = ω. Adding sentences to insure that K

has only infinite models and applying Theorem 1 again, inductively, we obtain that
the following RPC classes of L:

Kn = {〈A, ai, fi〉1≤i≤n : A ∈ K, fj ∈ Aut〈A, ai, fi〉1≤i≤j−1, fj (aj ) �= aj

for 1 ≤ j < i ≤ n},
are non empty for all n ≥ 1. Since the fi are distinct by construction, the RPC

class K
′ = {G : G is a group acting faithfully on some A ∈ K} has arbitrarily

large finite models, and thus infinite models by the initial remark. ��
Theorem 2, Claim 2.2 in [S1], and an obvious application of compactness yield:

Corollary 3. If L is a compact logic satisfying Beth property and ∞-URP (PPP

for small L), then any RPC	 class of L having infinite models has models with
arbitrarily large automorphism group.

Example 4. Any RPC	 class of B(L(Q
cf
≤2ω)) having infinite models has models

with arbitrarily large automorphism group. Because this logic satisfies compact-
ness and URP (Shelah [S1]).

Notice that under the hypothesis of Theorem 2 the class {A : A ≈ 〈ω, <〉} can
not be RPC in L. Thus, L is recursively compact, in the sense that compactness
holds for recursive theories of L, by a well know argument of Lindström. In fact,
recursive compactness follows already from the weak Beth property by the follow-
ing theorem, sharpening Claim 3.6 in [S2], where wo(L) denotes the well ordering
number of L.

Theorem 4. If L has the weak Beth property and �α-URP in some extension, then
wo(L) ≤ max(ω, α). In case α is a recursive ordinal, then wo(L) = ω, and thus
L is recursively compact. If L has the weak Beth property and ∞-URP in some
extension then well-order is not definable in L.

Proof. If wo(L) > max(ω, α) then L pins down α + 2 by a RPC class K of well
ordered sets in L. Hence, K∗ = {A ≈ 〈S, ∈〉 : S ⊆ Vβ, S extensional, β ∈ K} is
RPC in L and rigid, with ||K∗|| ≥ |Vω+α+2| ≥ �α+2. Moreover, between any pair
of structures in K∗ there is an implicitly defined maximal partial isomorphism with
transitive domain and co-domain. This allows the use of weak Beth instead of Beth
to obtain a contradiction, as in the proof of Theorem 1. Finally, if α is recursive then
L can not pin down ω. Otherwise, it would pin down max(ω, α), a contradiction.

��
Example 5. (Gostanian and Hrbáček [GH]). If L pins down an infinite regular
cardinal κ, then WB(L) � Lκκ . If the class of well-orders is RPC in L then
WB(L) � L∞∞. This follows immediately from Theorem 4 and Example 1.
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Example 6. WB(L(Q0)) does not have URP in any logic, nor PPP in any L�α�α

for recursive α. Otherwise, Theorem 4 would be contradicted, because the first logic
pins down all recursive ordinals and PPP in L�α�α

would become �α+1-URP .
This shows how far is the weak Beth closure from preserving PPP.

Example 7. (à la Lindström) If L ≤ Lωω(Qi : i ∈ I ) has the weak-Beth property,
Löwenheim number ω, and PPP, then L ≡ Lωω. Indeed, by the Löwenheim
property and finite dependence we may assume |I | ≤ �2, and thus PPP becomes
�3-URP . Then, L is recursively compact by Theorem 4, which is enough, under
finite dependence, to complete the proof of Lindström’s first theorem [L].

3. A recursive Ehrenfeucht-Mostowski theorem

Assuming Craig’s interpolation property instead of Beth’s property, we may say
more about the non rigid models provide by Theorem 1.

Lemma 5. Let G be the set of partial isomorphisms of a finite linearly ordered set
〈I, <〉. Assume Craig(L, L∗) holds and L∗ has κ-URP in some extension, for κ

strong limit. If K ∈ RPC(L) has, for each δ < κ, a model with |P A| > δ, then it
has a model A with I ⊆ P A such that any h ∈ G extends to an automorphism of A.

Proof. Let 〈I, <〉 = 〈{0, ..., m}, <〉, G = {hi}i≤n, and let di = (di0, .., diki
),

ri = (ri0, .., riki
) be the ordered domain and range of hi, respectively. If K is the

relativized reduct of a sentence ϕ, consider the following two projective classes of
L, where ai = (ai0, ..., aiki

), bi = (bi0, ..., biki
), ei = (ei0, ..., eiki

):

K1 = {[〈A, <, ai , bi〉i≤n, 〈B0, e0〉, ..., 〈Bn, en〉] : 〈A, ai〉 ≈ 〈Bi , ei〉, i ≤ n,

A |= ϕ, and 〈{aij , bij }, <, ai , bi〉i≤n ≈ 〈{0, ..., m}, <, di , ri〉i≤n}
K2 = {[〈A, <, ai , bi〉i≤n, 〈B0, e0〉, ..., 〈Bn, en〉] : 〈A, bi〉 ≈ 〈Bi , ei〉, i ≤ n}.

By hypothesis, there are, for any sentence θ ∈ L∗ in the common vocabulary of
K1, K2, sets �i(c0, ..., cki

) of power δ < κ in some extension L∗∗, such that:
〈Bi , ei〉 ≡�i

〈B′
i , e′

i〉 for i ≤ n implies

[C, 〈B0, e0〉, ..., 〈Bn, en〉] ≡θ [C, 〈B′
0, e′

0〉, ..., 〈B′
n, e′

n〉].

Also, there is A |= ϕ with |P A| > �
ki+m(δ) ≥ �k0(�
i≥1ki+m(2δ)). Ordering
P A, and applying Erdös-Rado theorem (or Ramsey’s theorem if κ = ω) to the par-
tition induced by the relation x ∼ y ⇔ 〈A, x〉 ≡�0 〈A, y〉 in ordered sequences of
length k0, we may find in P A a subsequence of length greater than �
i≥1ki+m(2δ),

indiscernible for k0 + 1-tuples with respect to �0(c0, ..., ck0). Continuing induc-
tively, we find in P A a subsequence of length greater than �m(2δ) ≥ m+ 1, indis-
cernible with respect to � = ∪i≤n�i(c0, ..., cki

). Choose aij , bij in that sequence
so that 〈{aij , bij }, <, ai , bi〉i≤n ≈ 〈{0, ..., m}, <, di , ri〉i≤n. Then ai and bi are
both increasing and, by �-indiscernibility, 〈A, ai〉 ≡�i

〈A, bi〉 for i ≤ n. Thus,

[〈A, <, ai , bi〉i≤n, 〈A, a0〉, .., 〈A, an〉] ≡θ [〈A, <, ai , bi〉i≤n, 〈A, b0〉, .., 〈A, bn〉],
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showing that K1 and K2 are inseparable in L∗. By the interpolation hypothesis,
there is [〈A∗, <, a∗

i , b∗
i 〉i≤n, 〈B1, e1〉, ..., 〈Bn, en〉] ∈ K1 ∩ K2. Then A∗ |= ϕ,

there are isomorphisms f ∗
i : 〈A∗, a∗

i 〉 ≈ 〈Bi , ei〉 ≈ 〈A∗, b∗
i 〉, and 〈{a∗

ij , b
∗
ij }, <

, a∗
i , b∗

i 〉i≤n ≈ 〈{0, ..., m}, <, di , ri〉i≤n. Thus f ∗
i is an automorphism of A∗ extend-

ing h∗
i (a

∗
ij ) = b∗

ij , which we may identify with hi by the last isomorphism. ��
Taking κ = ω in the previous lemma, we get a recursive version of the

Ehrenfeucht-Mostowski theorem.

Theorem 6. Let G be a recursive group of automorphisms of a recursive linearly
ordered set 〈I, <〉. If Craig(L, L∗) holds and L∗ has URP in some extension,
then any RPC class of L having models with infinite P A has a model A, with
I ⊆ P A, such that any h ∈ G extends to an automorphisms of A.

Proof. Assume 〈I, <〉 = 〈ω, �〉, where � is a recursive linear order of ω, and
G = {hn}n∈ω, where h(i, j) = hi(j) is recursive and h0 is the identity function.
Add to the vocabulary of the sentence ϕ defining the given RPC class as a relativ-
ized reduct the new symbols: c (constant), S (unary function), F (binary function),
and < (binary relation). Writing cn for Sn(c) and fn(x) for F(cn, x), we must show
that {ϕ} ∪ T is satisfiable, where T is the first order recursive theory:

{ci < cj }i�j ∪ {P(ci), fi(cj ) = chi(j), “fi is an automorphism ”}i,j∈ω.

By recursive compactness of L (Theorem 4), it is enough to show that there is, for
each n, a model of {ϕ} ∪ {ci < cj }i�j, i,j≤n ∪ {P(ci), fi(cj ) = chi(j), “fi is an
automorphism ”}i,j≤n . That is, a model of ϕ with the interpretation of P containing
In = {hi(j) : i, j ≤ n} ⊇ {0, ..., n}, and such that all the partial isomorphisms
hi � {0, 1, .., n}, i = 0, ..., n, of 〈In, �〉 are extendible to automorphisms of the
model. Such model is provided by the previous lemma. ��
Corollary 7. If Craig(L, L∗) holds and L∗ has URP in some extension, then
any K ∈ RPC(L) with infinite models has a model having 〈Q, <〉 as a set of
indiscernibles.

Proof. The automorphisms of 〈Q, <〉 consisting of finite unions of linear functions
defined on rational intervals form a recursive group which puts any pair of ordered
n-tuples of Q in the same orbit. ��

4. A full Ehrenfeucht-Mostowski theorem

The next theorem could be meaningless beyond Lωω, since no other logic is known
to satisfy the hypothesis, unless we drop relativizations. But it provides, at least,
a new proof of the Ehrenfeucht-Mostowski theorem, and shows how close to Lωω

would be a compact logic satisfying interpolation and URP .

Theorem 8. Let L be a compact logic satisfying interpolation and URP (equiva-
lently, ∞-URP, or just PPP for small L). If K ∈ RPC	(L) has infinite models,
then any linearly ordered set 〈I, <〉 may be embedded in some A ∈ K such that
any automorphism of 〈I, <〉 extends to an automorphism of A.
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Proof. Assume K = {A� P A � µ : A |= �} with � ⊆ L(τ). Let {ci : i ∈ I }
be a set of new constants and {fh : h ∈ Aut(I, <)} a set of new unary function
symbols. By compactness, it is enough to show the satisfiability of each finite part
of the theory:

� ∪ {ci < cj }i<j ∪ {“fh is an automorphism”, fh(ci) = ch(i)}i∈I, h∈Aut(I,<).

This follows from the existence of infinite models of K , applying Lemma 5 with
κ = ω. ��

It is well known that, under compactness, interpolation implies Robinson’s joint
consistency property, and that the converse is true for small logics. Furthermore, for
logics having bounded dependence number (smaller than the first measurable cardi-
nal µ0, if this exists), Robinson’s property implies compactness (cf. [Mu]). There-
fore, using that T h(A) is a set in a small logic, we have the following improvement
of Th. 4.5.1 in [Ma], inadvertently stated there without the dependence hypothesis.

Corollary 9. Let L be a small logic with Robinson’s property, PPP, and bounded
dependence number (below µ0, if measurable cardinals exist). Then, for any given
linearly ordered set 〈I, <〉 and structure A, there is an L-extension A∗ of A con-
taining I such that any automorphism of 〈I, <〉 extends to an automorphism of A∗.
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[GH] Gostanian, R., Hrbáček, K.: On the failure of the weak Beth property. Proceedings of
the American Math. Society 58, 245–249 (1976)

[Ho] Hodges, W.: Model built on linear orderings. In Orders: description and roles
(M. Puzet & D. Richard, eds.), North Holland, Amsterdam, 1984, pp. 207–234

[Hy] Hyttinen, T.: Model theory for infinite quantifier languages. Fundamenta Mathemat-
icae 134, 125–142 (1990)

[L] Lindström, P.: On extensions of elementary logic. Theoria 35, 1–11 (1969)
[M] Malitz, J.: Infinitary analogs of theorems from first order model theory. Jour. of Sym-

bolic Logic 36, 216–228 (1971)
[Ma] Makowski, J. A.: Compactness, embeddings and definability. Chap. XVIII in Model

Theoretic Logics (J. Barwise & S. Feferman, eds.), Springer Verlag, 1985
[Mo] Morley, M.: Omitting classes of elements. In The theory of models (J. W. Addison,

L. Henkin, A. Tarski, eds.), North Holland, Amsterdam, 1965, pp. 265–273
[Mu] Mundici, D.: Interpolation, compactness and JEP in soft model theory. Archiv für

Mathematische Logik und Grundlagenforchung 22, 61–67 (1982)



Definability and automorphisms in abstract logics 945

[O] Otto, M.: Automorphism properties of stationary logic. Jour. of Symbolic Logic 57,
231–237 (1992)

[S1] Shelah, S.: Remarks in abstract model theory. Ann. Pure Appl. Logic 29, 255–288
(1985)

[S2] Shelah, S.: The theorems of Beth and Craig in abstract model theory, III, 	-logics
and infinitary logics. Israel J. Math. 69, 193–213 (1990)


