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Continuous Operations on Spaces

of Structures

Abstract. Given a model theoretic logic L and a vocabulary 7, the space E-(L) of
r-structures topologized by the L-elementary classes as an open base is a natural uniform
space, and the uniform continuity of operations arising between these spaces (powers,
quotients, all sort of algebraic functors) faithfully reflects the properties of L, or the
relations of L with other logics. Most fundamental properties of logics as closure under
substitutions or relativizations, uniform reduction for pairs, Craig’s interpolation lemma,
A-interpolation, and Robinson’s lemma (for small occurrence number) are all equivalente
to the uniform continuity of certain families of projective operations. We give in this paper

a survey of possible application of this topological approach.
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Introduction

It is well known that the class of first order structures of a fixed similarity
type forms a topological space if endowed with the elementary classes as a
basis of open sets. In this way first order logical properties of models corre-
spond to topological properties. An obvious example is compactness of first
order logic which corresponds to topological compactness of these spaces. If
we identify elementarily equivalent structures, the resulting quotient spaces
are the Stone spaces of the Boolean algebras of first order formulae. These
“first order topologies” or strengthenings of them have been utilized by many
authors specially in the study of types of elements; see [Rasiowa-Sikorski
1950], [Ehrenfeucht-Mostowski 1961], [Fraissé 1972], [Morley 1965], [Morley
1974], [Hanf-Myers 1983], [Baldwin-Plotkin 1974].

We intend to illustrate in this paper the relevance of the topological view-
point for the more general study of model theoretic logics, [Barwise-Feferman
1985]. It unifies, simplifies, and gives deeper insight in many aspects of ab-
stract model theory. Topological methods have not been utilized in this
context except by [Mundici 1986]. The topology of elementary classes in
spaces of structures associated to a logic is uniform, and it is precisely the
uniform continuity of operations arising between them (cartesian products,
quotients, all sort of algebraic constructions, etc.) that reflects the model
theoretical properties of the logics. For example, the relativization property
as well as other axioms for logics are uniform continuity phenomena. The
uniform reduction property for a operations in the sense of [Gaifan 1974]
and [Feferman 1974], or the property of being a construction for an inter-
pretation in the sense of [Szczerba 1977] and [Krynicki 1988] are no more
than uniform continuity. Following [Feferman 1974] and [Makowsky 1985]
interpolation, A-interpretation, Beth’s definability, and the Robinson’s con-
sistency properties are equivalent to the uniform continuity of certain families
of operations. -

Several results in the literature such as Mundici’s characterization of
compactness by separation properties, or the uniqueness of a compact lbgic
with a given elementary equivalence relation due to [Lipparini 1985], may
be shown to be topological phenomena. The existence of models with auto-
morphisms and the homogeneity property (see [Shelah 1985]) may be shown
also to have topological content.

Only familiarity with the very fundamental concepts of abstract model
theory and topology (including uniform spaces) is assumed. Qur main ref-
erence for model theory will be [Bell-Slomson 1971] and [Barwise-Feferman
1985], and for topology [Willard 1968].

We must thank the group of logic of the Department of Mathematics of
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the University of Helsinki, Finland, for inviting us in May 1989 to give a
series of lectures where we presented a first draft of these ideas. We were
able to develop them further thanks to another invitation received from the
logic group of the Universidade Estadual de Campinas, Brasil, to lecture in
June and July of 1989. :

1. Model Spaces

Given a (similarity) type 7 of single sorted first order structure, let E; be
the class of all structures of type 7. First order structure will be denoted
by plain letters A4, B,C,... and their universes by |A|,|B|,|C|.... The last
notation will be also used to denote their cardinality; the actual meaning will
be clear from the context. To complete the abuse of the slash, we shall write
Alp to denote the projection (or reduct) of the structure A to a subtype u
of the type of A; and A|P# will denote the restriction (or relativization) of
A to the subuniverse P4, where P is a monadic predicate symbol. Notice
that A|P4 exists only when P4 is closed under the functions of A.

Let I be a small single sorted logic closed under substitutions in the sense
of Definition 1.1.1 in [Ebbinghaus 1985], that is, a triple (Dom(L), L,F)
where Dom(L) is a class of single sorted similarity types, L is a function
which assigns a set of sentences L(7) to each 7 € Dom(L), and F is a
relation in {J, E. x L(7), satisfying properties 1 to 4 below:

1. Isomorphism property. If A~ Bthenforallp € L(1), AE ¢ & BFE ¢.

2. Renaming property. For any arity-preserving bijection f : p — T
sending relation, function, and constant symbols to the like, and ¢ €
L(7) there is.ap) € L(7) such that AF ¢ & (4], f(R)A)Re,. E a(p),

for all A € F,.

3. Reduct property. If p C 7, then L(p) C L(r) and AF ¢ & A|pF ¢,
forall A € E, and ¢ € L().

Given distinct constant symbols ci,...,¢, & T, a sentences ¢ € L(T U
{c1,...,cn}) will be called an n-ary formula of L(7), and its truth set in a
structure A will be ¢4 = {(a3,...,a,) : (4,a1,...,an) F ¢}

4. Substitution property. For n;-ary formulae ¢; of L(7),s = 1,...,k
and € L(r U {Ry,...,Ry}) where R; is n;-ary, there is a(f) =
O(R1/¢1, ..., Ri/or) € L(7) such that: Ak a(6) < (A, ¢f,...,e0)F
6.

We will assume also that L contains first order logic L, and is closed under
conjunctions and negations. Dom(L) does not need to contain all similarity
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types; we only assume it to be closed under sub-types, renamings, expansions
by a constant or a monadic predicate, and finite unions. For example a logic
may be purely monadic and defined only in countable types. If a logic in
addition the following property we will call it a regular logic:

5. Relativization property For any monadic P € L(r) and ¢ € L(r—{P})
there is ¢ ¢ L(7) such that A F ¥ & A|P4 E ¢ whenever A|P4 is
defined.

Logics are preordered by their expressive power: L < M if and only if
for any ¢ € L(7) there is an a(yp) € M(7) such that AF a(p) < AF ¢ for
alAcFE, AlsoL=MifL<Mand M < L;and L < M if L < M but
L#£M.

1.1 DerFINITION. Given a type 7, let E.(L) be the class E, endowed with
the topology having as a base the L-elementary classes Mod(yp),¢ € L(7).

The L-elementary classes form a base of clopen sets due to closure under
conjunctions and negations. The closed classes in this space are precisely
the classes Mod(T') of models of some theory T C L(r). The space E,(L)
becomes a uniform space (see [Willard 1968], Definition 35.2) if we take as
a base for the uniformity the classes

Us = {(A,B) : A=p B}

where & runs through the finite subsets of L(7), and A =g B means:
AFEF ¢ & BE pfor any ¢ € . Evidently, the classes Up satisfy the
conditions of a base for a uniformity since:

1) ACUs

2) Us' =Us

3) UsolUs =Us

4) Us N Ur = Usur.

This base generates the elementary topology because the projection of any
basic of the uniformity, say Us(A) = {B|(A,B) € Us}, coincides with the
L-elementary class Mod(Thg(A)) where The(A) = A{fp € @ : AF o} U
{—¢ € & : A ¥ ¢}; and conversely any nonempty basic open is a projection:
Mod(p) = Ugyy(A) for A . We will call the uniformity generated by this
base the canonical uniformity of E.(L).

If L(r) is countable then FE,(L) is actually a pseudometric space. For
example, if the logic is countably generated L = L, (Q"n € w) and 7 is



Continuous Operations ... 267

countable, a explicit pseudometric for the uniformity of E,(L) is given by
d(A,B) = 'mf{l/n-l— 1: A =L (1)(Q1,..,Q7) B}

where 7y,7s,..., is an enumeration of the finite subtypes of 7, and L"(7;,)
denotes the sentences of L(7,) of quantifier rank at most n.

Clearly, L < M if and only if for all 7 the canonical uniformity of E.(L)
is weaker than the canonical uniformity of E (M), equivalently, if the iden-
tity operation I : Er(M) — E.(L) is uniformly continuous. L = M if and
only if both logics have the same canonical uniformities.

REMARK. Since E, is always a proper class, model spaces are very large
indeed, but this should cause no difficulty. As we are assuming the logic L
to be small the set of sentence L(7) parametrizes a canonical base for the
uniform topology and so the topology itself is (parametrized by) a set. We
could work also in the quotient spaces E,.(L)/ =f, obtained by identifying L-
elementarily equivalent structures, which become ordinary topological spaces
and share many topological properties with the E.(L). However, we prefer to
work in the model spaces because some significant situations are not reflected
in the quotients. For example, the images of disjoint projective subclasses
of E,(L) are not necessarily disjoint in E.(L)/ =, which makes it unnatural
to even state the interpolation properties in these space.

Recall that a uniform space is totally bounded if for each element U of
the uniformity (base) the space may be covered with a finite number of pro-
jections of U. Our first observation is that model spaces are always totally
bounded.

1.2. LEMMA. E.(L) is always totally bounded with respect to the canon-
tcal uniformity.

Proor. Given a finite set of sentences &, the equivalence relation =3
has finite index. Picking a representative A; of each equivalence class, the
corresponding projections Ug(4;) = {A : A =g A;} will form a finite
covering (and partition) of the space. O

2. Compactness

A net in auniform space (X,U) is a family (24 )acr, where (I, <) is a directed
set (this is, for all a,3 € I there is v € I such that a < 7,8 < 7). It is
a Cauchy net if for any U € U there is a € I such that for all 8,7 > «,
(zg,24) € U. It converges to z if for any U € U there is o € I such that for
all B > a,(2g,2) € U; then z is called a limit of the net. Of course, limits
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do not need to be unique. A uniform space is complete if all its Cauchy nets
converge.

It is well known that a uniform space is compact if and only if it is com-
plete and totally bounded (see Theorem 39.9 in [Willard 1968]). Hence, to
show compactness of a logic L it is enough to prove completeness of the
spaces E-(L). In fact, behind the well known proof of compactness of first
order logic by means of ultraproducts, [Bell-Slomson 1971}, there is a proof
of the Cauchy-completeness of the spaces E (Lqy, ).

2.1 CoroLLARY (COMPACTNESS OF FIRST ORDER LogIc). If K C
E.(Lyy) is closed under ultraproducts then it is compact. In particular
E(L..) is compact.

PROOF. K is also uniform and totally bounded for the subspace unifor-
mity; we have to show it is complete. Let (Ay)aex be a Cauchy net in K,
where X is a directed set, then for each basic Us of the canonical uniformity
of X there is ag € ¥ such that (A, A,) € Us, this is Ag =3 A,, for all
B,7 > ag. Let [a) = {8 € Z|B > a}, then the set

F = {[as) : ® a finite subset of L(7)}

is a filter basis over ¥ because X is directed. Let F* be an ultrafilter ex-
tending F, then the net converges to the corresponding ultraproduct of the
Ay

(1) (Aa)aEE — At = HaGZAa/]:*a

because given Us we have Ag F T° = Thg(Aas) for any B € [as) € F*;
by Lo$ Theorem on ultraproducts, this implies A* = T° and so A*,Ag € Us
for all B > ag, showing (1). By hypothesis the ultraproduct belongs to K
showing the net converges in K. 0O

2.2 CoROLLARY ([Bell-Slomson 1971], Theorem 3.4.). K C E. is first
order aziomatizable if and only if it is closed under ultraproducts and ele-
mentary equivalence.

ProOOF. One direction is trivial by Lo§ Theorem. Now, let K be closed
under ultraproducts and elementary equivalence, it is enough to show that it
is topologically closed. If B € Cl K then there is a Cauchy net (4y), in K
which converges to B. We have seen that the net converges also to a ultra-
product IIA4,/F; hence B = IIA,/F*. By hypothesis, we have B ¢ K. O
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For countable L(7) compactness is equivalent to convergence of Cauchy
sequences of structures. Fraissé ([Fraissé 1972]) shows the countable com-
pactness of L. by actually constructing the limit of a Cauchy sequence by
means of partial isomorphisms.

Given a logic L, let E*(L) be the subspace of E,(L) of structures of
power less or equal than k. It is easily seen that if L is §-compact (this is
compactness holds for theories of power < §) and satisfies the downward
Lowenheim-Skolem Theorem down to k, for theories of power < §, then
Ek(L) is compact whenever |L(7)| < §. For example, E¥(Lww) is compact
if |7 < k.

Let Q, denote the cardinality quantifier “there are at least w, many ...”.
The compactness of logics generated by these quantifiers still is an open
problem. However, [Flum 1985], Theorem 1.3.4, shows that for countable 8
the monadic part of the logic

Lg = Lww(Qq : 1 < a < B, asuccessor)

is countably compact. As Lg obviously satisfies the Lowenheim Theorem
down to wg for countable theories and |Lg(T)| = w for countable 7 and 3,
then Er?(Lg) is a compact space in this case. Moreover, each monadic struc-
ture of finite type of power at most wg is characterized up to isomorphism
by the cardinalities of the complete intersections of its predicates. Since any
limit cardinal is a limit of successor (or finite) cardinals, these cardinalities
may be expressed by a set of sentences of Lg. This means that if we identify
isomorphic structures, the space E;” (Lg) is HausdorfF for finite monadic 7.
In sum, E7?(Lg) is a compact Haussdorf space for finite monadic 7.

2.3 CorOLLARY (MAXIMALITY AND INTERPOLATION FOR MONADIC
LOGICS WITH CARDINALITY QUANTIFIERS, [Flum 1985a], Theorem 1.3.2).
For countable B, the monadic part of the logic Lg is mazximal among all
monadic logics with finite occurrence number which are countably compact
and satisfy the Lowenheim-Skolem Theorem down to wg for countable theo-
ries. Moreover, Lg satisfies the interpolation theorem.

PrOOF. Let M be an extension of monadic Lg satisfying the condi-
tions of the corollary and let ¢ € M(7), T finite. By taking the closure of
{#} U Ly (7) under finite conjunctions and negations we may assume with-
out loss of generality that ¢ € M(r) with |M(7)| < w. Hence, E7*°(M) is
compact by the above remarks. This implies that the closed classes Mod(¢p)
and Mod(~¢) restricted to E;? are compact in E;”(M) and a fortiori in
the weaker topology of Er” (Lg). By a standard topological argument dis-
joint compact classes in a compact Hausdorff space may be separated by
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finite unions of basic open classes. Applying this to Mod(¢) and Mod(—¢)
restricted to E7”(Lg), ¢ is seen to be equivalent to a sentence 4 of Lgin
models of power < wg, and by the Léwenheim-Skolem Theorem in all mod-
els. Similarly, applying this to the restriction to Er”(Lg) of disjoint PC
classes of Lg which must be compact we conclude that monadic Lg satisfies
the interpolation theorem. O

Flum has generalized his results to uncountable 8, [Flum 1985b]. The
interpolation result holds in Lww(Q4 : a € I), without any condition in the
a (see [Caicedo 1985]).

3. Separation

Model spaces are not necessarily Hausdorff but they are always completely
regular, that is points and closed sets may be separated by real valued con-
tinuous functions. In fact, complete regularity is a characterization of uni-
formizability by a theorem of A. Weil (see Theorem 38.2, in [Willard 1968]).
The next separation property is normality: disjoint closed sets may be sep-
arated by disjoint open sets. In model spaces normality means that given
families of sentences {p;}, {1;} such that A;¢; F V,4;, there are families
{os}, {p+} such that

(1) Nwi EV, 0, F AP EV; 95

More spaces are not necessarily normal, a proof of the following will be given
elsewhere.

3.1 THEOREM. The model spaces of Lww(Qo) are not normal for un-
countable types. The model spaces of Lww(Q4), @ > 1, are not normal for
types of power > w,.

However, model spaces are always “countably normal”; hence, (1) holds
for countable families of sentences.

3.2 LeMMA. If L(T) is countable then E (L) is normal. Moreover, the
separation of disjoint closed classes may be achieved by a single clopen class.

Proor. If L(7) is countable then E,(L) is second countable and so Lin-
deloff, but any Lindeloff regular space is normal (Theorem 16.8 in [Willard
1968]). As the space has a basis of clopen classes the separation may be
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achieved by a clopen (Theorem 16.16, in [Gillman-Jerison 1960]). QO

Model spaces of compact logics are normal because compact regular
spaces are always normal, and by compactness the separation may be achieved
by a single elementary class. Mundici has shown that this strong form of
normality is equivalent to compactness for regular logics with finite occur-
rence number.

3.3 THEOREM ([Mundici 1986], Th. 2.3). Let L = Lu,(Q; :€ I) be
closed under relativizations, then L is compact if and only if any pair of
disjoint closed classes may be separated by an elementary class.

Some hypothesis of bounded occurrence is necessary in Mundici’s Theo-
rem since, for example, E.(L,,) is normal in the sense of Theorem 3.3 when
K is a compact cardinal. A purely topological proof of Mundici’s result may
be given showing that it holds for any logic L closed under relativizations
where Dom(L) satisfies certain closure condition. It holds for example for
monadic logics, or for countably generated regular logics defined in count-
able types only.

3.4 CorOLLARY. Let L = L,,(Q™ : n € w) be closed under relativiza-
tions, then L is countably compact if and only if for all countable T the clopen
classes of E.(L) are L-elementary.

Proor. By Lemma 3.2, Theorem 3.3, and the above remarks, restricting
the logic to countable types. O

QUEsTION. Under which conditions is plain normality of model spaces
equivalent to compactness?

4. Continuous Operations on Model Spaces

Let 7 and p be types, a (partial) operation on structures from E, to E, is
a isomorphism preserving (possibly partial) function F : E, — E,,. This is,
A~ B implies F(A) ~ F(B) for all A, B in the domain of F.

Many constructions and functors of mathematical practice and model
theory are operations on structures: for example, the field of quotients of
an integral domain, the algebraic closure of a field, the free group generated
by a set, etc. See [Gaifman 1974], [Feferman 1972, and [Feferman 1974] for
more examples.
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4.1 DEFINITION. Let L and M belogics, a partial operation F : E; — E,
is said to have the uniform reduction property, with respect to L and M, if
for any sentence ¢ in M () there is a sentence a(yp) in L(7) such that:

(1) AF a(p) if and only if F(A)FE ¢.

The function a is called a translation for F. It is easy to see that when
it exists, a is unique and preserves the Boolean operations, modulo logical
equivalence, this is a(~¢) = —a(p),a(e AY) = A .

This notion is due to [Gaifman 1974] and [Feferman 1974], see [Makowsky
1985]. It corresponds also to the notion of first order interpretation studied
by [Szczerba 1977, [Gajda-Krynicki-Szczerba 1987], or to the notion of L-
construction studied by [Krynicki 1988] for an arbitrary logic L. A pair
(F, o) satisfying (1) provides a generalized notion of uniform interpretation,
this is, a uniform reduction of the theory of F(A) in M to the theory of A
in L. If o may be chosen recursive, for example, the decidability of Thy(A)
implies the decidability of Thas(F(A)).

From the topological point of view, uniform reduction is no more than
uniform continuity. This important fact has been noticed in the case of first
order logic ([Gajda-Krynicki-Szczerba 1987], Th. 5.4). Recall that a function
1 (X,U) — (Y,V) between uniform spaces is uniformly continuous if for
any V € V there exists U € U such that (a,b) € U implies (f(a), f(b)) € V.

4.2 THEOREM. F has the uniform reduction property with respect to L
and M if and only if F : E.(L) — E (M) is uniformly continuous.

Proor. If F has the uniform reduction property and D C M (u) is finite,
let aD = {a(p) : ¢ € D} C L(r). Then A =,p B implies F(A) =p F(B).
Conversely, suppose F is uniformly continuous, and let ¢ € M(p). Then
there is a finite set of sentences D C L(7) such that (A4, B) € Up implies
(F(A),F(B)) € Uty Since the space is totally bounded we may choose
finitely many structures Aj,..., A, such that the projections Up(4;) =
{A|A =p A;} form a partition of the space E (L). Let Up(4;) = Mod(t;),
then

afp) = V{t F(A;) F ¢}

is the required translation. If A € E., then A F ¢; for a unique 7; hence,
A =p A; and so F(A) =¢,) F(A;) for that i. Therefore, A F o(yp) if and
only if F(A;) E ¢ for that i, if and only if F(A)F ¢. O
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Apart from the axiom of isomorphism, the axioms of logics are just as-
sertions about uniform reduction of certain operations.

4.3 COROLLARY. The following operations are uniformly continuous for
any logic L:

1. Projections. For each pair p C T, the operation F(A) = A|p from E,
to E,.

2. L-definitional ezpansions. For any formulae @1, ...,¢n of L(T) with ¢;
of arity k;, and relation symbols R; of arity k; not in T, the operation
‘ F(A) = (Aa (Pfa v "P;‘zl) from E. to E‘rU{Rl,...,Rn}'
Moreover, L is closed under relativizations if and only if the following oper-
ations are uniformly continuous in L:

3. Restrictions. For each monadic predicate P € T, the operation F(A) =
A|PA from E. to E._(py. This operation is not total if T contains
function or constant symbols.

ProoF. Continuity of 1 follows from the reduct property, and that
of 2 and 3 is equivalent to the substitution and relativization properties,
respectively. O

The following operations are uniformly continuous for L. This may
be shown by using partial isomorphisms or by defining explicitly recursive
translations as in [Feferman-Vaught 1959), or [Szczerba 1977]. This follows
also from more general theorems that we discuss later.

4. Cartesian operations. For any Ri,...,Rm € 7 with R; of arity nk;
and relation symbols S; of arity k; not in 7, the operation from E, to
E.ugs,.. 80}

F(A) = (|A]*,R{/n,...,R*/n),
where R¥/n denotes the k;-ary relation defined naturally in |A|™ by:
RA/n((a11y -+, 81m)y-- > (Qki1s -1 Ohim)) & Rilar1,-.. 810,
akiyl, SN ,aki,n).

5. Quotients. For each type 7 and binary R ¢ 7, the operation from
E,,.U{ R} to E,:

F(A,R) = A/R if R is a congruence relation in A
T A otherwise.
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6. Powers. For each T and n € w the nth-power operation F : E, — E,:

F(A) = A™ = cartesian product n times.

4.4 EXAMPLE (FIRST ORDER INTERPRETATIONS, [Szczerba 1977]).Call
classical construction to the composite of any number of operations of the
form (1) to (5), where the domain has finite type and formulae in (8) are
first order. These are uniformly continuous with recursive translations for
Ly Power are classical constructions since they may be obtained as the
composite of a first order definitional expansion, a cartesian operation, and
a projection. [Szczerba 1977] has noticed that these operations may be put
in the canonical form:

F(A) = (Ya, 0t /..., 08 /n) /0%

where ¢ is a n-ary formula, the ; are nk;-ary formulae such that Wi E 1,
and 6 is 2n-ary defining a congruence relation in the resulting structure.
The pairs (F, o) are presicely the first-order interpretations usually studied
in the literature.

4.5 ExaMPLE. Classical constructions do not need to be uniformly con-
tinuous in other natural logics.

a) Quotients are uniformly continuous in logics with Magidor-Malitz
quantifiers (see [Krynicki 1988]), but powers do not, since they do not pre-
serve elementary equivalence as shown in [Badger 1977).

b) It is shown in [Caicedo 1990] that quotients are not uniformly contin-
uous in any proper regular extension of L, generated by any combination
of monadic or linear order quantifiers, for example in Ly, (Qa, Q7 ). See §10.

4.6 EXAMPLE. After [Feferman-Vaught 1959], reduced powers: F(A) =
AT/U, where U is a filter in T , are uniformly continuous for L.

Of course, uniform continuity of an operation on structures implies con-
tinuity but not conversely, unless the domain logic is compact, when both
notions are equivalent (pass to E,(L)/ = and use Theorem 36.20, [Willard
1968]).

4.7 EXAMPLE. Let L = L,,(Qo), then the following operation F :
Eg(L) — Ey(L) is continuous but not uniformly continuous:

_ J w if |A] is even or infinite
F(4) = { A if |A]is odd.
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Suppose F(A) € Mod(yp). I |A| is infinite then the neighborhood
Mod(Qoz(z = z)) of A is sent by F to w = F(A) € Mod(p). If A is finite,
let 8 be the sentence declaring the power of A, then F sends Mod(0) to the
isomorphic copies of F((A) which also are in Mod(y). This shows continuity.
However, F is not uniformly continuous because for any n we may find finite
structures A, B with |A| even and |B| odd such that A = B in L7, (use
partial isomorphisms). As Q¢ acts trivially in finite structures, then A = B
in L?,(Qq). On the other hand F(A4) ¥ Qoz(x = z), F(B) F Qoz(z = z).

5. Product of Model Spaces

Given types 7 and o, let 7 @ 0 = {P} U7 U {P} Ug be the new type where
o is a copy of o, disjoint from 7, and P, P are two new monadic predicates.
We will call if the disjoint sum of the types. Given two structures A € E.,
B € E,, the disjoint sum of A and B will be the structure of type T @ o

[4,B] = (|4] U |B|, 4, B)

where B is a isomorphic copy of B, disjoint from A4, P is interpreted by |A|, P
is interpreted by |B|, the type 7 is interpreted by the relations of A, and o
is interpreted by the relations of B.

Disjoint sums are the single sorted version of many sorted pairs used in
[Feferman 1972], and [Makowsky 1985]. They are denoted A + B and called
full cardinal sums in [Dickmann 1985], they are denoted A @ B in [Szczerba
1977]. Evidently, if disjoint copies are chosen canonically there is a bijection
between true pairs of structures (A, B) and disjoint sums [A, B]. Hence,
module isomorphism, we may identify the cartesian product of the class E,
and E, with the following subclass of E,gs:

E.x E,={C € Ergs : C =[A,B),A € E,,B € E,}.

The product E, X E, inherits two uniformities from L, which in general do
not need to be comparable:

— The canonical uniformity that it inherits as subspace ([Willard 1968],
37.1) of E,g,(L); we denote the corresponding uniform space by

(E, x E,)(L).

This is a closed subspace of E,g,(L) because being a disjoint sum is first
order axiomatizable, in fact elementary for finite ¢ an 7.
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— The product uniformity ([Willard 1968], 37.6) inherited from E.(L)
and E,(L); we will denote the corresponding uniform product space by

E.(L) x E,(L).

The last space has for canonical basis the classes Mod(p) x Mod(¢) =
Mod(¢f A yEYN (B, x E,), where ¢ € L(r), % € L(0), and P e L(g)isa
renaming of .

The relative strength of both uniformities depends on fundamental model
theoretical properties of L.

5.1 THEOREM. The canonical uniformity induced by I in E, X E, is
finer than the product uniformity for all o, 7 if and only if L is closed under
relativizations.

Proor. “«” Closure under relativizations implies that the projections
71 : (Er X Eg)(L) — E;(L), 72 : (Er X E,)(L) = Es(L), m1(C) = C|PC|r,
m(C) = C |£C|z are uniformly continuous. As the product uniformity in
E; X Ey is the smallest making the projections uniformly continuous the
result follows.

“=" Assume the canonical uniformity is finer than the product unifor-
mity. Then the operation (4, P4) — A|P# factors in the form:

(4,P4) =7 (|AL, A|P4, A|(|4] - P#)) ~ [AIP4, Al(|4] - P4)] »™ 4]P*

where F : E.p}(L) — (Er X E;)(L) is uniformly continuous because it
is a definitional expansion, and 7y : (E; x E;)(L) - E.(L) is uniformly
continuous because it is continuous for the product uniformity in E, x E,
which is weaker by hypothesis than the uniformity of (E, x E;)(L). O

Recall ([Makowsky 1985]) that a logic L has the uniform reduction prop-
erty for pairs (in short, URP) if and only if for any ¢ € L(r @ o) there
is a Boolean function b(py,...,pn,q1,...,9m) and sentences ¢; € L(7),
¥; € L{c) such that for [4,B] € E, x E,:

(1) [4, B] E ¢ if and only if
b(A'—‘-(pl,...,Alzgan,B|=¢1,...,B [:’l,bm) =1.

By taking disjunctive normal form, it may be seen that (1) is equivalent to
the existence of formulae ¢; € L(7), ¢; € L(o), i =1,...,k, such that
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(2) [A,B]E pif and only if [A,B] F \/i(%!’ A _,éf_’)

5.2 THEOREM. The product uniformity induced by L in E, X Es is finer
than the canonical uniformity if and only if L has uniform reduction for
pasrs.

PROOF. (2) is equivalent to uniform continuity of the identity operation
I:E, (L)X E,(L) — (E; X Eg)(L). O

5.3 EXAMPLE. a) Lww and Lww(Q,) are closed under relativizations
and have URP (use partial isomorphisms), so the canonical and the product
topology coincide in products of model spaces for these logics.

b) For k > wy, including & = o0, L, has relativizations but it does not
have URP (see [Dickmann 1985]). Hence, the canonical topology is strictly
finer than the product topology for these logics.

6. Projective Operations

Recall that a class of structures K C E is projective in L if it is the image of
an L-elementary class by a projection. It is relativized projective in L ifit is
the image of an L-elementary class by a relativized projection A — Alr|VA,
We denote these two properties by L-PC and L-RPC, respectively. More
generally, K is L-PCp (respectively L-RPC,) if it is the projection (respec-
tively the relativized projection) of the class of models of a set of sentences
in L.

6.1 DerINITION. The graph of partial operation F : E, — E, will be
the class:
G(F)={[A,B] € E. X B, : B~ F(A)}.

The operation F will be said to be L-PC if G(F) is L-PC as subclass of
E.¢os. We define similarly L-RPC, L-PCx, and L-RPCa operations.
6.2 LEMMA. Operations of the form
F(A) = (4" ¢ /n,.. ) [p#|r/64
with @;,%,0 in L, are L-PCa for infinite types and L-PC for finite types.

In particular, classical constructions are L-PC for any logic L.

PRrOOF. We check projections, restrictions, quotients, and the expanded
cartesian products F(A) = (A" ¢“/n,...) which generate these conms-
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tructions. Let Pair(r,¢) be the sentence saying that a structure belongs to
E. x E,. R will denote the copy of R € 7 in ¢.

a) Projections. If o C 7, then C € G(F) & C ~ [4, Alo] & 3f(C, NE
Pair(t,a) Af : C|PC|o =~ C|QC|a, where the last expression is an abbrevi-
ation for: :

“f is a bijection from P€ onto P°” A

Areo V&1, . s 2m[P(21) Ao A P(2m — (B(F(21),-- -, f(2m) &

(R(z1,...,2m))]

b) Restrictions. C ~ [4,A|U4] & 3f(C,f) & Pair(r,r — {U}) A f :
C|UC|r =~ C|PC|r - {U}.

¢) Quotients. Let S be a binary symbol not in 7, then:

C~|[(4,5),4/54 & 3V, f(C,V, f) E Pair(r + {S},1)A
[(“S is not a congruence relation in C|PC|7” Af : C|PC|r ~ C|P%|r)
V (“S is a congruence relation in C|PC|r” A
“V is a choice set for S” Af : C|V|r =~ C|PC|1)).

d) Cartesian ezpansions. We check the case F(A) = (42,04/2). Let E
be a k-ary symbol not in 7, then:

C ~ [4,(42,¢4/2)] & 3(C, ) F Pair(r, + (E})
A “f is a bijection from P€ x PC to P¢”
AArer Vo1 . 2myn o ym[P(21) AP(g1) A ... A P(2p) A P(ym) —
(B(f(z1,91)s- -, [, ¥m)) & (R(21,...,2m) A R(y1,-. . 39m))]
MNE(f(21,11) -, F(@myYm)) © @(21,91,- -+, Zm, Ym)). O

An uniformly continuous operation F : E,(L) — E,(M) will be called
recursively uniformly continuous if L() and M (o) have recursively enumer-
able presentations and the translation a : M (o) — L(7) may be taken to be
recursive in this presentations.

6.3 THEOREM. If L is recursively aziomatizable and has recursively com-
putable relativizations, then any uniformly continuous L-RPC operation is
recursively uniformly continuous.

Proor. If G(F) = {[A,B] : 3C(C,[A,B]) k 6} and F is uniformly
continuous then uniform reduction becomes: for any ¢ € L(o) there exist
¥ € L(7) such that F § — (¢F & @F). As relativizations are recursively
computable, we may generate recursively all the valid formulae of the above
form and take for a(yp) the first ¢ appearing in such a formula. O
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7. A Compact Graph Theorem

A continuous operation must preserve logical equivalence of structures. The
converse is not true even if the domain logic is compact and the operation
is PC as shown by the next example.

7.1 ExaMPLE. Let ¢o be the quantifier defined by A k gozp(z) if and
only if |A| > w. Then the identity operation I : ET(Lww) — ET(Lww(qgo)) is
not continuous, otherwise we would have uniform continuity by compactness
of the domain, and so Lww(go) € Lww in type T which is absurd. On the
other hand A =r,,, B implies A =1,4,(q) B trivially.

However, if both logics are compact and closed under relativizations,
preservation of equivalence by a PC operation implies uniform continuity, as
immediate consequence of a simple topological result. Define for any topo-
logical space X, and element a € X:

i) a®=N{0 : O is open, a € O},
ii) @ =x b if and only if a® = 8°, if and only if b € a°.

If X is a regular space a° = N{CI(V) : V open, a € V} = Cl({a}) and
so a® is closed. For model spaces A® = Mod(Thr(4)), and this topological
equivalence is just elementary equivalence.

7.2 LEMMA. Let f : X — Y be a partial function between uniform
spaces. If the graph of f is compact in the product topology of X XY and f
preserves =, then f is uniformly continuous.

Proor. If the graph is compact then the domain is compact, so it is
enough to prove continuity. Assume f is not continuous and fix a point
b€ X and an open set V C Y such that f(b) € V but for all open W C X
with b € W, we have f(W) € V. Then any finite subfamily of the following
family of closed subsets of X XY

F={Cl(W)x (Y —V) : Wopen, be W}

intersects G(f). By compactness of G(f) there is a point (e, f(a)) of G(f)
in the intersection (| F, which by regularity of X and the remark above is
8% x VC. This implies a =x b and f(a) ¢ V; as f(b) € V then f(a) #y f(=),
a contradiction. O
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7.3 THEOREM. Let L,M,N be compact logics with L,M < N, and N
closed under relativizations. If F-: ET(L) — Eo(M) is an N-RPCy partial
operation then the following are equivalent:

i) F is uniformly continuous,
ii) F preserves elementary equivalence.

PROOF. Assume (ii); if G(F) is N-RPCa then it is compact in (E7 X
Ec)(N) because it is the image of a closed (hence compact) class in some
Eu(N) by a relativized projection, which must be continuous by closure
under relativizations of N. A fortiori G(F) is compact in the topology of
E.(N) x E,(N) which is weaker by Theorem 5.1, and in the even weaker
topology of E,(L) X E,(M). Now apply Lemma 7.2. O

In fact, continuity has to be checked in infinite structures only.

7.4 THEOREM. Under the same hypothesis of Theorem 7.3, the following
are equivalent:
i) F is uniformly continuous.
ii) F restricted to infinite structures is uniformly continuous.

PRrOOF. (ii) implies F' preserves elementary equivalence of infinite struc-
tures. Now if A is finite, A =7 M implies A ~ B and so F(A) =p F(B). O

REMARK. For logics of the form L,,(Q : @ € C), Theorems 7.3 and 7.4
hold for L — RPC operations under the weaker hypothesis of local recursive
compactness. This means that L, (¢) is recursively compact in the usual
sense for any ¢ € L(7). For example, this holds for any finitely generated
logic which is either recursively axiomatizable or satisfies Beth’s definability
theorem. The proof in this case is more involved but still topological.

Hanf and Myers (in [Hanf-Myers 1983]) have observed that Keisler-
Shelah Theorem on ultrapowers implies the preservation of elementary equiv-
alence by first order RPCA operations; hence:

7.5 CoroLLARY ([Hanf-Myers 1983]). Any first order RPCa operation
is uniformly continuous for Ly,. If it is RPC, it is recursively uniformly

continuous.

Proor. Theorem 7.3 plus the above observation, and Theorem 6.2. O
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7.6 COROLLARY ([Szczerba 1977]). Classical constructions are recur-
stvely uniformly continuous.

PROOF. These operations are L,-PC. O

A operation F will be said to preserve ultraproducts if its domain is closed
under ultraproducts and F(IIA,/U) ~ F(II4.)/U.

7.7 COROLLARY. Ultraproducts preserving operations are uniformly con-
tinuous for first order logic.

Proor. I [A,, F(44)] € G(F) then II[A,, F(Ay)}/F =~ [IIAL/F,
F(A,)/F] € G(F) by hypothesis, showing G(F) is compact in first order
topology by Corollary 2.1. On the other hand, if A = B then by Keisler-
Shelah Theorem on ultrapowers there is I and an ultrafilter U over I such
that AT/U ~ B!/U. Hence, F(A) = F(A)!/U ~ F(A/U) ~ F(B'/U) »
F(B)I/U = F(B),so F(A)= F(B). O

As another application of Lemma 7.2, we have a topological proof of a
result of Shelah. The topological content of this theorem has been noticed in
[Mundici 1986], Theorem 4.1. Recall that a logic L is said to have the pair
preservation property or the Feferman-Vaught property for pairs , in short
PPP, cf. [Makowsky 1985], if and only if

A=y B,AI =L B = [A,A/] =L [B, B'].

Of course, URP (uniform reduction for pairs) implies PPP, but the converse
does not hold. For example: ‘

a) Ly, Lyw(Qo) have URP and so PPP.

b) Loow has the PPP (use partial isomorphisms), but not URP.

¢) Ly, does not have PPP unless w, is strongly inaccessible (see [Dickmann
1985)).

d) L, (aa) does not have PPP.

7.8 THEOREM (Th. 4.2.13 in [Makowsky 1985]). Let L be a compact
logic closed under relativizations then the following are eguivalent:

i) L has uniform reduction for pairs;
ii) L has the PPP.

Proor. (ii) means that the identity operation I : E(L) X Eo(L) —
(Er x E,)(L) preserves the topological relation = (clearly (a,b) = (¢,d) in a
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product space X xY ifand onlyifa = cin X and b =dinY'). Since G(I) is
trivially L-PCa, it must be compact in (E. x E, )(L) as the continuous image
of a closed (hence compact) class in a compact space, and so in E,(L)x E,(L)
which has a weaker topology by the relativization property. Therefore, by
Lemma 7.2, I is uniformly continuous which gives URP. O

8. On a Theorem of Lipparini

Notice that if M < L then =1 <=j/ (thisis, A = B = A =y B). How-
ever, the converse is not true even if L is compact by Example 7.1 in the
previous section. The logic Lww(qe) in this example is not closed under
relativizations. Surprisingly this is the only obstacle for the validity of the
equivalence M < L &=r <=js when L is compact as shown by Lipparini
(in [Lipparini 1985]). The relativizations property becomes again the divid-
ing line between the validity and non-validity of a non-trivial result. We give
here a topological proof of this result.

8.1 THEOREM. Let X be a compact regular space then C C X 1is closed
in X if and only if C is compact and closed under =x; this is, b =x ¢ and
ce C imply beC.

ProoF. One direction is trivial. Assume C is compact and closed un-
der =x, and b € CI(C), then for any open neighborhood V of b we have
CIV)NC # 0. Hence, 3°N C = [,ev CUV)] N C # B by compactness of
C. Takece B9NC,thenb=x candsobe C. O

In the next lemma we assume the logic to be defined in non-monadic
types.

8.2 LEMMA. Let L, M be regular logics with L compact. If =1 < =py,
then any L-RPCa subclass of E, is compact in E.(M).

Proor. Let C be RPCa in L and assume it is not compact in M. Then
there is a set of sentences X = {¢, : @ < k} in M(7) which does not have
a model in C but any subset Sp = {¢, : @ < b},b < k, does. By putting to-
gether a model A, for each Sy, construct a structure A = (4,..., R, <,¢s)ack
such that Ay ~ A|{y : yRep} € C and it satisfies the sentences of M:

(1) Ve(e, < 2 — <p,{1y:sz}), a<k.
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Let T C L{o) with o D 7 be a theory defining C as a RPCx class of L via
relativization to a monadic predicate V. By compactness of L, the theory

Thi(A)Y U{ca < c : a < k}U{V(c)}u TR}

where ¢ is a new constant has a model B. Evidently B F ThL(A)V and
so By = B|VB =7, A. Hence, by hypothesis B, =3 A and so B; sat-
isfies all sentences in (1). In particular By E gaiy:be} with b = ¢B and
so By|[{y : yRb} F ¢, for each a < k. This is a contradiction since
B|{y : yRb} E T and so B|{y : yRb}[VB|r = By|{y : yRb}[r€C. O

8.3 THEOREM ([Lipparini 1985]). Let L and M be logics closed under
relativizations with L compact, then =1 < =pr if and only if M < L.

ProoF. One direction (right to left) is trivial, for the other assume first
the special case =7 = =p7. Then the identity function I : E.(M) — E,(L)
is continuous because if C is closed in E.(L) it is compact in E,.(M) by
Lemma 8.2, and it is closed under =y; hence, closed under =;s by hypoth-
esis. Therefore, C is closed in E. (M) by Lemma 8.1. Lemma 8.2 also
implies that E.(M) is compact; hence, I is uniformly continuous and so
L < M. Now, the identity function J : E.(L) — E.(M) is PC2 in any
logic, and it preserves elementary equivalence by hypothesis. As L < M
with M compact, then J is uniformly continuous by Theorem 7.3 and so
M < L. Assume now the general case =7, < =ps. Under the hypothesis it is
clear that if B(L, M) denotes the logic obtained by closure of L U M under
finite Boolean operations then =y, implies =z, 5r) and so = = =gz a). It
is easy to see that B(L, M) is closed under relativizations since these com-
mute with Boolean operations. Therefore, by the first part of the proof,
B(M,Ly=Landso M <L. O

9. A Lowenheim-Skolem Theorem for First Order PC Oper-
ations ‘

The following result seems intuitively obvious, but the only proof we do
know makes use of heavy artillery (it was suggested to us by Lauri Hella and
Kerkko Luosto of Helsinki). Call a operation RPC,, if it is the relativized
reduct of the models of a countable theory.

9.1 THEOREM. If F is a partial first order RPC,, operation then for any
A in the domain of F:
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a) |A] > w implies |F(A)| < |A.
b) |A| < w implies |F(A)| < w.

ProoF. Assume G(F) = {[A,B] : 3V, R(V,[A,B], R) E 6}, where 8 is a
countable set of sentences. If there is A in the domain of F with |F(A)| >
|A| > w, then calling A and B the universes of A and B, respectively, there
is C = (V,[A4,B],...) = (V,AUB,A,B,...) k 0 with [AUB| > |4] >
w. By the downward Lowenheim-Skolem-Tarski Theorem we may assume
without loss of generality that V| = |AU B|. Add an extra predicate and a
sentence to 6 insuring this last equality. By Theorem 3.2.14 in [Chang-Keisler
1973], there are structures C' = (V',[4’,B'],...) = (V/,A' U B, 4,..),
c” = (V",[A",B)",...) = (V",A" U B",A",.. ) with C' < C,C' < C",
|A’U B'| = w, [A”UB"| = w; and A’ = A". Therefore, 4’ = A", since
the relations of A’, are those of A" restricted to A’. On the other hand,
C',C" F @ and so [A',B'], [A",B"] € G(F). As |A"| = |4A| = w, we must
have [B”| > |B'|, and so A’ will have two non-isomorphic images. This shows
(a). .

Now, if |A| < w and |F(A)| > w, we could keep A fixed with a conve-
nient set of sentences describing it, and at the same time inflate [A, F(A)] by
compactness to a model [A, B] in G(F) with B of infinite power greater than
| F(\A)|, obtaining two images for A of distinct cardinality, which is absurd
and shows (b). O

9.2 COROLLARY. If F is first order RPC and 7,0 are finite then module
isomorphism, F is partial recursive in finite structures.

ProOF. Let B(1), B(2), ... be arecursive enumeration of all finite struc-
tures in E, with domain a initial segment of w, and @1, ¢a,... a recursive
listing of their first order descriptions. As F is RPC there is by Corollary 6.3
arecursive o such that for any finite structure A in the domain of F, A F a(¢p)
if and only if F(A) k . Then F(A) ~ B(n) if and only if F(4) k ¢,, if and
only if A F a(p,). Hence, as F(A) must be finite:

F(A) ~ B(un[A E aen)])

which is partial recursive since satisfaction is a recursive relation for finite
structures. O
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The following counterexample shows that Theorem 9.1 does not neces-
sarily hold for countably compact logics. The operation:

A if A is not a field
F(A) = { Algebraically closed extension
of A of power |A4| 4+ wy if A is a field,

is PC,, in fact PC, in L, (Q1) since with the help of additional predicates
and a recursive set of sentences it is possible to state in this logic that
F(A) is an algebraically closed field of the same characteristic as A and
|F(A)| = |A| + |B| where B has an w;-like ordering. However F(Z,) is
infinite and |F(Q)| > |Q|.

10. Continuity and Interpolation

Given two logics L < M the notations Int(L, M) and A-Int(L,M), will
denote, respectively that L satisfy the interpolation and A-interpolation,
properties with respect to M; this is, the interpolant of sentences in L may
be found in M (cf. [Ebbinghaus 1985]). Since we are working with sin-
gle sorted logics, plain interpolation means separation of PC classes, not of
RPC classes. Whenever we wish to refer to the stronger relativized interpo-
lation, or separation of disjoint RPC classes, we will utilize a subscript R,
so Intg(L, M), A-Intg(L, M). Assuming uniform reduction for pairs both
notions coincide.

10.1 LEMMA. If L has relotivizations and M satisfies URP then
Int(L, M) implies Intp(L, M). Similarly for A-interpolation.

ProOOF. Let K; = {A|P|r: Ak 0;},i = 1,2, be disjoint L-RPC classes.
Then the classes K} = {[[A41,4,],D] : A1 F 61,43 F 05,D ~ A;|P|r} are
disjoint L-PC. Let o € M separate them, say Ky C Mod(c). By URP there
is finite & C M such that D, =g D, implies [[A, B], D1] =, [[4, B], D4 for
any A,B. Let D € K; then Thg(D) separated K; and K,. O

The following theorem is due in [Gaifman 1974], [Feferman 1974], and
[Makowsky 1985]. They state it in the context of many sorted logics, but
interpolation for many sorted logics (cf. [Ebbinghaus 1985}, 7.1.1) may be
reduced to relativized interpolation.

10.2 THEOREM ([Makowsky 1985], Th. 4.2.14). Let L be closed under
relativizations, then Intg(L, M) holds if and only if any partial L-RPC op-
eration F : E.(M) — E,(L) is uniformly continuous.
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Relativized A-interpolation has a similar characterization.

10.3 THEOREM. Let L be closed under relativizations, then A-
Intr(L, M) if and only if any total L-RPC operation F : E.(M) — E,(L)
is uniformly continuous.

The topological content of the plain non-relativized interpolation prop-
erties is more delicate. Interpolation will imply continuity only for those
PC operations where F(A) may be “constructed” inside A. If A and B are
structures of types o and u, respectively, with |B| C |4|, let (4, B) be the
structure of type o U {P} U K where P is a new monadic symbol interpreted
by the universe of B, and p is a renaming of p, disjoint, of o interpreted by
the relations of B.

10.4 DEFINITION. An operation F : E; — E, will be called an L-PC
(respectively, L-PCa) ezpansion if | F(A)| < |A] for all A in its domain, and
the class

G*(F)={(A,B): B~ F(A)}
is L-PC (respectively, L-PC,).

Projections, restrictions, L-definitional expansions, and quotients are L-
PC expansions for any logic L. But powers are L-PC expansions in infinite
structures only. By Theorem 9.1, the downward Lowenheim-Skolem The-
orem for L, and next lemma all first order RPC operations are L-PC
expansions in infinite structures for any logic L.

10.5 LEMMA. Any L-PC ope;ration F satisfying |F(A)| < |A| is an L-PC
ezpansion in infinite structures. Similarly for L-PCa operations.

PrOOF. Let G(F) = {[4,B] : 3R([A, B], R) F ()} then for infinite A4,
(A,B) € G*(F) & 3C,R,f(A,B,C,R,f) F “f : (|A|,C) = [A, B]"A0(p),
where the last sentence is a renaming of 6 to the type of (|A[,C,R). O

10.6 THEOREM. Let L be closed under relativizations, then
a) Int(L, M) < any partial L-PC ezpansion F : E,(M) — E,(L) is uni-
formly continuous.
b) A-Int(L, M) < any total L-PC ezpansion F : E.(M) — E,(L) is uni-
formly continuous.
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Proor. “<" If B ~ F(A) < 3R(A,B,R)F 0 with 6 € L, then for each
¢ € L{c) the classes ’

Ki={A : 3B,R(A,B,R)FOnp"}, K, = {A : 3B, R(A, B,R)F 0A-¢F}

where P denotes the universe of B, are obviously disjoint L-PC subclasses of
ET(M). Let ofp) be an interpolant for them in M (1), say K1 C Mod(a(ep)),
then for A € dom(F) we have A F a(p) © A € K; & I1B,R(A,B,R) E
9A¢P & F(A) ~ BE ¢. In case the operation is total, K7 and K, are .
complementary and A-interpolation is enough.

“=” Given disjoint L-PC classes in E,, say K; = {A : 3R(4,R)F 6;},
t = 1,2, the operation defined in K; U K3 by F(A) = (4,|4]) if A € K,
F(A) = (4,0)if A € K,, is easily seen to be an L-PC expansion, total if the
classes are complementary. Then a(VzV (z)) € M(r) separates K; and K,
since we have for A € K1 U K> that A € Ky & F(A) = (4,|4]) & F(4)E
VeV(z) & AF a(VeV(2)). O

10.7 ExaAMPLE ([Badger 1977]). Let @7 denote the n-ary Magidor-Malitz
quantifier in the s-interpretation, Q< = {Q7 : n € w},and MM = |J, Q5¥.
Then

A-T1it( Ly (Q2), Loow (M M))

fails for uncountable k. Badger shows how to construct a pair of structures
A, B of uncountable power & such that A =L 00w (Q5¥) B but A2 ?—éLw(QE“’)
B?; it may be seen that in fact A =L..(Ma) B. Hence, the operation:
C — C?for |C| > k, C — C for |C| < , is a total L,,(Q2)-PC expansion
but it is not uniformly continuous from E (Leow(MM)) to E,(Luw(Q2)).
Theorem 10.6 (b) implies the claim.

10.8 ExaMPLE. Theorem 10.3 does not hold if there are not relativiza-
tions. The logic Lww(q) where q is the quantifier: :

gz ¢(z) & the universe has finite or regular cardinal

satisfies interpolation (and compactness, see [Caicedo 1985]) but quotients,
which are PC expansions, are not uniformly continuous for this logic by
Corollary 11.2'in next section.

However, Theorem 10.6 holds in logics without relativizations for power
preserving L-PC expansion, those satisfying |F(A)| = |4|. For example, in-
terpolation implies the uniform continuity of cartesian operations in infinite
structures. Another curious corollary is that A-interpolation implies closure
under relativizations to predicates of the same power as the universe.
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11. A General Non-Interpolation Theorem

Now we give a topological versions of some results in [Caicedo 1990]. A Lind-
strém quantifier Q of type (ny, . .., ny,) willbe called &-thin if (A4, Ry, ..., Rm)
€ Q implies that for all § C A4 with |§] = |A| > k and 1 < % < m there are
distinct a1,...,an; € S such that (a1,...,a8,;) € R;. Let T, be the class of
k-thin quantifiers. Call thin those quantifiers Q for which there is a such
that for all & > «, Q is definable in structures of power & by a sentence of
finite quantifier rank of Leow(Tx). The defining sentence may depend on c.
Let T denote the class of all thin quantifiers.

All monadic type quantifiers, all linear order quantifiers (well ordering
quantifier, cofinality quantifiers, equicofinality quantifiers, etc. for example),
as well as many other natural quantifiers are thin. On the other hand,
Magidor-Malitz quantifiers Q7 may be shown not to be thin for n > 2.

Consider now for each cardinal & the operation F, : B, — E. (g} given
by

(1) Fu(A) = (A X &r, E),

where k, denotes the structure with universe « and all the relations
in T interpreted as the largest possible, and E is the congruence relation

(a,8)E(d/,B") if and only if a = d’.

11.1 LEMMA. Let C be a set of thin quantifiers then there is o such that
for all > o, F : E®(Lyw) = Ert2(Luw(C)) is uniformly continuous.

Proor. The operation [4,B] — (A X B, E) where (a,b)E(a’,¥) if
and only if @ = &' is first-order PCA and so uniformly continuous in Lww.
Since L., has uniform reduction for pairs, then for fixed B the operation
A [A, B] is also uniformly continuous. This shows uniform continuity of
(1) in first order topology. Now pick & such that all quantifiers in C are
k-thin (it exists because C is a set). If |A] < k, one may show that any
infinite subset of F,{A)" invariant under automorphisms admits k = |F(4)|
indiscernibles. With this one may prove that any sentence in Lww(C) is
equivalent in F(A) to a first order sentence which depends only on the car-
dinal k. The claim follows. O

11.2 CoroLLARY. If Lww < L < Lww(T) then for some T, the quotient
operation q : Ery2(L(T)) — E.(L) is not uniformly continuous (in infinite
structures).
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ProoF. Let ¢ € L — Ly, and L* = Luu(p), then the identity operation
I*: E.(Ly,) — E-(L*) is not uniformly continuous, as L* is a set it follows
that for some B the operation I* : Ef(Luw) — E.(L*) is not uniformly
continuous for all £ > 8. For each C C T choose k£ > 8, a, where a is given
by the previous Lemma, then the diagram below commutes

Er12(Lww(C))

VN

EX(Lww) E,(L¥)

and F, is uniformly continuous; hence g cannot be uniformly continuous.
Therefore, q : Ert2(Lww(T)) — E-(L*) is not uniformly continuous and the
claim follows. O

11.3 CoroLLARY (Th. 2, [Caicedo 1990]). No proper exztension of Lww
generated by thin quantifiers and closed under relativizations satisfies A-
interpolation.

PROOF. Since ¢ is total PC in any logic, the previous Corollary and
Theorem 10.6 on the previous section show that A-Int(L, Lww(T)) fails if
Lww < L. O

The operation F, defined above is uniformly continuous for finite types
in any logic closed under interpolation and uniform reduction for pairs, since
it factors as the composite of two operations

A [A, k] = (A X Kr, E),

where the first is uniformly continuous by URP and the second is (extendible
to) a power preserving PC expansion in finite structures. If M is such a logic,
let M(T) be the result of closing M under all thin quantifiers, then arguing
as Lemma 11.1 and its corollaries we get:

11.4 COROLLARY. Let M be closed under interpolation and uniform
reduction for pairs. If M < L < M(T) then quotients are not uniformly
continuous in L. If in addition L is closed under relativizations then Int(L,
M(T)) fails.
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12. Robinson’s Lemma and Continuity

Recall that Robinson’s consistency lemma for L says that if A;|r =p A,
* there are structures A%, A3 such that A} =; A;, i = 1,2, and Aflr = Aj|r.
An useful equivalent formulation is the following : 1f Kl,Kg are L-PCxp
classes and there are 4; € K, i = 1,2, such that A; = Ay, then K3 N K, #
0. :

The following result shows that Robinson’s Lemma is also a continuity
phenomenum. In this section we assume all logics have relativizations.

12.1 THEOREM. The following are equivalent for any logic L.
i) Robinson’s consistency lemma.
ii) Any L-PCa ezpansion preserves elementary equivalence.

Proor. (i) = (ii). Let F : E, — E, be a L-PCx expansion defined
by F(A) = C < 3R(A,B,R)F 0,6 € L(t U g U p), and assume that there
are structures A;, 4, with A; =p Ay, F(A;) F ¢, and F(4,) ¥ ¢ for some
sentence ¢. Then there are relations Ry, Ry such that (A4;,F(4;),R;) F
8 A o9 and (A2, F(A2),R2) F 8 A —|_<£Q where @) interprets the universe
of F(A;) and 0 A —¢? is a renaming of § A ~p? in the type T U g U JI2
g U p a disjoint copy_of o + p. Robinson’s Lemma implies the existence of
(A,B1, R}, By, R E 0/\goQ 0A-¢@ such that (4, B;, RY) =1, (4:, F(4:), R;),
1= 1,2; hence, By = = F(A) and B F ¢, By ¥ ¢, a contradiction.

(if) = (i) Assume A1|'r = Ay|7 is a situation where Robinson’s Lemma
fails, then the L-PCa classes K; = {A|lr : AF Thr(4;)), i = 1,2, must be
disjoint. Hence,

[ (4)4) fAck,
F(A)‘{(A,@) if A € Ky

is a well defined Z-PCa expansion, and so (4, |A]) = F(A1|7) =1 F(42|7) =
(A,0), which is absurd. O

12.2 CoroOLLARY. The following are equivalent for any logic L having
occurrence number smaller than the first measurable cardinal.
i) Robinson’s consistency lemma.
ii) Any L — PCa ezpansion is uniformly continuous.

ProoF. Under the hypothesis Robinson’s Lemma implies compactness
([Makowsky 1985, Cor. 3.3.5). Apply Theorem 7.3. O
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By a result of Shelah ([Shelah 1985], Claim 3.3, [Makowsky 1985], Th.
4.5.13.1), any logic L satisfying Robinson’s Lemma and the pair preservation
property (PPP) must have the homogeneity property, this is, for very struc-
ture A and elements a,b of the same L-type in A there is an L-elementary
extension B of A with an automorphism sending a to b. Robinson’s Lemma
is in fact equivalent under PPP to a stronger form of the homogeneity prop-
erty. The equivalence between Robinson’s Lemma and this strong homo-
geneity has been noticed by H. Mildenberger (see [Ebbinghaus 1995]). See
also in this connection [Shelah 1985], Lemma 3.6.

12.3 DEFINITION. L has the strong homogeneity property if given a struc-
ture A and two sequences (perhaps infinite) of relations R, .S in A such that
(A,R) =1 (4, 5), there is a elementary extension (A4*, R*,5*) of (4, R, S5)
with (A%, R*) =~ (4%, 5%).

The homogeneity property results when R and 5 above reduce to single-
tons. Strong homogeneity follows in turn from an even stronger property:

12.4 DEFINITION. L is said to have the general homogeneity property if
given a pair of partial L-RPCa operations Fy, Fy : E, — E, and a structure
A in their domain such that Fy(A) = F»(A) there is B > A such that

The strong homogeneity property is obtained taking for F; the projec-
tion of 7 = p + ¢3 + ¢2 into ¢ = p + ¢1, and for F, the projection of = into
it + co followed by the renaming cp/¢;, where p is the type of A and ¢; and
¢z are disjoint copies of the type of the sequences R, S.

12.5 THEOREM. The following are equivalent for any logic L.
i) L has the Robinson’s property + PPP.
ii) L has the strong homogeneity property + PPP.
iii) L has the general homogeneity property.

Proor. (i) = (iii). First assume F; and F; are L-PCy operations and
Fi(A) =1 F5(A). Let F;* be the restriction of F; to models of Thr(( 4, €)eca)
which is still L-PCa. By PPP, [A, F1(A)] =L [A, F2(A)], the first structure
being in G(FT) and the second in G(F5). As these two graphs are PCa by
hypothesis, Robinson’s Lemma implies there is [B, D] in their intersection.
Then, B >; A and Fi(B) = D = F,(B), showing homogeneity. Now, if
Fi, F, are L-RPC, with G(F;) = {[4, D] : (R;,[A,D]) F 6;},¢ = 1,2, apply
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homogeneity to the operations F; defined in the class
{[(R11A1)7(R2a A2)] : 3-Dl-D2(-R‘i> [AivDi]) E Gz,z = 112v and Al ~ A2}

and sending [(R1, 41), (R2, A2)] to Fi(4;).

(iii) = (ii) It is enough to show that (iii) implies PPP. If A =1, B and
[C,A]E 0, [C,B] E -6 then [C, A, B] F 6 A =89 for an appropriate renaming
and relativization of §. By general homogeneity applied to the projections
7y, ™3 there is [C*, A*, B*] >, [C, A, B] with A* ~ B*. Hence, [C*, A*] F 6,
[C*, B*] E =6 which is absurd.

(ii) = (i) Assume A;|T =1, Ay|7. If X is a set of infinite power greater
than |A1], lAzl, and D = [(X),Al, Az] then [D,A,LlT] = [(X),Al, Az,AilT] ~
[(X"), A1, Az, A;|7] with the disjoint union X' U|A;|U|A42|U|4;| being equal
to X; then, [D, A;|7] = (X, D, A;|7), ¢ = 1,2. Since [D, A|7] =1 [D, As|7]
by the PPP then (X, D, A:|7) = (X, D, As|7). By the strong homogeneity
property there must exist (X*, D*, Af|7, A5|7) =L (X, D, A;|r, A2|7) such
that (X*, D%, Af|r) = (X*,D*, A3|r). Hence, A = A; and A}jr ~ A}jr
yielding Robinson’s property. O

12.6 CororLary. ROB + PPP implies that any L-RPCa operation
preserves elementary equivalence.

Proor. Assume A =1, B and F(A) F ¢, F(B)F —p. If F is L-RPC4 so
are the operations 71,73 in K = {C € G(F) x G(F) : 73(C) F ¢, 74(C) F
-p}. Let C = [A, F(A),B, F(B)] then 71(C) =L w3(C) and by general
homogeneity there is C* = [A*, F(A*),B*,F(B*)] > C in K such that
A* ~ B*, which is absurd since this implies F(A*) ~ F(B*) and F(A*) F ¢,
F(B*)E —p. O

13. Characterization of Initial Structures

The following is a interesting consequence of the Robinson property. It does
not depend on the PPP (a simpler proof could be given using homogeneity
but this depends on PPP). A structure A will be called L-initial if it has
at most one L-elementary embedding in any other structure. For example,
(w, <) is L-initial for any logic L.

13.1 THEOREM. If L has occurrence number smaller than the first mea-
surable cardinal and satisfies Robinson’s Lemma, then a structure A is L-
wnitial if and only if all its elements are L-definable in A.
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Proor. If all elements of a structure are L-definables, it is obviously L-
initial. Now, let A be a L-initial structure and consider the partial operation

from E. (g to Erufclufcaaca}:
F((B,b)) = (B,b,¢a)aea if and only if (B, ¢a)aca F T

where T = Thr((A,a)scs). This is a PCa definition because T must be
equivalent to a set; to see that it actually defines an operation take an
isomorphism g : (B1,b1) — (Bs,bs) and F((B;,b;) = (B;, bi,cl)aca, i = 1,2,
then we have elementary embeddings e; : A — B;, ej(a) = ¢&. By initiality
of A, the diagram

commutes. This means that g : (By,b1,¢l)1 — (B2,bs,¢2), is as also an
isomorphism. By Theorem 12.1 this operation must be uniformly continu-
ous. If some e € A where not definable, consider the sentence ¢ = ¢.. There
must exist a finite set of sentences & such that (B,b) = (B’,}') implies:
F(B,b) E ¢ = ¢, if and only if F(B',b') F ¢ = c.. But (4,e) =z (4,d)
for some d # e by non-definability of e. As (A4,e,a)qea F ¢ = ¢ then
(A,d,a)qeca F ¢ = ce, this is d = e, which is absurd. O

Call an element of a structure L..-definable in A if it is the only element
of A realizing its L-type. If we do not put conditions on the occurrence
number of the logic we still get:

13.2 THEOREM. If L satisfies Robinson’s Lemma, then a structure A is
L-initial if and only if all its elements are Lo,-definable in A.

13.3 CororraRry. If L is a small logic satisfying Robinson’s Lemma then
any theory of L having arbitrarily large models has arbitrarily large models
A, B with two distinct elementary embeddings from A to B.



294 X. Caicedo

ProOF. As the logic is small the structures with all its elements L..-
definable are bounded in power. Any model of the theory of a larger power is-
non-initial and so it provides two distinct embeddings in another model. D

University of Los Andes, Colombia
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